paddlestructure.cpp 10.0 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/args.h>
#include <include/paddlestructure.h>

#include "auto_log/autolog.h"
#include <numeric>
#include <sys/stat.h>

namespace PaddleOCR {

PaddleStructure::PaddleStructure() {
  if (FLAGS_table) {
    this->recognizer_ = new StructureTableRecognizer(
        FLAGS_table_model_dir, FLAGS_use_gpu, FLAGS_gpu_id, FLAGS_gpu_mem,
        FLAGS_cpu_threads, FLAGS_enable_mkldnn, FLAGS_table_char_dict_path,
        FLAGS_use_tensorrt, FLAGS_precision, FLAGS_table_batch_num,
        FLAGS_table_max_len);
  }
};

std::vector<std::vector<StructurePredictResult>>
PaddleStructure::structure(std::vector<cv::String> cv_all_img_names,
                           bool layout, bool table) {
  std::vector<double> time_info_det = {0, 0, 0};
  std::vector<double> time_info_rec = {0, 0, 0};
  std::vector<double> time_info_cls = {0, 0, 0};
  std::vector<double> time_info_table = {0, 0, 0};

  std::vector<std::vector<StructurePredictResult>> structure_results;

  if (!Utility::PathExists(FLAGS_output) && FLAGS_det) {
    mkdir(FLAGS_output.c_str(), 0777);
  }
  for (int i = 0; i < cv_all_img_names.size(); ++i) {
    std::vector<StructurePredictResult> structure_result;
    cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
    if (!srcimg.data) {
      std::cerr << "[ERROR] image read failed! image path: "
                << cv_all_img_names[i] << endl;
      exit(1);
    }
    if (layout) {
    } else {
      StructurePredictResult res;
文幕地方's avatar
文幕地方 已提交
58
      res.type = "table";
文幕地方's avatar
文幕地方 已提交
59 60 61 62 63 64 65 66 67
      res.box = std::vector<int>(4, 0);
      res.box[2] = srcimg.cols;
      res.box[3] = srcimg.rows;
      structure_result.push_back(res);
    }
    cv::Mat roi_img;
    for (int i = 0; i < structure_result.size(); i++) {
      // crop image
      roi_img = Utility::crop_image(srcimg, structure_result[i].box);
文幕地方's avatar
文幕地方 已提交
68
      if (structure_result[i].type == "table") {
文幕地方's avatar
文幕地方 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        this->table(roi_img, structure_result[i], time_info_table,
                    time_info_det, time_info_rec, time_info_cls);
      }
    }
    structure_results.push_back(structure_result);
  }
  return structure_results;
};

void PaddleStructure::table(cv::Mat img,
                            StructurePredictResult &structure_result,
                            std::vector<double> &time_info_table,
                            std::vector<double> &time_info_det,
                            std::vector<double> &time_info_rec,
                            std::vector<double> &time_info_cls) {
  // predict structure
  std::vector<std::vector<std::string>> structure_html_tags;
  std::vector<float> structure_scores(1, 0);
  std::vector<std::vector<std::vector<std::vector<int>>>> structure_boxes;
  std::vector<double> structure_imes;
  std::vector<cv::Mat> img_list;
  img_list.push_back(img);
  this->recognizer_->Run(img_list, structure_html_tags, structure_scores,
                         structure_boxes, structure_imes);
  time_info_table[0] += structure_imes[0];
  time_info_table[1] += structure_imes[1];
  time_info_table[2] += structure_imes[2];

  std::vector<OCRPredictResult> ocr_result;
  std::string html;
  int expand_pixel = 3;

  for (int i = 0; i < img_list.size(); i++) {
    // det
    this->det(img_list[i], ocr_result, time_info_det);
    // crop image
    std::vector<cv::Mat> rec_img_list;
    for (int j = 0; j < ocr_result.size(); j++) {
      int x_collect[4] = {ocr_result[j].box[0][0], ocr_result[j].box[1][0],
                          ocr_result[j].box[2][0], ocr_result[j].box[3][0]};
      int y_collect[4] = {ocr_result[j].box[0][1], ocr_result[j].box[1][1],
                          ocr_result[j].box[2][1], ocr_result[j].box[3][1]};
      int left = int(*std::min_element(x_collect, x_collect + 4));
      int right = int(*std::max_element(x_collect, x_collect + 4));
      int top = int(*std::min_element(y_collect, y_collect + 4));
      int bottom = int(*std::max_element(y_collect, y_collect + 4));
      std::vector<int> box{max(0, left - expand_pixel),
                           max(0, top - expand_pixel),
                           min(img_list[i].cols, right + expand_pixel),
                           min(img_list[i].rows, bottom + expand_pixel)};
      cv::Mat crop_img = Utility::crop_image(img_list[i], box);
      rec_img_list.push_back(crop_img);
    }
    // rec
    this->rec(rec_img_list, ocr_result, time_info_rec);
    // rebuild table
    html = this->rebuild_table(structure_html_tags[i], structure_boxes[i],
                               ocr_result);
    structure_result.html = html;
    structure_result.html_score = structure_scores[i];
  }
};

std::string PaddleStructure::rebuild_table(
    std::vector<std::string> structure_html_tags,
    std::vector<std::vector<std::vector<int>>> structure_boxes,
    std::vector<OCRPredictResult> &ocr_result) {
  // match text in same cell
  std::vector<std::vector<string>> matched(structure_boxes.size(),
                                           std::vector<std::string>());

  for (int i = 0; i < ocr_result.size(); i++) {
    std::vector<std::vector<float>> dis_list(structure_boxes.size(),
                                             std::vector<float>(3, 100000.0));
    for (int j = 0; j < structure_boxes.size(); j++) {
      int x_collect[4] = {ocr_result[i].box[0][0], ocr_result[i].box[1][0],
                          ocr_result[i].box[2][0], ocr_result[i].box[3][0]};
      int y_collect[4] = {ocr_result[i].box[0][1], ocr_result[i].box[1][1],
                          ocr_result[i].box[2][1], ocr_result[i].box[3][1]};
      int left = int(*std::min_element(x_collect, x_collect + 4));
      int right = int(*std::max_element(x_collect, x_collect + 4));
      int top = int(*std::min_element(y_collect, y_collect + 4));
      int bottom = int(*std::max_element(y_collect, y_collect + 4));
      std::vector<std::vector<int>> box(2, std::vector<int>(2, 0));
      box[0][0] = left - 1;
      box[0][1] = top - 1;
      box[1][0] = right + 1;
      box[1][1] = bottom + 1;

      dis_list[j][0] = this->dis(box, structure_boxes[j]);
      dis_list[j][1] = 1 - this->iou(box, structure_boxes[j]);
      dis_list[j][2] = j;
    }
    // find min dis idx
    std::sort(dis_list.begin(), dis_list.end(),
              PaddleStructure::comparison_dis);
    matched[dis_list[0][2]].push_back(ocr_result[i].text);
  }
  // get pred html
  std::string html_str = "";
  int td_tag_idx = 0;
  for (int i = 0; i < structure_html_tags.size(); i++) {
    if (structure_html_tags[i].find("</td>") != std::string::npos) {
      if (structure_html_tags[i].find("<td></td>") != std::string::npos) {
        html_str += "<td>";
      }
      if (matched[td_tag_idx].size() > 0) {
        bool b_with = false;
        if (matched[td_tag_idx][0].find("<b>") != std::string::npos &&
            matched[td_tag_idx].size() > 1) {
          b_with = true;
          html_str += "<b>";
        }
        for (int j = 0; j < matched[td_tag_idx].size(); j++) {
          std::string content = matched[td_tag_idx][j];
          if (matched[td_tag_idx].size() > 1) {
            // remove blank, <b> and </b>
            if (content.length() > 0 && content.at(0) == ' ') {
              content = content.substr(0);
            }
            if (content.length() > 2 && content.substr(0, 3) == "<b>") {
              content = content.substr(3);
            }
            if (content.length() > 4 &&
                content.substr(content.length() - 4) == "</b>") {
              content = content.substr(0, content.length() - 4);
            }
            if (content.empty()) {
              continue;
            }
            // add blank
            if (j != matched[td_tag_idx].size() - 1 &&
                content.at(content.length() - 1) != ' ') {
              content += ' ';
            }
          }
          html_str += content;
        }
        if (b_with) {
          html_str += "</b>";
        }
      }
      if (structure_html_tags[i].find("<td></td>") != std::string::npos) {
        html_str += "</td>";
      } else {
        html_str += structure_html_tags[i];
      }
      td_tag_idx += 1;
    } else {
      html_str += structure_html_tags[i];
    }
  }
  return html_str;
}

float PaddleStructure::iou(std::vector<std::vector<int>> &box1,
                           std::vector<std::vector<int>> &box2) {
  int area1 = max(0, box1[1][0] - box1[0][0]) * max(0, box1[1][1] - box1[0][1]);
  int area2 = max(0, box2[1][0] - box2[0][0]) * max(0, box2[1][1] - box2[0][1]);

  // computing the sum_area
  int sum_area = area1 + area2;

  // find the each point of intersect rectangle
  int x1 = max(box1[0][0], box2[0][0]);
  int y1 = max(box1[0][1], box2[0][1]);
  int x2 = min(box1[1][0], box2[1][0]);
  int y2 = min(box1[1][1], box2[1][1]);

  // judge if there is an intersect
  if (y1 >= y2 || x1 >= x2) {
    return 0.0;
  } else {
    int intersect = (x2 - x1) * (y2 - y1);
    return intersect / (sum_area - intersect + 0.00000001);
  }
}

float PaddleStructure::dis(std::vector<std::vector<int>> &box1,
                           std::vector<std::vector<int>> &box2) {
  int x1_1 = box1[0][0];
  int y1_1 = box1[0][1];
  int x2_1 = box1[1][0];
  int y2_1 = box1[1][1];

  int x1_2 = box2[0][0];
  int y1_2 = box2[0][1];
  int x2_2 = box2[1][0];
  int y2_2 = box2[1][1];

  float dis =
      abs(x1_2 - x1_1) + abs(y1_2 - y1_1) + abs(x2_2 - x2_1) + abs(y2_2 - y2_1);
  float dis_2 = abs(x1_2 - x1_1) + abs(y1_2 - y1_1);
  float dis_3 = abs(x2_2 - x2_1) + abs(y2_2 - y2_1);
  return dis + min(dis_2, dis_3);
}

PaddleStructure::~PaddleStructure() {
  if (this->recognizer_ != nullptr) {
    delete this->recognizer_;
  }
};

} // namespace PaddleOCR