optimizer.py 4.3 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

from paddle import optimizer as optim


class Momentum(object):
    """
    Simple Momentum optimizer with velocity state.
    Args:
        learning_rate (float|Variable) - The learning rate used to update parameters.
            Can be a float value or a Variable with one float value as data element.
        momentum (float) - Momentum factor.
        regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
    """

Z
zhoujun 已提交
33 34 35 36 37 38
    def __init__(self,
                 learning_rate,
                 momentum,
                 weight_decay=None,
                 grad_clip=None,
                 **args):
W
WenmuZhou 已提交
39 40 41 42
        super(Momentum, self).__init__()
        self.learning_rate = learning_rate
        self.momentum = momentum
        self.weight_decay = weight_decay
Z
zhoujun 已提交
43
        self.grad_clip = grad_clip
W
WenmuZhou 已提交
44 45 46 47 48

    def __call__(self, parameters):
        opt = optim.Momentum(
            learning_rate=self.learning_rate,
            momentum=self.momentum,
Z
zhoujun 已提交
49 50 51
            weight_decay=self.weight_decay,
            grad_clip=self.grad_clip,
            parameters=parameters)
W
WenmuZhou 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        return opt


class Adam(object):
    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-08,
                 parameter_list=None,
                 weight_decay=None,
                 grad_clip=None,
                 name=None,
                 lazy_mode=False,
                 **kwargs):
        self.learning_rate = learning_rate
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.parameter_list = parameter_list
        self.learning_rate = learning_rate
        self.weight_decay = weight_decay
        self.grad_clip = grad_clip
        self.name = name
        self.lazy_mode = lazy_mode

    def __call__(self, parameters):
        opt = optim.Adam(
            learning_rate=self.learning_rate,
            beta1=self.beta1,
            beta2=self.beta2,
            epsilon=self.epsilon,
            weight_decay=self.weight_decay,
            grad_clip=self.grad_clip,
            name=self.name,
            lazy_mode=self.lazy_mode,
            parameters=parameters)
        return opt


class RMSProp(object):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning rate method.
    Args:
        learning_rate (float|Variable) - The learning rate used to update parameters.
            Can be a float value or a Variable with one float value as data element.
        momentum (float) - Momentum factor.
        rho (float) - rho value in equation.
        epsilon (float) - avoid division by zero, default is 1e-6.
        regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
    """

    def __init__(self,
                 learning_rate,
Z
zhoujun 已提交
106
                 momentum=0.0,
W
WenmuZhou 已提交
107 108 109
                 rho=0.95,
                 epsilon=1e-6,
                 weight_decay=None,
Z
zhoujun 已提交
110
                 grad_clip=None,
W
WenmuZhou 已提交
111 112 113 114 115 116 117
                 **args):
        super(RMSProp, self).__init__()
        self.learning_rate = learning_rate
        self.momentum = momentum
        self.rho = rho
        self.epsilon = epsilon
        self.weight_decay = weight_decay
Z
zhoujun 已提交
118
        self.grad_clip = grad_clip
W
WenmuZhou 已提交
119 120 121 122 123 124 125 126

    def __call__(self, parameters):
        opt = optim.RMSProp(
            learning_rate=self.learning_rate,
            momentum=self.momentum,
            rho=self.rho,
            epsilon=self.epsilon,
            weight_decay=self.weight_decay,
Z
zhoujun 已提交
127
            grad_clip=self.grad_clip,
W
WenmuZhou 已提交
128 129
            parameters=parameters)
        return opt