detection_en.md 14.4 KB
Newer Older
1
# Text Detection
L
LDOUBLEV 已提交
2

3
This section uses the icdar2015 dataset as an example to introduce the training, evaluation, and testing of the detection model in PaddleOCR.
L
LDOUBLEV 已提交
4

5 6
- [1. Data and Weights Preparation](#1-data-and-weights-preparatio)
  * [1.1 Data Preparation](#11-data-preparation)
fanruinet's avatar
fanruinet 已提交
7
  * [1.2 Download Pre-trained Model](#12-download-pretrained-model)
8 9 10 11
- [2. Training](#2-training)
  * [2.1 Start Training](#21-start-training)
  * [2.2 Load Trained Model and Continue Training](#22-load-trained-model-and-continue-training)
  * [2.3 Training with New Backbone](#23-training-with-new-backbone)
12
  * [2.4 Training with knowledge distillation](#24)
13 14 15 16 17
- [3. Evaluation and Test](#3-evaluation-and-test)
  * [3.1 Evaluation](#31-evaluation)
  * [3.2 Test](#32-test)
- [4. Inference](#4-inference)
- [5. FAQ](#2-faq)
K
Khanh Tran 已提交
18

19
## 1. Data and Weights Preparation
K
Khanh Tran 已提交
20

21
### 1.1 Data Preparation
L
LDOUBLEV 已提交
22 23

The icdar2015 dataset contains train set which has 1000 images obtained with wearable cameras and test set which has 500 images obtained with wearable cameras. The icdar2015 can be obtained from [official website](https://rrc.cvc.uab.es/?ch=4&com=downloads). Registration is required for downloading.
K
Khanh Tran 已提交
24

L
LDOUBLEV 已提交
25 26 27 28

After registering and logging in, download the part marked in the red box in the figure below. And, the content downloaded by `Training Set Images` should be saved as the folder `icdar_c4_train_imgs`, and the content downloaded by `Test Set Images` is saved as the folder `ch4_test_images`

<p align="center">
L
LDOUBLEV 已提交
29
 <img src="../datasets/ic15_location_download.png" align="middle" width = "700"/>
L
LDOUBLEV 已提交
30 31
<p align="center">

K
Khanh Tran 已提交
32
Decompress the downloaded dataset to the working directory, assuming it is decompressed under PaddleOCR/train_data/. In addition, PaddleOCR organizes many scattered annotation files into two separate annotation files for train and test respectively, which can be downloaded by wget:
L
licx 已提交
33
```shell
K
Khanh Tran 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
# Under the PaddleOCR path
cd PaddleOCR/
wget -P ./train_data/  https://paddleocr.bj.bcebos.com/dataset/train_icdar2015_label.txt
wget -P ./train_data/  https://paddleocr.bj.bcebos.com/dataset/test_icdar2015_label.txt
```

After decompressing the data set and downloading the annotation file, PaddleOCR/train_data/ has two folders and two files, which are:
```
/PaddleOCR/train_data/icdar2015/text_localization/
  └─ icdar_c4_train_imgs/         Training data of icdar dataset
  └─ ch4_test_images/             Testing data of icdar dataset
  └─ train_icdar2015_label.txt    Training annotation of icdar dataset
  └─ test_icdar2015_label.txt     Test annotation of icdar dataset
```

fanruinet's avatar
fanruinet 已提交
49
The provided annotation file format is as follow, separated by "\t":
K
Khanh Tran 已提交
50 51
```
" Image file name             Image annotation information encoded by json.dumps"
L
LDOUBLEV 已提交
52
ch4_test_images/img_61.jpg    [{"transcription": "MASA", "points": [[310, 104], [416, 141], [418, 216], [312, 179]]}, {...}]
K
Khanh Tran 已提交
53
```
W
WenmuZhou 已提交
54
The image annotation after **json.dumps()** encoding is a list containing multiple dictionaries.
K
Khanh Tran 已提交
55

L
licx 已提交
56 57 58 59 60
The `points` in the dictionary represent the coordinates (x, y) of the four points of the text box, arranged clockwise from the point at the upper left corner.

`transcription` represents the text of the current text box. **When its content is "###" it means that the text box is invalid and will be skipped during training.**

If you want to train PaddleOCR on other datasets, please build the annotation file according to the above format.
K
Khanh Tran 已提交
61 62


fanruinet's avatar
fanruinet 已提交
63
### 1.2 Download Pre-trained Model
64

fanruinet's avatar
fanruinet 已提交
65 66
First download the pre-trained model. The detection model of PaddleOCR currently supports 3 backbones, namely MobileNetV3, ResNet18_vd and ResNet50_vd. You can use the model in [PaddleClas](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.0/ppcls/modeling/architectures) to replace backbone according to your needs.
And the responding download link of backbone pre-trained weights can be found in (https://github.com/PaddlePaddle/PaddleClas/blob/release%2F2.0/README_cn.md#resnet%E5%8F%8A%E5%85%B6vd%E7%B3%BB%E5%88%97).
K
Khanh Tran 已提交
67

L
licx 已提交
68
```shell
K
Khanh Tran 已提交
69 70
cd PaddleOCR/
# Download the pre-trained model of MobileNetV3
T
tink2123 已提交
71
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/MobileNetV3_large_x0_5_pretrained.pdparams
W
WenmuZhou 已提交
72
# or, download the pre-trained model of ResNet18_vd
T
tink2123 已提交
73
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/ResNet18_vd_pretrained.pdparams
W
WenmuZhou 已提交
74
# or, download the pre-trained model of ResNet50_vd
T
tink2123 已提交
75
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/ResNet50_vd_ssld_pretrained.pdparams
76

77
```
K
Khanh Tran 已提交
78

qq_25193841's avatar
qq_25193841 已提交
79
## 2. Training
80 81 82

### 2.1 Start Training

M
MissPenguin 已提交
83
*If CPU version installed, please set the parameter `use_gpu` to `false` in the configuration.*
L
licx 已提交
84
```shell
85
python3 tools/train.py -c configs/det/det_mv3_db.yml  \
qq_25193841's avatar
qq_25193841 已提交
86
         -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
K
Khanh Tran 已提交
87 88
```

M
MissPenguin 已提交
89 90
In the above instruction, use `-c` to select the training to use the `configs/det/det_db_mv3.yml` configuration file.
For a detailed explanation of the configuration file, please refer to [config](./config_en.md).
K
Khanh Tran 已提交
91

92
You can also use `-o` to change the training parameters without modifying the yml file. For example, adjust the training learning rate to 0.0001
L
licx 已提交
93
```shell
L
update  
LDOUBLEV 已提交
94
# single GPU training
95
python3 tools/train.py -c configs/det/det_mv3_db.yml -o   \
qq_25193841's avatar
qq_25193841 已提交
96
         Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained  \
97
         Optimizer.base_lr=0.0001
L
update  
LDOUBLEV 已提交
98 99

# multi-GPU training
100
# Set the GPU ID used by the '--gpus' parameter.
qq_25193841's avatar
qq_25193841 已提交
101
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
S
stephon 已提交
102

B
Bin Lu 已提交
103
# multi-Node, multi-GPU training
B
Bin Lu 已提交
104
# Set the IPs of your nodes used by the '--ips' parameter. Set the GPU ID used by the '--gpus' parameter.
S
stephon 已提交
105
python3 -m paddle.distributed.launch --ips="xx.xx.xx.xx,xx.xx.xx.xx" --gpus '0,1,2,3' tools/train.py -c configs/det/det_mv3_db.yml \
B
Bin Lu 已提交
106 107
     -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
```
S
stephon 已提交
108 109
**Note:** For multi-Node multi-GPU training, you need to replace the `ips` value in the preceding command with the address of your machine, and the machines must be able to ping each other. In addition, it requires activating commands separately on multiple machines when we start the training. The command for viewing the IP address of the machine is `ifconfig`.

B
Bin Lu 已提交
110
If you want to further speed up the training, you can use [automatic mixed precision training](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/01_paddle2.0_introduction/basic_concept/amp_en.html). for single card training, the command is as follows:
B
Bin Lu 已提交
111 112 113 114
```
python3 tools/train.py -c configs/det/det_mv3_db.yml \
     -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained \
     Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True
K
Khanh Tran 已提交
115 116
```

117
### 2.2 Load Trained Model and Continue Training
118
If you expect to load trained model and continue the training again, you can specify the parameter `Global.checkpoints` as the model path to be loaded.
L
LDOUBLEV 已提交
119 120

For example:
L
licx 已提交
121
```shell
L
LDOUBLEV 已提交
122
python3 tools/train.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=./your/trained/model
L
LDOUBLEV 已提交
123 124
```

qq_25193841's avatar
qq_25193841 已提交
125
**Note**: The priority of `Global.checkpoints` is higher than that of `Global.pretrained_model`, that is, when two parameters are specified at the same time, the model specified by `Global.checkpoints` will be loaded first. If the model path specified by `Global.checkpoints` is wrong, the one specified by `Global.pretrained_model` will be loaded.
L
LDOUBLEV 已提交
126 127


128
### 2.3 Training with New Backbone
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

The network part completes the construction of the network, and PaddleOCR divides the network into four parts, which are under [ppocr/modeling](../../ppocr/modeling). The data entering the network will pass through these four parts in sequence(transforms->backbones->
necks->heads).

```bash
├── architectures # Code for building network
├── transforms    # Image Transformation Module
├── backbones     # Feature extraction module
├── necks         # Feature enhancement module
└── heads         # Output module
```

If the Backbone to be replaced has a corresponding implementation in PaddleOCR, you can directly modify the parameters in the `Backbone` part of the configuration yml file.

However, if you want to use a new Backbone, an example of replacing the backbones is as follows:

1. Create a new file under the [ppocr/modeling/backbones](../../ppocr/modeling/backbones) folder, such as my_backbone.py.
2. Add code in the my_backbone.py file, the sample code is as follows:

```python
import paddle
import paddle.nn as nn
import paddle.nn.functional as F


class MyBackbone(nn.Layer):
    def __init__(self, *args, **kwargs):
        super(MyBackbone, self).__init__()
        # your init code
        self.conv = nn.xxxx

    def forward(self, inputs):
        # your network forward
        y = self.conv(inputs)
        return y
```

3. Import the added module in the [ppocr/modeling/backbones/\__init\__.py](../../ppocr/modeling/backbones/__init__.py) file.

After adding the four-part modules of the network, you only need to configure them in the configuration file to use, such as:

```yaml
  Backbone:
    name: MyBackbone
    args1: args1
```

**NOTE**: More details about replace Backbone and other mudule can be found in [doc](add_new_algorithm_en.md).

178 179 180 181 182

### 2.4 Training with knowledge distillation

Knowledge distillation is supported in PaddleOCR for text detection training process. For more details, please refer to [doc](./knowledge_distillation_en.md).

183 184 185
## 3. Evaluation and Test

### 3.1 Evaluation
K
Khanh Tran 已提交
186

187
PaddleOCR calculates three indicators for evaluating performance of OCR detection task: Precision, Recall, and Hmean(F-Score).
K
Khanh Tran 已提交
188

L
LDOUBLEV 已提交
189
Run the following code to calculate the evaluation indicators. The result will be saved in the test result file specified by `save_res_path` in the configuration file `det_db_mv3.yml`
K
Khanh Tran 已提交
190

191
When evaluating, set post-processing parameters `box_thresh=0.6`, `unclip_ratio=1.5`. If you use different datasets, different models for training, these two parameters should be adjusted for better result.
K
Khanh Tran 已提交
192

L
LDOUBLEV 已提交
193
The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set `Global.checkpoints` to point to the saved parameter file.
L
licx 已提交
194
```shell
L
LDOUBLEV 已提交
195
python3 tools/eval.py -c configs/det/det_mv3_db.yml  -o Global.checkpoints="{path/to/weights}/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
K
Khanh Tran 已提交
196 197
```

198
* Note: `box_thresh` and `unclip_ratio` are parameters required for DB post-processing, and not need to be set when evaluating the EAST and SAST model.
K
Khanh Tran 已提交
199

200
### 3.2 Test
K
Khanh Tran 已提交
201 202

Test the detection result on a single image:
203
```shell
204
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy"
K
Khanh Tran 已提交
205 206 207
```

When testing the DB model, adjust the post-processing threshold:
208
```shell
209
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy"  PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=2.0
K
Khanh Tran 已提交
210 211 212 213
```


Test the detection result on all images in the folder:
214
```shell
215
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/" Global.pretrained_model="./output/det_db/best_accuracy"
K
Khanh Tran 已提交
216
```
217

218
## 4. Inference
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.

The model saved during the training process is the checkpoints model, which saves the parameters of the model and is mostly used to resume training.

Compared with the checkpoints model, the inference model will additionally save the structural information of the model. Therefore, it is easier to deploy because the model structure and model parameters are already solidified in the inference model file, and is suitable for integration with actual systems.

Firstly, we can convert DB trained model to inference model:
```shell
python3 tools/export_model.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model="./output/det_db/best_accuracy" Global.save_inference_dir="./output/det_db_inference/"
```

The detection inference model prediction:
```shell
python3 tools/infer/predict_det.py --det_algorithm="DB" --det_model_dir="./output/det_db_inference/" --image_dir="./doc/imgs/" --use_gpu=True
```

If it is other detection algorithms, such as the EAST, the det_algorithm parameter needs to be modified to EAST, and the default is the DB algorithm:
```shell
python3 tools/infer/predict_det.py --det_algorithm="EAST" --det_model_dir="./output/det_db_inference/" --image_dir="./doc/imgs/" --use_gpu=True
```

241
## 5. FAQ
242 243

Q1: The prediction results of trained model and inference model are inconsistent?
244

245 246 247
**A**: Most of the problems are caused by the inconsistency of the pre-processing and post-processing parameters during the prediction of the trained model and the pre-processing and post-processing parameters during the prediction of the inference model. Taking the model trained by the det_mv3_db.yml configuration file as an example, the solution to the problem of inconsistent prediction results between the training model and the inference model is as follows:
- Check whether the [trained model preprocessing](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L116) is consistent with the prediction [preprocessing function of the inference model](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/predict_det.py#L42). When the algorithm is evaluated, the input image size will affect the accuracy. In order to be consistent with the paper, the image is resized to [736, 1280] in the training icdar15 configuration file, but there is only a set of default parameters when the inference model predicts, which will be considered To predict the speed problem, the longest side of the image is limited to 960 for resize by default. The preprocessing function of the training model preprocessing and the inference model is located in [ppocr/data/imaug/operators.py](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/ppocr/data/imaug/operators.py#L147)
- Check whether the [post-processing of the trained model](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L51) is consistent with the [post-processing parameters of the inference](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/utility.py#L50).