multi_languages_en.md 8.4 KB
Newer Older
T
tink2123 已提交
1 2 3 4
# Multi-language model

**Recent Update**

T
tink2123 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
- 2021.4.9 supports the detection and recognition of 80 languages
- 2021.4.9 supports **lightweight high-precision** English model detection and recognition

PaddleOCR aims to create a rich, leading, and practical OCR tool library, which not only provides
Chinese and English models in general scenarios, but also provides models specifically trained
in English scenarios. And multilingual models covering [80 languages](#language_abbreviations).

Among them, the English model supports the detection and recognition of uppercase and lowercase
letters and common punctuation, and the recognition of space characters is optimized:

<div align="center">
    <img src="../imgs_results/multi_lang/en_1.jpg" width="400" height="600">
</div>

The multilingual models cover Latin, Arabic, Traditional Chinese, Korean, Japanese, etc.:

<div align="center">
    <img src="../imgs_results/multi_lang/japan_2.jpg" width="600" height="300">
    <img src="../imgs_results/multi_lang/french_0.jpg" width="300" height="300">
</div>

This document will briefly introduce how to use the multilingual model.

- [1 Installation](#Install)
    - [1.1 paddle installation](#paddleinstallation)
    - [1.2 paddleocr package installation](#paddleocr_package_install)

- [2 Quick Use](#Quick_Use)
    - [2.1 Command line operation](#Command_line_operation)
     - [2.1.1 Prediction of the whole image](#bash_detection+recognition)
     - [2.1.2 Recognition](#bash_Recognition)
     - [2.1.3 Detection](#bash_detection)
    - [2.2 python script running](#python_Script_running)
     - [2.2.1 Whole image prediction](#python_detection+recognition)
     - [2.2.2 Recognition](#python_Recognition)
     - [2.2.3 Detection](#python_detection)
- [3 Custom Training](#Custom_Training)
- [4 Supported languages and abbreviations](#language_abbreviations)
T
tink2123 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

<a name="Install"></a>
## 1 Installation

<a name="paddle_install"></a>
### 1.1 paddle installation
```
# cpu
pip install paddlepaddle

# gpu
pip instll paddlepaddle-gpu
```

<a name="paddleocr_package_install"></a>
### 1.2 paddleocr package installation


pip install
```
pip install "paddleocr>=2.0.4" # 2.0.4 version is recommended
```
Build and install locally
```
python3 setup.py bdist_wheel
pip3 install dist/paddleocr-x.x.x-py3-none-any.whl # x.x.x is the version number of paddleocr
```

<a name="Quick_use"></a>
## 2 Quick use

<a name="Command_line_operation"></a>
### 2.1 Command line operation

View help information

```
paddleocr -h
```

* Whole image prediction (detection + recognition)

T
tink2123 已提交
85 86
Paddleocr currently supports 80 languages, which can be switched by modifying the --lang parameter.
The specific supported [language] (#language_abbreviations) can be viewed in the table.
T
tink2123 已提交
87 88 89 90 91

``` bash

paddleocr --image_dir doc/imgs/japan_2.jpg --lang=japan
```
T
tink2123 已提交
92
![](https://raw.githubusercontent.com/PaddlePaddle/PaddleOCR/release/2.1/doc/imgs/japan_2.jpg)
T
tink2123 已提交
93 94 95 96 97 98 99 100 101 102

The result is a list, each item contains a text box, text and recognition confidence
```text
[[[671.0, 60.0], [847.0, 63.0], [847.0, 104.0], [671.0, 102.0]], ('もちもち', 0.9993342)]
[[[394.0, 82.0], [536.0, 77.0], [538.0, 127.0], [396.0, 132.0]], ('自然の', 0.9919842)]
[[[880.0, 89.0], [1014.0, 93.0], [1013.0, 127.0], [879.0, 124.0]], ('とろっと', 0.9976762)]
[[[1067.0, 101.0], [1294.0, 101.0], [1294.0, 138.0], [1067.0, 138.0]], ('后味のよい', 0.9988712)]
......
```

T
tink2123 已提交
103
* Recognition
T
tink2123 已提交
104 105 106 107 108

```bash
paddleocr --image_dir doc/imgs_words/japan/1.jpg --det false --lang=japan
```

T
tink2123 已提交
109
![](https://raw.githubusercontent.com/PaddlePaddle/PaddleOCR/release/2.1/doc/imgs_words/japan/1.jpg)
T
tink2123 已提交
110 111 112 113 114 115 116

The result is a tuple, which returns the recognition result and recognition confidence

```text
('したがって', 0.99965394)
```

T
tink2123 已提交
117
* Detection
T
tink2123 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

```
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --rec false
```

The result is a list, each item contains only text boxes

```
[[26.0, 457.0], [137.0, 457.0], [137.0, 477.0], [26.0, 477.0]]
[[25.0, 425.0], [372.0, 425.0], [372.0, 448.0], [25.0, 448.0]]
[[128.0, 397.0], [273.0, 397.0], [273.0, 414.0], [128.0, 414.0]]
......
```

<a name="python_script_running"></a>
### 2.2 python script running

ppocr also supports running in python scripts for easy embedding in your own code:

* Whole image prediction (detection + recognition)

```
from paddleocr import PaddleOCR, draw_ocr

# Also switch the language by modifying the lang parameter
ocr = PaddleOCR(lang="korean") # The model file will be downloaded automatically when executed for the first time
img_path ='doc/imgs/korean_1.jpg'
result = ocr.ocr(img_path)
# Print detection frame and recognition result
for line in result:
    print(line)

# Visualization
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/korean.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

Visualization of results:
T
tink2123 已提交
162
![](https://raw.githubusercontent.com/PaddlePaddle/PaddleOCR/release/2.1/doc/imgs_results/korean.jpg)
T
tink2123 已提交
163 164


T
tink2123 已提交
165
* Recognition
T
tink2123 已提交
166 167 168 169 170 171 172 173 174 175

```
from paddleocr import PaddleOCR
ocr = PaddleOCR(lang="german")
img_path ='PaddleOCR/doc/imgs_words/german/1.jpg'
result = ocr.ocr(img_path, det=False, cls=True)
for line in result:
    print(line)
```

T
tink2123 已提交
176
![](https://raw.githubusercontent.com/PaddlePaddle/PaddleOCR/release/2.1/doc/imgs_words/german/1.jpg)
T
tink2123 已提交
177 178 179 180 181 182 183

The result is a tuple, which only contains the recognition result and recognition confidence

```
('leider auch jetzt', 0.97538936)
```

T
tink2123 已提交
184
* Detection
T
tink2123 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

```python
from paddleocr import PaddleOCR, draw_ocr
ocr = PaddleOCR() # need to run only once to download and load model into memory
img_path ='PaddleOCR/doc/imgs_en/img_12.jpg'
result = ocr.ocr(img_path, rec=False)
for line in result:
    print(line)

# show result
from PIL import Image

image = Image.open(img_path).convert('RGB')
im_show = draw_ocr(image, result, txts=None, scores=None, font_path='/path/to/PaddleOCR/doc/fonts/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
The result is a list, each item contains only text boxes
```bash
[[26.0, 457.0], [137.0, 457.0], [137.0, 477.0], [26.0, 477.0]]
[[25.0, 425.0], [372.0, 425.0], [372.0, 448.0], [25.0, 448.0]]
[[128.0, 397.0], [273.0, 397.0], [273.0, 414.0], [128.0, 414.0]]
......
```

Visualization of results:
T
tink2123 已提交
211
![](https://raw.githubusercontent.com/PaddlePaddle/PaddleOCR/release/2.1/doc/imgs_results/whl/12_det.jpg)
T
tink2123 已提交
212 213 214 215 216 217 218 219 220

ppocr also supports direction classification. For more usage methods, please refer to: [whl package instructions](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.0/doc/doc_ch/whl.md).

<a name="Custom_training"></a>
## 3 Custom training

ppocr supports using your own data for custom training or finetune, where the recognition model can refer to [French configuration file](../../configs/rec/multi_language/rec_french_lite_train.yml)
Modify the training data path, dictionary and other parameters.

T
tink2123 已提交
221 222
For specific data preparation and training process, please refer to: [Text Detection](../doc_en/detection_en.md), [Text Recognition](../doc_en/recognition_en.md), more functions such as predictive deployment,
For functions such as data annotation, you can read the complete [Document Tutorial](../../README.md).
T
tink2123 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

<a name="language_abbreviation"></a>
## 4 Support languages and abbreviations

| Language  | Abbreviation |
| ---  | --- |
|chinese and english|ch|
|english|en|
|french|fr|
|german|german|
|japan|japan|
|korean|korean|
|chinese traditional |ch_tra|
| Italian |it|
|Spanish |es|
| Portuguese|pt|
|Russia|ru|
|Arabic|ar|
|Hindi|hi|
|Uyghur|ug|
|Persian|fa|
|Urdu|ur|
| Serbian(latin) |rs_latin|
|Occitan |oc|
|Marathi|mr|
|Nepali|ne|
|Serbian(cyrillic)|rs_cyrillic|
|Bulgarian |bg|
|Ukranian|uk|
|Belarusian|be|
|Telugu |te|
|Kannada |kn|
|Tamil |ta|
|Afrikaans |af|
|Azerbaijani    |az|
|Bosnian|bs|
|Czech|cs|
|Welsh |cy|
|Danish|da|
|Estonian |et|
|Irish |ga|
|Croatian |hr|
|Hungarian |hu|
|Indonesian|id|
|Icelandic|is|
|Kurdish|ku|
|Lithuanian |lt|
 |Latvian |lv|
|Maori|mi|
|Malay|ms|
|Maltese |mt|
|Dutch |nl|
|Norwegian |no|
|Polish |pl|
|Romanian |ro|
|Slovak |sk|
|Slovenian |sl|
|Albanian |sq|
|Swedish |sv|
|Swahili |sw|
|Tagalog |tl|
|Turkish |tr|
|Uzbek |uz|
|Vietnamese |vi|
|Mongolian |mn|
|Abaza |abq|
|Adyghe |ady|
|Kabardian |kbd|
|Avar |ava|
|Dargwa |dar|
|Ingush |inh|
|Lak |lbe|
|Lezghian |lez|
|Tabassaran |tab|
|Bihari |bh|
|Maithili |mai|
|Angika |ang|
|Bhojpuri |bho|
|Magahi |mah|
|Nagpur |sck|
|Newari |new|
|Goan Konkani|gom|
|Saudi Arabia|sa|