predict_cls.py 5.7 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

L
LDOUBLEV 已提交
21 22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

W
WenmuZhou 已提交
23 24 25 26 27
import cv2
import copy
import numpy as np
import math
import time
W
WenmuZhou 已提交
28
import traceback
W
WenmuZhou 已提交
29 30 31 32 33 34

import tools.infer.utility as utility
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, check_and_read_gif

W
WenmuZhou 已提交
35 36
logger = get_logger()

W
WenmuZhou 已提交
37 38 39 40

class TextClassifier(object):
    def __init__(self, args):
        self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")]
41
        self.cls_batch_num = args.cls_batch_num
W
WenmuZhou 已提交
42 43 44 45 46 47
        self.cls_thresh = args.cls_thresh
        postprocess_params = {
            'name': 'ClsPostProcess',
            "label_list": args.label_list,
        }
        self.postprocess_op = build_post_process(postprocess_params)
L
LDOUBLEV 已提交
48
        self.predictor, self.input_tensor, self.output_tensors, _ = \
W
WenmuZhou 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
            utility.create_predictor(args, 'cls', logger)

    def resize_norm_img(self, img):
        imgC, imgH, imgW = self.cls_image_shape
        h = img.shape[0]
        w = img.shape[1]
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = cv2.resize(img, (resized_w, imgH))
        resized_image = resized_image.astype('float32')
        if self.cls_image_shape[0] == 1:
            resized_image = resized_image / 255
            resized_image = resized_image[np.newaxis, :]
        else:
            resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def __call__(self, img_list):
        img_list = copy.deepcopy(img_list)
        img_num = len(img_list)
        # Calculate the aspect ratio of all text bars
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
        # Sorting can speed up the cls process
        indices = np.argsort(np.array(width_list))

        cls_res = [['', 0.0]] * img_num
        batch_num = self.cls_batch_num
85
        elapse = 0
W
WenmuZhou 已提交
86
        for beg_img_no in range(0, img_num, batch_num):
L
LDOUBLEV 已提交
87

W
WenmuZhou 已提交
88 89 90
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
            max_wh_ratio = 0
L
LDOUBLEV 已提交
91
            starttime = time.time()
W
WenmuZhou 已提交
92 93 94 95 96 97 98 99 100 101
            for ino in range(beg_img_no, end_img_no):
                h, w = img_list[indices[ino]].shape[0:2]
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
                norm_img = self.resize_norm_img(img_list[indices[ino]])
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
L
LDOUBLEV 已提交
102

W
WenmuZhou 已提交
103 104
            self.input_tensor.copy_from_cpu(norm_img_batch)
            self.predictor.run()
W
WenmuZhou 已提交
105
            prob_out = self.output_tensors[0].copy_to_cpu()
W
fix mem  
WenmuZhou 已提交
106
            self.predictor.try_shrink_memory()
W
WenmuZhou 已提交
107
            cls_result = self.postprocess_op(prob_out)
108
            elapse += time.time() - starttime
W
WenmuZhou 已提交
109 110
            for rno in range(len(cls_result)):
                label, score = cls_result[rno]
W
WenmuZhou 已提交
111 112 113 114
                cls_res[indices[beg_img_no + rno]] = [label, score]
                if '180' in label and score > self.cls_thresh:
                    img_list[indices[beg_img_no + rno]] = cv2.rotate(
                        img_list[indices[beg_img_no + rno]], 1)
115
        return img_list, cls_res, elapse
W
WenmuZhou 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132


def main(args):
    image_file_list = get_image_file_list(args.image_dir)
    text_classifier = TextClassifier(args)
    valid_image_file_list = []
    img_list = []
    for image_file in image_file_list:
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
    try:
W
WenmuZhou 已提交
133
        img_list, cls_res, predict_time = text_classifier(img_list)
W
WenmuZhou 已提交
134 135
    except:
        logger.info(traceback.format_exc())
W
WenmuZhou 已提交
136 137 138 139 140 141 142 143
        logger.info(
            "ERROR!!!! \n"
            "Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
            "If your model has tps module:  "
            "TPS does not support variable shape.\n"
            "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
        exit()
    for ino in range(len(img_list)):
W
WenmuZhou 已提交
144 145
        logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
                                               cls_res[ino]))
L
LDOUBLEV 已提交
146 147 148
    logger.info(
        "The predict time about text angle classify module is as follows: ")
    text_classifier.cls_times.info(average=False)
W
WenmuZhou 已提交
149

W
WenmuZhou 已提交
150

W
WenmuZhou 已提交
151 152
if __name__ == "__main__":
    main(utility.parse_args())