structure_table.cpp 6.7 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/structure_table.h>

namespace PaddleOCR {

void StructureTableRecognizer::Run(
    std::vector<cv::Mat> img_list,
    std::vector<std::vector<std::string>> &structure_html_tags,
    std::vector<float> &structure_scores,
    std::vector<std::vector<std::vector<std::vector<int>>>> &structure_boxes,
    std::vector<double> &times) {
  std::chrono::duration<float> preprocess_diff =
      std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
  std::chrono::duration<float> inference_diff =
      std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
  std::chrono::duration<float> postprocess_diff =
      std::chrono::steady_clock::now() - std::chrono::steady_clock::now();

  int img_num = img_list.size();
  for (int beg_img_no = 0; beg_img_no < img_num;
       beg_img_no += this->table_batch_num_) {
    // preprocess
    auto preprocess_start = std::chrono::steady_clock::now();
    int end_img_no = min(img_num, beg_img_no + this->table_batch_num_);
    int batch_num = end_img_no - beg_img_no;
    std::vector<cv::Mat> norm_img_batch;
    std::vector<int> width_list;
    std::vector<int> height_list;
    for (int ino = beg_img_no; ino < end_img_no; ino++) {
      cv::Mat srcimg;
      img_list[ino].copyTo(srcimg);
      cv::Mat resize_img;
      cv::Mat pad_img;
      this->resize_op_.Run(srcimg, resize_img, this->table_max_len_);
      this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
                              this->is_scale_);
      this->pad_op_.Run(resize_img, pad_img, this->table_max_len_);
      norm_img_batch.push_back(pad_img);
      width_list.push_back(srcimg.cols);
      height_list.push_back(srcimg.rows);
    }

    std::vector<float> input(
        batch_num * 3 * this->table_max_len_ * this->table_max_len_, 0.0f);
    this->permute_op_.Run(norm_img_batch, input.data());
    auto preprocess_end = std::chrono::steady_clock::now();
    preprocess_diff += preprocess_end - preprocess_start;
    // inference.
    auto input_names = this->predictor_->GetInputNames();
    auto input_t = this->predictor_->GetInputHandle(input_names[0]);
    input_t->Reshape(
        {batch_num, 3, this->table_max_len_, this->table_max_len_});
    auto inference_start = std::chrono::steady_clock::now();
    input_t->CopyFromCpu(input.data());
    this->predictor_->Run();
    auto output_names = this->predictor_->GetOutputNames();
    auto output_tensor0 = this->predictor_->GetOutputHandle(output_names[0]);
    auto output_tensor1 = this->predictor_->GetOutputHandle(output_names[1]);
    std::vector<int> predict_shape0 = output_tensor0->shape();
    std::vector<int> predict_shape1 = output_tensor1->shape();

    int out_num0 = std::accumulate(predict_shape0.begin(), predict_shape0.end(),
                                   1, std::multiplies<int>());
    int out_num1 = std::accumulate(predict_shape1.begin(), predict_shape1.end(),
                                   1, std::multiplies<int>());
    std::vector<float> loc_preds;
    std::vector<float> structure_probs;
    loc_preds.resize(out_num0);
    structure_probs.resize(out_num1);

    output_tensor0->CopyToCpu(loc_preds.data());
    output_tensor1->CopyToCpu(structure_probs.data());
    auto inference_end = std::chrono::steady_clock::now();
    inference_diff += inference_end - inference_start;
    // postprocess
    auto postprocess_start = std::chrono::steady_clock::now();
    std::vector<std::vector<std::string>> structure_html_tag_batch;
    std::vector<float> structure_score_batch;
    std::vector<std::vector<std::vector<std::vector<int>>>>
        structure_boxes_batch;
    this->post_processor_.Run(loc_preds, structure_probs, structure_score_batch,
                              predict_shape0, predict_shape1,
                              structure_html_tag_batch, structure_boxes_batch,
                              width_list, height_list);
    for (int m = 0; m < predict_shape0[0]; m++) {

      structure_html_tag_batch[m].insert(structure_html_tag_batch[m].begin(),
                                         "<table>");
      structure_html_tag_batch[m].insert(structure_html_tag_batch[m].begin(),
                                         "<body>");
      structure_html_tag_batch[m].insert(structure_html_tag_batch[m].begin(),
                                         "<html>");
      structure_html_tag_batch[m].push_back("</table>");
      structure_html_tag_batch[m].push_back("</body>");
      structure_html_tag_batch[m].push_back("</html>");
      structure_html_tags.push_back(structure_html_tag_batch[m]);
      structure_scores.push_back(structure_score_batch[m]);
      structure_boxes.push_back(structure_boxes_batch[m]);
    }
    auto postprocess_end = std::chrono::steady_clock::now();
    postprocess_diff += postprocess_end - postprocess_start;
    times.push_back(double(preprocess_diff.count() * 1000));
    times.push_back(double(inference_diff.count() * 1000));
    times.push_back(double(postprocess_diff.count() * 1000));
  }
}

void StructureTableRecognizer::LoadModel(const std::string &model_dir) {
  AnalysisConfig config;
  config.SetModel(model_dir + "/inference.pdmodel",
                  model_dir + "/inference.pdiparams");

  if (this->use_gpu_) {
    config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
    if (this->use_tensorrt_) {
      auto precision = paddle_infer::Config::Precision::kFloat32;
      if (this->precision_ == "fp16") {
        precision = paddle_infer::Config::Precision::kHalf;
      }
      if (this->precision_ == "int8") {
        precision = paddle_infer::Config::Precision::kInt8;
      }
      config.EnableTensorRtEngine(1 << 20, 10, 3, precision, false, false);
    }
  } else {
    config.DisableGpu();
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
    }
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }

  // false for zero copy tensor
  config.SwitchUseFeedFetchOps(false);
  // true for multiple input
  config.SwitchSpecifyInputNames(true);

  config.SwitchIrOptim(true);

  config.EnableMemoryOptim();
  config.DisableGlogInfo();

  this->predictor_ = CreatePredictor(config);
}
} // namespace PaddleOCR