db_postprocess.py 6.6 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import cv2
W
WenmuZhou 已提交
21
import paddle
L
LDOUBLEV 已提交
22 23 24 25 26 27 28 29 30
from shapely.geometry import Polygon
import pyclipper


class DBPostProcess(object):
    """
    The post process for Differentiable Binarization (DB).
    """

W
WenmuZhou 已提交
31 32 33 34 35
    def __init__(self,
                 thresh=0.3,
                 box_thresh=0.7,
                 max_candidates=1000,
                 unclip_ratio=2.0,
36
                 use_dilation=False,
littletomatodonkey's avatar
littletomatodonkey 已提交
37
                 score_mode="fast",
W
WenmuZhou 已提交
38 39 40 41 42
                 **kwargs):
        self.thresh = thresh
        self.box_thresh = box_thresh
        self.max_candidates = max_candidates
        self.unclip_ratio = unclip_ratio
L
LDOUBLEV 已提交
43
        self.min_size = 3
littletomatodonkey's avatar
littletomatodonkey 已提交
44 45 46 47 48
        self.score_mode = score_mode
        assert score_mode in [
            "slow", "fast"
        ], "Score mode must be in [slow, fast] but got: {}".format(score_mode)

W
WenmuZhou 已提交
49 50
        self.dilation_kernel = None if not use_dilation else np.array(
            [[1, 1], [1, 1]])
L
LDOUBLEV 已提交
51

W
del pad  
WenmuZhou 已提交
52
    def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
L
LDOUBLEV 已提交
53 54 55 56 57 58 59
        '''
        _bitmap: single map with shape (1, H, W),
                whose values are binarized as {0, 1}
        '''
        bitmap = _bitmap
        height, width = bitmap.shape

L
LDOUBLEV 已提交
60 61
        outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
                                cv2.CHAIN_APPROX_SIMPLE)
T
tink2123 已提交
62 63 64 65
        if len(outs) == 3:
            img, contours, _ = outs[0], outs[1], outs[2]
        elif len(outs) == 2:
            contours, _ = outs[0], outs[1]
L
LDOUBLEV 已提交
66 67 68

        num_contours = min(len(contours), self.max_candidates)

W
WenmuZhou 已提交
69 70
        boxes = []
        scores = []
L
LDOUBLEV 已提交
71 72 73 74 75 76
        for index in range(num_contours):
            contour = contours[index]
            points, sside = self.get_mini_boxes(contour)
            if sside < self.min_size:
                continue
            points = np.array(points)
littletomatodonkey's avatar
littletomatodonkey 已提交
77 78 79 80
            if self.score_mode == "fast":
                score = self.box_score_fast(pred, points.reshape(-1, 2))
            else:
                score = self.box_score_slow(pred, contour)
L
LDOUBLEV 已提交
81 82 83 84 85 86 87 88 89 90
            if self.box_thresh > score:
                continue

            box = self.unclip(points).reshape(-1, 1, 2)
            box, sside = self.get_mini_boxes(box)
            if sside < self.min_size + 2:
                continue
            box = np.array(box)

            box[:, 0] = np.clip(
W
del pad  
WenmuZhou 已提交
91
                np.round(box[:, 0] / width * dest_width), 0, dest_width)
L
LDOUBLEV 已提交
92
            box[:, 1] = np.clip(
W
del pad  
WenmuZhou 已提交
93
                np.round(box[:, 1] / height * dest_height), 0, dest_height)
W
WenmuZhou 已提交
94 95 96
            boxes.append(box.astype(np.int16))
            scores.append(score)
        return np.array(boxes, dtype=np.int16), scores
L
LDOUBLEV 已提交
97

L
LDOUBLEV 已提交
98 99
    def unclip(self, box):
        unclip_ratio = self.unclip_ratio
L
LDOUBLEV 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        poly = Polygon(box)
        distance = poly.area * unclip_ratio / poly.length
        offset = pyclipper.PyclipperOffset()
        offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
        expanded = np.array(offset.Execute(distance))
        return expanded

    def get_mini_boxes(self, contour):
        bounding_box = cv2.minAreaRect(contour)
        points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])

        index_1, index_2, index_3, index_4 = 0, 1, 2, 3
        if points[1][1] > points[0][1]:
            index_1 = 0
            index_4 = 1
        else:
            index_1 = 1
            index_4 = 0
        if points[3][1] > points[2][1]:
            index_2 = 2
            index_3 = 3
        else:
            index_2 = 3
            index_3 = 2

        box = [
            points[index_1], points[index_2], points[index_3], points[index_4]
        ]
        return box, min(bounding_box[1])

    def box_score_fast(self, bitmap, _box):
littletomatodonkey's avatar
littletomatodonkey 已提交
131 132 133
        '''
        box_score_fast: use bbox mean score as the mean score
        '''
L
LDOUBLEV 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146
        h, w = bitmap.shape[:2]
        box = _box.copy()
        xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
        xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
        ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
        ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)

        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
        box[:, 0] = box[:, 0] - xmin
        box[:, 1] = box[:, 1] - ymin
        cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]

littletomatodonkey's avatar
littletomatodonkey 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    def box_score_slow(self, bitmap, contour):
        '''
        box_score_slow: use polyon mean score as the mean score
        '''
        h, w = bitmap.shape[:2]
        contour = contour.copy()
        contour = np.reshape(contour, (-1, 2))

        xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
        xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
        ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
        ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)

        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)

        contour[:, 0] = contour[:, 0] - xmin
        contour[:, 1] = contour[:, 1] - ymin

        cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]

W
WenmuZhou 已提交
168 169
    def __call__(self, outs_dict, shape_list):
        pred = outs_dict['maps']
W
WenmuZhou 已提交
170 171 172
        if isinstance(pred, paddle.Tensor):
            pred = pred.numpy()
        pred = pred[:, 0, :, :]
L
LDOUBLEV 已提交
173 174 175 176
        segmentation = pred > self.thresh

        boxes_batch = []
        for batch_index in range(pred.shape[0]):
W
del pad  
WenmuZhou 已提交
177
            src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
178 179 180 181 182 183
            if self.dilation_kernel is not None:
                mask = cv2.dilate(
                    np.array(segmentation[batch_index]).astype(np.uint8),
                    self.dilation_kernel)
            else:
                mask = segmentation[batch_index]
L
LDOUBLEV 已提交
184
            boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
W
del pad  
WenmuZhou 已提交
185
                                                   src_w, src_h)
L
LDOUBLEV 已提交
186

W
WenmuZhou 已提交
187
            boxes_batch.append({'points': boxes})
L
LDOUBLEV 已提交
188
        return boxes_batch