utility.py 11.2 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os, sys
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from paddle.fluid.core import PaddleTensor
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
import cv2
import numpy as np
L
LDOUBLEV 已提交
24 25
import json
from PIL import Image, ImageDraw, ImageFont
26
import math
L
LDOUBLEV 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48


def parse_args():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    #params for prediction engine
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
    parser.add_argument("--gpu_mem", type=int, default=8000)

    #params for text detector
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
    parser.add_argument("--det_max_side_len", type=float, default=960)

    #DB parmas
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
49
    parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0)
L
LDOUBLEV 已提交
50 51 52 53 54 55 56 57 58 59 60

    #EAST parmas
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

    #params for text recognizer
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
61
    parser.add_argument("--rec_batch_num", type=int, default=30)
L
LDOUBLEV 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
    return parser.parse_args()


def create_predictor(args, mode):
    if mode == "det":
        model_dir = args.det_model_dir
    else:
        model_dir = args.rec_model_dir

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
    model_file_path = model_dir + "/model"
    params_file_path = model_dir + "/params"
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

    config = AnalysisConfig(model_file_path, params_file_path)

    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
M
MissPenguin 已提交
91
        config.enable_memory_optim()
L
LDOUBLEV 已提交
92 93 94 95
    else:
        config.disable_gpu()

    config.disable_glog_info()
L
LDOUBLEV 已提交
96

L
LDOUBLEV 已提交
97
    # use zero copy
98
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
L
LDOUBLEV 已提交
99 100 101 102 103 104 105 106 107 108 109 110
    config.switch_use_feed_fetch_ops(False)
    predictor = create_paddle_predictor(config)
    input_names = predictor.get_input_names()
    input_tensor = predictor.get_input_tensor(input_names[0])
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
        output_tensor = predictor.get_output_tensor(output_name)
        output_tensors.append(output_tensor)
    return predictor, input_tensor, output_tensors


L
LDOUBLEV 已提交
111
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
112 113 114 115
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
116
    return src_im
L
LDOUBLEV 已提交
117 118


L
LDOUBLEV 已提交
119 120
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
121
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
122 123 124 125 126 127 128 129 130 131
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
    im = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return im


def draw_ocr(image, boxes, txts, scores, draw_txt=True, drop_score=0.5):
132 133 134
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
135
        image(Image|array): RGB image
136 137 138 139 140 141 142 143
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        draw_txt(bool): whether draw text or not
        drop_score(float): only scores greater than drop_threshold will be visualized
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
144 145
    if scores is None:
        scores = [1] * len(boxes)
L
LDOUBLEV 已提交
146
    for (box, score) in zip(boxes, scores):
L
LDOUBLEV 已提交
147
        if score < drop_score or math.isnan(score):
L
LDOUBLEV 已提交
148
            continue
L
LDOUBLEV 已提交
149
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
150
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
L
LDOUBLEV 已提交
151 152

    if draw_txt:
L
LDOUBLEV 已提交
153
        img = np.array(resize_img(image, input_size=600))
154 155 156
        txt_img = text_visual(
            txts, scores, img_h=img.shape[0], img_w=600, threshold=drop_score)
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
157 158
        return img
    return image
159 160


161 162 163 164
def draw_ocr_box_txt(image, boxes, txts):
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
165 166

    import random
167 168 169 170
    # 每次使用相同的随机种子 ,可以保证两次颜色一致
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
171 172
    for (box, txt) in zip(boxes, txts):
        color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
173 174 175 176 177
        draw_left.polygon(box, fill=color)
        draw_right.polygon([box[0][0], box[0][1],
                            box[1][0], box[1][1],
                            box[2][0], box[2][1],
                            box[3][0], box[3][1]], outline=color)
178 179 180 181 182 183 184 185
        box_height = math.sqrt((box[0][0] - box[3][0]) ** 2 + (box[0][1] - box[3][1]) ** 2)
        box_width = math.sqrt((box[0][0] - box[1][0]) ** 2 + (box[0][1] - box[1][1]) ** 2)
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
            font = ImageFont.truetype("./doc/simfang.ttf", font_size, encoding="utf-8")
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
186
                draw_right.text((box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
187 188 189 190
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
            font = ImageFont.truetype("./doc/simfang.ttf", font_size, encoding="utf-8")
191 192 193 194 195
            draw_right.text([box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
196 197 198
    return np.array(img_show)


199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.

    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


def text_visual(texts, scores, img_h=400, img_w=600, threshold=0.):
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
    return(array):

    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
242 243
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
244
        return blank_img, draw_txt
L
LDOUBLEV 已提交
245

246 247 248 249
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
250
    font = ImageFont.truetype("./doc/simfang.ttf", font_size, encoding="utf-8")
251 252 253

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
254
    count, index = 1, 0
255 256
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
257
        if scores[idx] < threshold or math.isnan(scores[idx]):
258 259 260 261 262 263 264 265 266 267 268
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
269
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
270 271 272 273 274
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
275
            count += 1
276 277 278
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
279
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
280
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
281
        # whether add new blank img or not
L
LDOUBLEV 已提交
282
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
283 284 285
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
286
        count += 1
287 288 289 290 291 292
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313


if __name__ == '__main__':
    test_img = "./doc/test_v2"
    predict_txt = "./doc/predict.txt"
    f = open(predict_txt, 'r')
    data = f.readlines()
    img_path, anno = data[0].strip().split('\t')
    img_name = os.path.basename(img_path)
    img_path = os.path.join(test_img, img_name)
    image = Image.open(img_path)

    data = json.loads(anno)
    boxes, txts, scores = [], [], []
    for dic in data:
        boxes.append(dic['points'])
        txts.append(dic['transcription'])
        scores.append(round(dic['scores'], 3))

    new_img = draw_ocr(image, boxes, txts, scores, draw_txt=True)

M
MissPenguin 已提交
314
    cv2.imwrite(img_name, new_img)