module.py 3.9 KB
Newer Older
D
dyning 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import ast
import copy
import math
import os
import time

from paddle.fluid.core import AnalysisConfig, create_paddle_predictor, PaddleTensor
from paddlehub.common.logger import logger
from paddlehub.module.module import moduleinfo, runnable, serving
from PIL import Image
import cv2
import numpy as np
import paddle.fluid as fluid
import paddlehub as hub

D
dyning 已提交
22
from tools.infer.utility import base64_to_cv2
D
dyning 已提交
23 24 25 26 27 28 29 30 31 32 33
from tools.infer.predict_det import TextDetector


@moduleinfo(
    name="ocr_det",
    version="1.0.0",
    summary="ocr detection service",
    author="paddle-dev",
    author_email="paddle-dev@baidu.com",
    type="cv/text_recognition")
class OCRDet(hub.Module):
D
dyning 已提交
34
    def _initialize(self, use_gpu=False):
D
dyning 已提交
35 36 37
        """
        initialize with the necessary elements
        """
D
dyning 已提交
38 39 40 41
        from ocr_det.params import read_params
        cfg = read_params()

        cfg.use_gpu = use_gpu
D
dyning 已提交
42 43 44 45 46 47
        if use_gpu:
            try:
                _places = os.environ["CUDA_VISIBLE_DEVICES"]
                int(_places[0])
                print("use gpu: ", use_gpu)
                print("CUDA_VISIBLE_DEVICES: ", _places)
D
dyning 已提交
48
                cfg.gpu_mem = 8000
D
dyning 已提交
49 50 51 52
            except:
                raise RuntimeError(
                    "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
                )
D
dyning 已提交
53
        cfg.ir_optim = True
D
dyning 已提交
54

D
dyning 已提交
55
        self.text_detector = TextDetector(cfg)
D
dyning 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68

    def read_images(self, paths=[]):
        images = []
        for img_path in paths:
            assert os.path.isfile(
                img_path), "The {} isn't a valid file.".format(img_path)
            img = cv2.imread(img_path)
            if img is None:
                logger.info("error in loading image:{}".format(img_path))
                continue
            images.append(img)
        return images

D
dyning 已提交
69
    def predict(self,
D
dyning 已提交
70
                images=[],
D
dyning 已提交
71
                paths=[]):
D
dyning 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
        """
        Get the text box in the predicted images.
        Args:
            images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
            paths (list[str]): The paths of images. If paths not images
        Returns:
            res (list): The result of text detection box and save path of images.
        """

        if images != [] and isinstance(images, list) and paths == []:
            predicted_data = images
        elif images == [] and isinstance(paths, list) and paths != []:
            predicted_data = self.read_images(paths)
        else:
            raise TypeError("The input data is inconsistent with expectations.")

        assert predicted_data != [], "There is not any image to be predicted. Please check the input data."
        
        all_results = []
        for img in predicted_data:
            if img is None:
                logger.info("error in loading image")
D
dyning 已提交
94
                all_results.append([])
D
dyning 已提交
95
                continue
D
dyning 已提交
96
            dt_boxes, elapse = self.text_detector(img)
D
dyning 已提交
97
            logger.info("Predict time : {}".format(elapse))
D
dyning 已提交
98

D
dyning 已提交
99 100 101 102 103 104 105 106
            rec_res_final = []
            for dno in range(len(dt_boxes)):
                rec_res_final.append(
                    {
                        'text_region': dt_boxes[dno].astype(np.int).tolist()
                    }
                )
            all_results.append(rec_res_final)
D
dyning 已提交
107 108 109 110 111 112 113 114
        return all_results

    @serving
    def serving_method(self, images, **kwargs):
        """
        Run as a service.
        """
        images_decode = [base64_to_cv2(image) for image in images]
D
dyning 已提交
115
        results = self.predict(images_decode, **kwargs)
D
dyning 已提交
116 117 118 119 120 121 122 123 124
        return results

   
if __name__ == '__main__':
    ocr = OCRDet()
    image_path = [
        './doc/imgs/11.jpg',
        './doc/imgs/12.jpg',
    ]
D
dyning 已提交
125
    res = ocr.predict(paths=image_path)
D
dyning 已提交
126
    print(res)