benchmark_train.md 2.2 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

# TIPC Linux端Benchmark测试文档

该文档为benchmark测试说明,包括参数介绍以及
Benchmark预测功能测试的主程序为`benchmark_train.sh`,可以验证监控模型训练的性能。

# 1. 测试流程
## 1.1 准备数据和环境安装
运行`test_tipc/prepare.sh`,完成训练数据准备和安装环境流程。

```shell
# 运行格式:bash test_tipc/prepare.sh  train_benchmark.txt  mode
bash test_tipc/prepare.sh test_tipc/configs/det_mv3_db_v2.0/train_benchmark.txt benchmark_train
```

## 1.2 功能测试
执行`test_tipc/benchmark_train.sh`,完成模型训练和日志解析

```shell
# 运行格式:bash test_tipc/benchmark_train.sh train_benchmark.txt mode params
bash test_tipc/benchmark_train.sh test_tipc/configs/det_mv3_db_v2.0/train_benchmark.txt benchmark_train dynamic_bs8_null_SingleP_DP_N1C1
```

params为test_tipc/benchmark_train.sh传入的参数,包含:模型类型、batchsize、fp精度、进程类型、运行模式以及分布式等信息。
`${modeltype}_${batch_size}_${fp_item}_${run_process_type}_${run_mode}_${device_num}`


## 2. 日志输出

运行后将输出模型的训练日志和日志解析日志,使用 `test_tipc/configs/det_mv3_db_v2.0/train_benchmark.txt` 参数文件的训练日志解析结果是:

```
{"model_branch": "dygaph", "model_commit": "7c39a1996b19087737c05d883fd346d2f39dbcc0", "model_name": "det_mv3_db_v2.0_bs8_fp32_SingleP_DP", "batch_size": 8, "fp_item": "fp32", "run_process_type": "SingleP", "run_mode": "DP", "convergence_value": "5.413110", "convergence_key": "loss:", "ips": 19.333, "speed_unit": "images/s", "device_num": "N1C1", "model_run_time": "0", "frame_commit": "8cc09552473b842c651ead3b9848d41827a3dbab", "frame_version": "0.0.0"}
```

训练日志和日志解析结果保存在benchmark_log目录下,文件组织格式如下:
```
benchmark_log/
├── index
│   ├── PaddleOCR_det_mv3_db_v2.0_bs8_fp32_SingleP_DP_N1C1_speed
│   └── PaddleOCR_det_mv3_db_v2.0_bs8_fp32_SingleP_DP_N1C4_speed
├── profiling_log
│   └── PaddleOCR_det_mv3_db_v2.0_bs8_fp32_SingleP_DP_N1C1_profiling
└── train_log
    ├── PaddleOCR_det_mv3_db_v2.0_bs8_fp32_SingleP_DP_N1C1_log
    └── PaddleOCR_det_mv3_db_v2.0_bs8_fp32_SingleP_DP_N1C4_log
```