postprocess_op.cpp 9.2 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/postprocess_op.h>

namespace PaddleOCR {

void PostProcessor::GetContourArea(float **box, float unclip_ratio,
                                   float &distance) {
  int pts_num = 4;
  float area = 0.0f;
  float dist = 0.0f;
  for (int i = 0; i < pts_num; i++) {
    area += box[i][0] * box[(i + 1) % pts_num][1] -
            box[i][1] * box[(i + 1) % pts_num][0];
    dist += sqrtf((box[i][0] - box[(i + 1) % pts_num][0]) *
                      (box[i][0] - box[(i + 1) % pts_num][0]) +
                  (box[i][1] - box[(i + 1) % pts_num][1]) *
                      (box[i][1] - box[(i + 1) % pts_num][1]));
  }
  area = fabs(float(area / 2.0));

  distance = area * unclip_ratio / dist;
}

cv::RotatedRect PostProcessor::unclip(float **box) {
  float unclip_ratio = 2.0;
  float distance = 1.0;

  GetContourArea(box, unclip_ratio, distance);

  ClipperLib::ClipperOffset offset;
  ClipperLib::Path p;
  p << ClipperLib::IntPoint(int(box[0][0]), int(box[0][1]))
    << ClipperLib::IntPoint(int(box[1][0]), int(box[1][1]))
    << ClipperLib::IntPoint(int(box[2][0]), int(box[2][1]))
    << ClipperLib::IntPoint(int(box[3][0]), int(box[3][1]));
  offset.AddPath(p, ClipperLib::jtRound, ClipperLib::etClosedPolygon);

  ClipperLib::Paths soln;
  offset.Execute(soln, distance);
  std::vector<cv::Point2f> points;

  for (int j = 0; j < soln.size(); j++) {
    for (int i = 0; i < soln[soln.size() - 1].size(); i++) {
      points.emplace_back(soln[j][i].X, soln[j][i].Y);
    }
  }
  cv::RotatedRect res = cv::minAreaRect(points);

  return res;
}

float **PostProcessor::Mat2Vec(cv::Mat mat) {
  auto **array = new float *[mat.rows];
  for (int i = 0; i < mat.rows; ++i)
    array[i] = new float[mat.cols];
  for (int i = 0; i < mat.rows; ++i) {
    for (int j = 0; j < mat.cols; ++j) {
      array[i][j] = mat.at<float>(i, j);
    }
  }

  return array;
}

void PostProcessor::quickSort(float **s, int l, int r) {
  if (l < r) {
    int i = l, j = r;
    float x = s[l][0];
    float *xp = s[l];
    while (i < j) {
      while (i < j && s[j][0] >= x)
        j--;
      if (i < j)
        std::swap(s[i++], s[j]);
      while (i < j && s[i][0] < x)
        i++;
      if (i < j)
        std::swap(s[j--], s[i]);
    }
    s[i] = xp;
    quickSort(s, l, i - 1);
    quickSort(s, i + 1, r);
  }
}

void PostProcessor::quickSort_vector(std::vector<std::vector<int>> &box, int l,
                                     int r, int axis) {
  if (l < r) {
    int i = l, j = r;
    int x = box[l][axis];
    std::vector<int> xp(box[l]);
    while (i < j) {
      while (i < j && box[j][axis] >= x)
        j--;
      if (i < j)
        std::swap(box[i++], box[j]);
      while (i < j && box[i][axis] < x)
        i++;
      if (i < j)
        std::swap(box[j--], box[i]);
    }
    box[i] = xp;
    quickSort_vector(box, l, i - 1, axis);
    quickSort_vector(box, i + 1, r, axis);
  }
}

std::vector<std::vector<int>>
PostProcessor::order_points_clockwise(std::vector<std::vector<int>> pts) {
  std::vector<std::vector<int>> box = pts;
  quickSort_vector(box, 0, int(box.size() - 1), 0);
  std::vector<std::vector<int>> leftmost = {box[0], box[1]};
  std::vector<std::vector<int>> rightmost = {box[2], box[3]};

  if (leftmost[0][1] > leftmost[1][1])
    std::swap(leftmost[0], leftmost[1]);

  if (rightmost[0][1] > rightmost[1][1])
    std::swap(rightmost[0], rightmost[1]);

  std::vector<std::vector<int>> rect = {leftmost[0], rightmost[0], rightmost[1],
                                        leftmost[1]};
  return rect;
}

float **PostProcessor::get_mini_boxes(cv::RotatedRect box, float &ssid) {
  ssid = box.size.width >= box.size.height ? box.size.height : box.size.width;

  cv::Mat points;
  cv::boxPoints(box, points);
  // sorted box points
  auto array = Mat2Vec(points);
  quickSort(array, 0, 3);

  float *idx1 = array[0], *idx2 = array[1], *idx3 = array[2], *idx4 = array[3];
  if (array[3][1] <= array[2][1]) {
    idx2 = array[3];
    idx3 = array[2];
  } else {
    idx2 = array[2];
    idx3 = array[3];
  }
  if (array[1][1] <= array[0][1]) {
    idx1 = array[1];
    idx4 = array[0];
  } else {
    idx1 = array[0];
    idx4 = array[1];
  }

  array[0] = idx1;
  array[1] = idx2;
  array[2] = idx3;
  array[3] = idx4;

  return array;
}

float PostProcessor::box_score_fast(float **box_array, cv::Mat pred) {
  auto array = box_array;
  int width = pred.cols;
  int height = pred.rows;

  float box_x[4] = {array[0][0], array[1][0], array[2][0], array[3][0]};
  float box_y[4] = {array[0][1], array[1][1], array[2][1], array[3][1]};

  int xmin = clamp(int(std::floor(*(std::min_element(box_x, box_x + 4)))), 0,
                   width - 1);
  int xmax = clamp(int(std::ceil(*(std::max_element(box_x, box_x + 4)))), 0,
                   width - 1);
  int ymin = clamp(int(std::floor(*(std::min_element(box_y, box_y + 4)))), 0,
                   height - 1);
  int ymax = clamp(int(std::ceil(*(std::max_element(box_y, box_y + 4)))), 0,
                   height - 1);

  cv::Mat mask;
  mask = cv::Mat::zeros(ymax - ymin + 1, xmax - xmin + 1, CV_8UC1);

  cv::Point root_point[4];
  root_point[0] = cv::Point(int(array[0][0]) - xmin, int(array[0][1]) - ymin);
  root_point[1] = cv::Point(int(array[1][0]) - xmin, int(array[1][1]) - ymin);
  root_point[2] = cv::Point(int(array[2][0]) - xmin, int(array[2][1]) - ymin);
  root_point[3] = cv::Point(int(array[3][0]) - xmin, int(array[3][1]) - ymin);
  const cv::Point *ppt[1] = {root_point};
  int npt[] = {4};
  cv::fillPoly(mask, ppt, npt, 1, cv::Scalar(1));

  cv::Mat croppedImg;
  pred(cv::Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1))
      .copyTo(croppedImg);

  auto score = cv::mean(croppedImg, mask)[0];
  return score;
}

std::vector<std::vector<std::vector<int>>>
PostProcessor::boxes_from_bitmap(const cv::Mat pred, const cv::Mat bitmap) {
  const int min_size = 3;
  const int max_candidates = 1000;
  const float box_thresh = 0.5;

  int width = bitmap.cols;
  int height = bitmap.rows;

  std::vector<std::vector<cv::Point>> contours;
  std::vector<cv::Vec4i> hierarchy;

  cv::findContours(bitmap, contours, hierarchy, cv::RETR_LIST,
                   cv::CHAIN_APPROX_SIMPLE);

  int num_contours =
      contours.size() >= max_candidates ? max_candidates : contours.size();

  std::vector<std::vector<std::vector<int>>> boxes;

  for (int _i = 0; _i < num_contours; _i++) {
    float ssid;
    cv::RotatedRect box = cv::minAreaRect(contours[_i]);
    auto array = get_mini_boxes(box, ssid);

    auto box_for_unclip = array;
    // end get_mini_box

    if (ssid < min_size) {
      continue;
    }

    float score;
    score = box_score_fast(array, pred);
    // end box_score_fast
    if (score < box_thresh)
      continue;

    // start for unclip
    cv::RotatedRect points = unclip(box_for_unclip);
    // end for unclip

    cv::RotatedRect clipbox = points;
    auto cliparray = get_mini_boxes(clipbox, ssid);

    if (ssid < min_size + 2)
      continue;

    int dest_width = pred.cols;
    int dest_height = pred.rows;
    std::vector<std::vector<int>> intcliparray;

    for (int num_pt = 0; num_pt < 4; num_pt++) {
      std::vector<int> a{int(clampf(roundf(cliparray[num_pt][0] / float(width) *
                                           float(dest_width)),
                                    0, float(dest_width))),
                         int(clampf(roundf(cliparray[num_pt][1] /
                                           float(height) * float(dest_height)),
                                    0, float(dest_height)))};
      intcliparray.push_back(a);
    }
    boxes.push_back(intcliparray);

  } // end for
  return boxes;
}

std::vector<std::vector<std::vector<int>>> PostProcessor::filter_tag_det_res(
    std::vector<std::vector<std::vector<int>>> boxes, float ratio_h,
    float ratio_w, cv::Mat srcimg) {
  int oriimg_h = srcimg.rows;
  int oriimg_w = srcimg.cols;

  std::vector<std::vector<std::vector<int>>> root_points;
  for (int n = 0; n < boxes.size(); n++) {
    boxes[n] = order_points_clockwise(boxes[n]);
    for (int m = 0; m < boxes[0].size(); m++) {
      boxes[n][m][0] /= ratio_w;
      boxes[n][m][1] /= ratio_h;

      boxes[n][m][0] = int(_min(_max(boxes[n][m][0], 0), oriimg_w - 1));
      boxes[n][m][1] = int(_min(_max(boxes[n][m][1], 0), oriimg_h - 1));
    }
  }

  for (int n = 0; n < boxes.size(); n++) {
    int rect_width, rect_height;
    rect_width = int(sqrt(pow(boxes[n][0][0] - boxes[n][1][0], 2) +
                          pow(boxes[n][0][1] - boxes[n][1][1], 2)));
    rect_height = int(sqrt(pow(boxes[n][0][0] - boxes[n][3][0], 2) +
                           pow(boxes[n][0][1] - boxes[n][3][1], 2)));
    if (rect_width <= 10 || rect_height <= 10)
      continue;
    root_points.push_back(boxes[n]);
  }
  return root_points;
}

} // namespace PaddleOCR