pubtab_dataset.py 4.2 KB
Newer Older
M
refine  
MissPenguin 已提交
1
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
M
MissPenguin 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import os
import random
from paddle.io import Dataset
import json

from .imaug import transform, create_operators

M
refine  
MissPenguin 已提交
22

M
MissPenguin 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
class PubTabDataSet(Dataset):
    def __init__(self, config, mode, logger, seed=None):
        super(PubTabDataSet, self).__init__()
        self.logger = logger

        global_config = config['Global']
        dataset_config = config[mode]['dataset']
        loader_config = config[mode]['loader']

        label_file_path = dataset_config.pop('label_file_path')

        self.data_dir = dataset_config['data_dir']
        self.do_shuffle = loader_config['shuffle']
        self.do_hard_select = False
        if 'hard_select' in loader_config:
            self.do_hard_select = loader_config['hard_select']
            self.hard_prob = loader_config['hard_prob']
        if self.do_hard_select:
            self.img_select_prob = self.load_hard_select_prob()
        self.table_select_type = None
        if 'table_select_type' in loader_config:
            self.table_select_type = loader_config['table_select_type']
            self.table_select_prob = loader_config['table_select_prob']

        self.seed = seed
        logger.info("Initialize indexs of datasets:%s" % label_file_path)
        with open(label_file_path, "rb") as f:
            self.data_lines = f.readlines()
        self.data_idx_order_list = list(range(len(self.data_lines)))
        if mode.lower() == "train":
            self.shuffle_data_random()
        self.ops = create_operators(dataset_config['transforms'], global_config)

    def shuffle_data_random(self):
        if self.do_shuffle:
            random.seed(self.seed)
            random.shuffle(self.data_lines)
        return

    def __getitem__(self, idx):
        try:
            data_line = self.data_lines[idx]
            data_line = data_line.decode('utf-8').strip("\n")
            info = json.loads(data_line)
            file_name = info['filename']
            select_flag = True
            if self.do_hard_select:
                prob = self.img_select_prob[file_name]
                if prob < random.uniform(0, 1):
                    select_flag = False
            
            if self.table_select_type:
                structure = info['html']['structure']['tokens'].copy()
                structure_str = ''.join(structure)
                table_type = "simple"
                if 'colspan' in structure_str or 'rowspan' in structure_str:
                    table_type = "complex"
                if table_type == "complex":
                    if self.table_select_prob < random.uniform(0, 1):
                        select_flag = False                    
            
            if select_flag:
                cells = info['html']['cells'].copy()
                structure = info['html']['structure'].copy()
                img_path = os.path.join(self.data_dir, file_name)
                data = {'img_path': img_path, 'cells': cells, 'structure':structure}
                if not os.path.exists(img_path):
                    raise Exception("{} does not exist!".format(img_path))
                with open(data['img_path'], 'rb') as f:
                    img = f.read()
                    data['image'] = img
                outs = transform(data, self.ops)
            else:
                outs = None
        except Exception as e:
            self.logger.error(
                "When parsing line {}, error happened with msg: {}".format(
                    data_line, e))
            outs = None
        if outs is None:
            return self.__getitem__(np.random.randint(self.__len__()))
        return outs

    def __len__(self):
        return len(self.data_idx_order_list)