infer_cls.py 2.6 KB
Newer Older
Z
zhoujun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))

L
LDOUBLEV 已提交
28 29
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

Z
zhoujun 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
import paddle

from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model
from ppocr.utils.utility import get_image_file_list
import tools.program as program


def main():
    global_config = config['Global']

    # build post process
    post_process_class = build_post_process(config['PostProcess'],
                                            global_config)

    # build model
    model = build_model(config['Architecture'])

    init_model(config, model, logger)

    # create data ops
    transforms = []
    for op in config['Eval']['dataset']['transforms']:
        op_name = list(op)[0]
        if 'Label' in op_name:
            continue
        elif op_name == 'KeepKeys':
            op[op_name]['keep_keys'] = ['image']
        transforms.append(op)
    global_config['infer_mode'] = True
    ops = create_operators(transforms, global_config)

    model.eval()
    for file in get_image_file_list(config['Global']['infer_img']):
        logger.info("infer_img: {}".format(file))
        with open(file, 'rb') as f:
            img = f.read()
            data = {'image': img}
        batch = transform(data, ops)

        images = np.expand_dims(batch[0], axis=0)
        images = paddle.to_tensor(images)
        preds = model(images)
        post_result = post_process_class(preds)
        for rec_reuslt in post_result:
            logger.info('\t result: {}'.format(rec_reuslt))
    logger.info("success!")


if __name__ == '__main__':
    config, device, logger, vdl_writer = program.preprocess()
    main()