base_model.py 3.1 KB
Newer Older
M
refine  
MissPenguin 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
W
WenmuZhou 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import nn
19
from ppocr.modeling.transforms import build_transform
W
WenmuZhou 已提交
20 21 22 23
from ppocr.modeling.backbones import build_backbone
from ppocr.modeling.necks import build_neck
from ppocr.modeling.heads import build_head

D
dyning 已提交
24
__all__ = ['BaseModel']
W
WenmuZhou 已提交
25

W
WenmuZhou 已提交
26

D
dyning 已提交
27
class BaseModel(nn.Layer):
W
WenmuZhou 已提交
28 29
    def __init__(self, config):
        """
D
dyning 已提交
30
        the module for OCR.
W
WenmuZhou 已提交
31 32 33
        args:
            config (dict): the super parameters for module.
        """
D
dyning 已提交
34
        super(BaseModel, self).__init__()
W
WenmuZhou 已提交
35
        in_channels = config.get('in_channels', 3)
D
dyning 已提交
36
        model_type = config['model_type']
W
WenmuZhou 已提交
37 38 39
        # build transfrom,
        # for rec, transfrom can be TPS,None
        # for det and cls, transfrom shoule to be None,
D
dyning 已提交
40
        # if you make model differently, you can use transfrom in det and cls
W
WenmuZhou 已提交
41 42 43 44 45 46 47 48 49 50
        if 'Transform' not in config or config['Transform'] is None:
            self.use_transform = False
        else:
            self.use_transform = True
            config['Transform']['in_channels'] = in_channels
            self.transform = build_transform(config['Transform'])
            in_channels = self.transform.out_channels

        # build backbone, backbone is need for del, rec and cls
        config["Backbone"]['in_channels'] = in_channels
D
dyning 已提交
51
        self.backbone = build_backbone(config["Backbone"], model_type)
W
WenmuZhou 已提交
52
        in_channels = self.backbone.out_channels
W
WenmuZhou 已提交
53

W
WenmuZhou 已提交
54 55 56 57 58 59 60 61 62 63 64
        # build neck
        # for rec, neck can be cnn,rnn or reshape(None)
        # for det, neck can be FPN, BIFPN and so on.
        # for cls, neck should be none
        if 'Neck' not in config or config['Neck'] is None:
            self.use_neck = False
        else:
            self.use_neck = True
            config['Neck']['in_channels'] = in_channels
            self.neck = build_neck(config['Neck'])
            in_channels = self.neck.out_channels
W
WenmuZhou 已提交
65

W
WenmuZhou 已提交
66
        # # build head, head is need for det, rec and cls
W
WenmuZhou 已提交
67 68 69
        config["Head"]['in_channels'] = in_channels
        self.head = build_head(config["Head"])

70 71
        self.return_all_feats = config.get("return_all_feats", False)

M
refine  
MissPenguin 已提交
72
    def forward(self, x, data=None):
73
        y = dict()
W
WenmuZhou 已提交
74 75 76
        if self.use_transform:
            x = self.transform(x)
        x = self.backbone(x)
77
        y["backbone_out"] = x
W
WenmuZhou 已提交
78 79
        if self.use_neck:
            x = self.neck(x)
80
        y["neck_out"] = x
M
refine  
MissPenguin 已提交
81
        x = self.head(x, targets=data)
82 83 84 85 86
        y["head_out"] = x
        if self.return_all_feats:
            return y
        else:
            return x