infer_rec.py 4.7 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
W
WenmuZhou 已提交
20

L
LDOUBLEV 已提交
21 22
import os
import sys
W
WenmuZhou 已提交
23

24
__dir__ = os.path.dirname(os.path.abspath(__file__))
L
LDOUBLEV 已提交
25
sys.path.append(__dir__)
26
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
L
LDOUBLEV 已提交
27

L
LDOUBLEV 已提交
28 29
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

W
WenmuZhou 已提交
30
import paddle
T
tink2123 已提交
31

W
WenmuZhou 已提交
32
from ppocr.data import create_operators, transform
W
WenmuZhou 已提交
33
from ppocr.modeling.architectures import build_model
W
WenmuZhou 已提交
34
from ppocr.postprocess import build_post_process
L
LDOUBLEV 已提交
35
from ppocr.utils.save_load import init_model
W
WenmuZhou 已提交
36
from ppocr.utils.utility import get_image_file_list
W
WenmuZhou 已提交
37
import tools.program as program
L
LDOUBLEV 已提交
38 39 40


def main():
W
WenmuZhou 已提交
41 42 43 44 45 46 47 48
    global_config = config['Global']

    # build post process
    post_process_class = build_post_process(config['PostProcess'],
                                            global_config)

    # build model
    if hasattr(post_process_class, 'character'):
littletomatodonkey's avatar
littletomatodonkey 已提交
49 50 51 52 53 54 55 56
        char_num = len(getattr(post_process_class, 'character'))
        if config['Architecture']["algorithm"] in ["Distillation",
                                                   ]:  # distillation model
            for key in config['Architecture']["Models"]:
                config['Architecture']["Models"][key]["Head"][
                    'out_channels'] = char_num
        else:  # base rec model
            config['Architecture']["Head"]['out_channels'] = char_num
W
WenmuZhou 已提交
57 58 59 60 61 62 63

    model = build_model(config['Architecture'])

    init_model(config, model, logger)

    # create data ops
    transforms = []
W
WenmuZhou 已提交
64
    for op in config['Eval']['dataset']['transforms']:
W
WenmuZhou 已提交
65 66 67 68 69
        op_name = list(op)[0]
        if 'Label' in op_name:
            continue
        elif op_name in ['RecResizeImg']:
            op[op_name]['infer_mode'] = True
W
WenmuZhou 已提交
70
        elif op_name == 'KeepKeys':
T
tink2123 已提交
71 72 73 74 75 76 77
            if config['Architecture']['algorithm'] == "SRN":
                op[op_name]['keep_keys'] = [
                    'image', 'encoder_word_pos', 'gsrm_word_pos',
                    'gsrm_slf_attn_bias1', 'gsrm_slf_attn_bias2'
                ]
            else:
                op[op_name]['keep_keys'] = ['image']
W
WenmuZhou 已提交
78 79 80 81
        transforms.append(op)
    global_config['infer_mode'] = True
    ops = create_operators(transforms, global_config)

littletomatodonkey's avatar
littletomatodonkey 已提交
82 83 84 85 86
    save_res_path = config['Global'].get('save_res_path',
                                         "./output/rec/predicts_rec.txt")
    if not os.path.exists(os.path.dirname(save_res_path)):
        os.makedirs(os.path.dirname(save_res_path))

W
WenmuZhou 已提交
87
    model.eval()
littletomatodonkey's avatar
littletomatodonkey 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

    with open(save_res_path, "w") as fout:
        for file in get_image_file_list(config['Global']['infer_img']):
            logger.info("infer_img: {}".format(file))
            with open(file, 'rb') as f:
                img = f.read()
                data = {'image': img}
            batch = transform(data, ops)
            if config['Architecture']['algorithm'] == "SRN":
                encoder_word_pos_list = np.expand_dims(batch[1], axis=0)
                gsrm_word_pos_list = np.expand_dims(batch[2], axis=0)
                gsrm_slf_attn_bias1_list = np.expand_dims(batch[3], axis=0)
                gsrm_slf_attn_bias2_list = np.expand_dims(batch[4], axis=0)

                others = [
                    paddle.to_tensor(encoder_word_pos_list),
                    paddle.to_tensor(gsrm_word_pos_list),
                    paddle.to_tensor(gsrm_slf_attn_bias1_list),
                    paddle.to_tensor(gsrm_slf_attn_bias2_list)
                ]

            images = np.expand_dims(batch[0], axis=0)
            images = paddle.to_tensor(images)
            if config['Architecture']['algorithm'] == "SRN":
                preds = model(images, others)
            else:
                preds = model(images)
            post_result = post_process_class(preds)
            for rec_reuslt in post_result:
                logger.info('\t result: {}'.format(rec_reuslt))
                if len(rec_reuslt) >= 2:
                    fout.write(file + "\t" + rec_reuslt[0] + "\t" + str(
                        rec_reuslt[1]) + "\n")
W
WenmuZhou 已提交
121 122
    logger.info("success!")

L
LDOUBLEV 已提交
123 124

if __name__ == '__main__':
W
WenmuZhou 已提交
125
    config, device, logger, vdl_writer = program.preprocess()
L
LDOUBLEV 已提交
126
    main()