sast_postprocess.py 12.4 KB
Newer Older
M
MissPenguin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '..'))

import numpy as np
from .locality_aware_nms import nms_locality
M
MissPenguin 已提交
27
import paddle
M
MissPenguin 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
import cv2
import time


class SASTPostProcess(object):
    """
    The post process for SAST.
    """

    def __init__(self,
                 score_thresh=0.5,
                 nms_thresh=0.2,
                 sample_pts_num=2,
                 shrink_ratio_of_width=0.3,
                 expand_scale=1.0,
                 tcl_map_thresh=0.5,
                 **kwargs):

        self.score_thresh = score_thresh
        self.nms_thresh = nms_thresh
        self.sample_pts_num = sample_pts_num
        self.shrink_ratio_of_width = shrink_ratio_of_width
        self.expand_scale = expand_scale
        self.tcl_map_thresh = tcl_map_thresh
        
        # c++ la-nms is faster, but only support python 3.5
        self.is_python35 = False
        if sys.version_info.major == 3 and sys.version_info.minor == 5:
            self.is_python35 = True
            
    def point_pair2poly(self, point_pair_list):
        """
        Transfer vertical point_pairs into poly point in clockwise.
        """
        # constract poly
        point_num = len(point_pair_list) * 2
        point_list = [0] * point_num
        for idx, point_pair in enumerate(point_pair_list):
            point_list[idx] = point_pair[0]
            point_list[point_num - 1 - idx] = point_pair[1]
        return np.array(point_list).reshape(-1, 2)
    
    def shrink_quad_along_width(self, quad, begin_width_ratio=0., end_width_ratio=1.):
        """ 
        Generate shrink_quad_along_width.
        """
        ratio_pair = np.array([[begin_width_ratio], [end_width_ratio]], dtype=np.float32)
        p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair
        p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair
        return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]])
    
    def expand_poly_along_width(self, poly, shrink_ratio_of_width=0.3):
        """
        expand poly along width.
        """
        point_num = poly.shape[0]
        left_quad = np.array([poly[0], poly[1], poly[-2], poly[-1]], dtype=np.float32)
        left_ratio = -shrink_ratio_of_width * np.linalg.norm(left_quad[0] - left_quad[3]) / \
                    (np.linalg.norm(left_quad[0] - left_quad[1]) + 1e-6)
        left_quad_expand = self.shrink_quad_along_width(left_quad, left_ratio, 1.0)
        right_quad = np.array([poly[point_num // 2 - 2], poly[point_num // 2 - 1],
                            poly[point_num // 2], poly[point_num // 2 + 1]], dtype=np.float32)
        right_ratio = 1.0 + \
                    shrink_ratio_of_width * np.linalg.norm(right_quad[0] - right_quad[3]) / \
                    (np.linalg.norm(right_quad[0] - right_quad[1]) + 1e-6)
        right_quad_expand = self.shrink_quad_along_width(right_quad, 0.0, right_ratio)
        poly[0] = left_quad_expand[0]
        poly[-1] = left_quad_expand[-1]
        poly[point_num // 2 - 1] = right_quad_expand[1]
        poly[point_num // 2] = right_quad_expand[2]
        return poly

    def restore_quad(self, tcl_map, tcl_map_thresh, tvo_map):
        """Restore quad."""
        xy_text = np.argwhere(tcl_map[:, :, 0] > tcl_map_thresh)
        xy_text = xy_text[:, ::-1] # (n, 2)

        # Sort the text boxes via the y axis
        xy_text = xy_text[np.argsort(xy_text[:, 1])]

        scores = tcl_map[xy_text[:, 1], xy_text[:, 0], 0]
        scores = scores[:, np.newaxis]

        # Restore
        point_num = int(tvo_map.shape[-1] / 2)
        assert point_num == 4
        tvo_map = tvo_map[xy_text[:, 1], xy_text[:, 0], :]
        xy_text_tile = np.tile(xy_text, (1, point_num)) # (n, point_num * 2)
        quads = xy_text_tile - tvo_map

        return scores, quads, xy_text

    def quad_area(self, quad):
        """
        compute area of a quad.
        """
        edge = [
            (quad[1][0] - quad[0][0]) * (quad[1][1] + quad[0][1]),
            (quad[2][0] - quad[1][0]) * (quad[2][1] + quad[1][1]),
            (quad[3][0] - quad[2][0]) * (quad[3][1] + quad[2][1]),
            (quad[0][0] - quad[3][0]) * (quad[0][1] + quad[3][1])
        ]
        return np.sum(edge) / 2.
        
    def nms(self, dets):
        if self.is_python35:
            import lanms
            dets = lanms.merge_quadrangle_n9(dets, self.nms_thresh)
        else:
            dets = nms_locality(dets, self.nms_thresh)
        return dets

    def cluster_by_quads_tco(self, tcl_map, tcl_map_thresh, quads, tco_map):
        """
        Cluster pixels in tcl_map based on quads.
        """
        instance_count = quads.shape[0] + 1 # contain background
        instance_label_map = np.zeros(tcl_map.shape[:2], dtype=np.int32)
        if instance_count == 1:
            return instance_count, instance_label_map

        # predict text center
        xy_text = np.argwhere(tcl_map[:, :, 0] > tcl_map_thresh)
        n = xy_text.shape[0]
        xy_text = xy_text[:, ::-1] # (n, 2)
        tco = tco_map[xy_text[:, 1], xy_text[:, 0], :] # (n, 2)
        pred_tc = xy_text - tco
        
        # get gt text center
        m = quads.shape[0]
        gt_tc = np.mean(quads, axis=1) # (m, 2)

        pred_tc_tile = np.tile(pred_tc[:, np.newaxis, :], (1, m, 1)) # (n, m, 2)
        gt_tc_tile = np.tile(gt_tc[np.newaxis, :, :], (n, 1, 1)) # (n, m, 2)
        dist_mat = np.linalg.norm(pred_tc_tile - gt_tc_tile, axis=2) # (n, m)
        xy_text_assign = np.argmin(dist_mat, axis=1) + 1 # (n,)

        instance_label_map[xy_text[:, 1], xy_text[:, 0]] = xy_text_assign
        return instance_count, instance_label_map

    def estimate_sample_pts_num(self, quad, xy_text):
        """
        Estimate sample points number.
        """
        eh = (np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[1] - quad[2])) / 2.0
        ew = (np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[2] - quad[3])) / 2.0

        dense_sample_pts_num = max(2, int(ew))
        dense_xy_center_line = xy_text[np.linspace(0, xy_text.shape[0] - 1, dense_sample_pts_num,
                                                endpoint=True, dtype=np.float32).astype(np.int32)]

        dense_xy_center_line_diff = dense_xy_center_line[1:] - dense_xy_center_line[:-1]
        estimate_arc_len = np.sum(np.linalg.norm(dense_xy_center_line_diff, axis=1))

        sample_pts_num = max(2, int(estimate_arc_len / eh))
        return sample_pts_num

    def detect_sast(self, tcl_map, tvo_map, tbo_map, tco_map, ratio_w, ratio_h, src_w, src_h, 
                shrink_ratio_of_width=0.3, tcl_map_thresh=0.5, offset_expand=1.0, out_strid=4.0):
        """
        first resize the tcl_map, tvo_map and tbo_map to the input_size, then restore the polys
        """
        # restore quad
        scores, quads, xy_text = self.restore_quad(tcl_map, tcl_map_thresh, tvo_map)
        dets = np.hstack((quads, scores)).astype(np.float32, copy=False)
        dets = self.nms(dets)
        if dets.shape[0] == 0:
            return []
        quads = dets[:, :-1].reshape(-1, 4, 2)

        # Compute quad area
        quad_areas = []
        for quad in quads:
            quad_areas.append(-self.quad_area(quad))

        # instance segmentation
        # instance_count, instance_label_map = cv2.connectedComponents(tcl_map.astype(np.uint8), connectivity=8)
        instance_count, instance_label_map = self.cluster_by_quads_tco(tcl_map, tcl_map_thresh, quads, tco_map)

        # restore single poly with tcl instance.
        poly_list = []
        for instance_idx in range(1, instance_count):
            xy_text = np.argwhere(instance_label_map == instance_idx)[:, ::-1]
            quad = quads[instance_idx - 1]
            q_area = quad_areas[instance_idx - 1]
            if q_area < 5:
                continue
            
            #
            len1 = float(np.linalg.norm(quad[0] -quad[1]))
            len2 = float(np.linalg.norm(quad[1] -quad[2]))
            min_len = min(len1, len2)
            if min_len < 3:
                continue

            # filter small CC
            if xy_text.shape[0] <= 0:
                continue

            # filter low confidence instance
            xy_text_scores = tcl_map[xy_text[:, 1], xy_text[:, 0], 0] 
            if np.sum(xy_text_scores) / quad_areas[instance_idx - 1] < 0.1:
            # if np.sum(xy_text_scores) / quad_areas[instance_idx - 1] < 0.05:
                continue

            # sort xy_text
            left_center_pt = np.array([[(quad[0, 0] + quad[-1, 0]) / 2.0,
                                        (quad[0, 1] + quad[-1, 1]) / 2.0]]) # (1, 2)
            right_center_pt = np.array([[(quad[1, 0] + quad[2, 0]) / 2.0,
                                        (quad[1, 1] + quad[2, 1]) / 2.0]]) # (1, 2)
            proj_unit_vec = (right_center_pt - left_center_pt) / \
                            (np.linalg.norm(right_center_pt - left_center_pt) + 1e-6)
            proj_value = np.sum(xy_text * proj_unit_vec, axis=1)
            xy_text = xy_text[np.argsort(proj_value)]

            # Sample pts in tcl map
            if self.sample_pts_num == 0:
                sample_pts_num = self.estimate_sample_pts_num(quad, xy_text)
            else:
                sample_pts_num = self.sample_pts_num
            xy_center_line = xy_text[np.linspace(0, xy_text.shape[0] - 1, sample_pts_num,
                                                endpoint=True, dtype=np.float32).astype(np.int32)]

            point_pair_list = []
            for x, y in xy_center_line:
                # get corresponding offset
                offset = tbo_map[y, x, :].reshape(2, 2)
                if offset_expand != 1.0:
                    offset_length = np.linalg.norm(offset, axis=1, keepdims=True)
                    expand_length = np.clip(offset_length * (offset_expand - 1), a_min=0.5, a_max=3.0)
                    offset_detal = offset / offset_length * expand_length
                    offset = offset + offset_detal                
                # original point
                ori_yx = np.array([y, x], dtype=np.float32)
                point_pair = (ori_yx +  offset)[:, ::-1]* out_strid / np.array([ratio_w, ratio_h]).reshape(-1, 2) 
                point_pair_list.append(point_pair)

            # ndarry: (x, 2), expand poly along width
            detected_poly = self.point_pair2poly(point_pair_list)
            detected_poly = self.expand_poly_along_width(detected_poly, shrink_ratio_of_width)
            detected_poly[:, 0] = np.clip(detected_poly[:, 0], a_min=0, a_max=src_w)
            detected_poly[:, 1] = np.clip(detected_poly[:, 1], a_min=0, a_max=src_h)
            poly_list.append(detected_poly)

        return poly_list

    def __call__(self, outs_dict, shape_list):                
        score_list = outs_dict['f_score']
        border_list = outs_dict['f_border']
        tvo_list = outs_dict['f_tvo']
        tco_list = outs_dict['f_tco']
M
MissPenguin 已提交
279 280 281 282 283
        if isinstance(score_list, paddle.Tensor):
            score_list = score_list.numpy()
            border_list = border_list.numpy()
            tvo_list = tvo_list.numpy()
            tco_list = tco_list.numpy()
M
MissPenguin 已提交
284 285 286 287
                    
        img_num = len(shape_list)
        poly_lists = []
        for ino in range(img_num):
M
MissPenguin 已提交
288 289 290 291
            p_score = score_list[ino].transpose((1,2,0))
            p_border = border_list[ino].transpose((1,2,0))
            p_tvo = tvo_list[ino].transpose((1,2,0))
            p_tco = tco_list[ino].transpose((1,2,0))
M
MissPenguin 已提交
292 293 294 295 296 297 298 299 300
            src_h, src_w, ratio_h, ratio_w = shape_list[ino]

            poly_list = self.detect_sast(p_score, p_tvo, p_border, p_tco, ratio_w, ratio_h, src_w, src_h, 
                                         shrink_ratio_of_width=self.shrink_ratio_of_width, 
                                         tcl_map_thresh=self.tcl_map_thresh, offset_expand=self.expand_scale)
            poly_lists.append({'points': np.array(poly_list)})

        return poly_lists