e2e.md 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
# 端到端文字识别

本节以partvgg/totaltext数据集为例,介绍PaddleOCR中端到端模型的训练、评估与测试。

## 数据准备
支持两种不同的数据形式textnet / icdar ,分别为四点标注数据和十四点标注数据,十四点标注数据效果要比四点标注效果好
###数据形式为textnet

解压数据集和下载标注文件后,PaddleOCR/train_data/part_vgg_synth/train/ 有一个文件夹和一个文件,分别是:
```
/PaddleOCR/train_data/part_vgg_synth/train/
J
Jethong 已提交
12 13 14 15
  |- image/         partvgg数据集的训练数据
      |- 119_nile_110_31.png
      | ...
  |- train_annotation_info.txt     partvgg数据集的测试标注
16 17 18 19 20 21 22
```

提供的标注文件格式如下,中间用"\t"分隔:
```
" 图像文件名      图像标注信息--四点标注                                         图像标注信息--识别标注  
119_nile_110_31    140.2    222.5    266.0    194.6    278.7    251.8    152.9    279.7    Path:    32.9    133.1    106.0    130.8    106.4    143.8    33.3    146.1    were    21.8    81.9    106.9    80.4    107.7    123.2    22.6    124.7    why
```
J
Jethong 已提交
23
标注文件txt当中,其中每一行代表一组数据,以第一行为例。第一个代表同级目录image/下面的文件名前缀, 后面每9个代表一组标注信息,前8个代表文本框的四个点坐标(x,y),从左上角的点开始顺时针排列。
24 25 26 27 28 29 30
最后一个代表文字的识别结果,**当其内容为“###”时,表示该文本框无效,在训练时会跳过。**


###数据形式为icdar
解压数据集和下载标注文件后,PaddleOCR/train_data/total_text/train/ 有两个文件夹,分别是:
```
/PaddleOCR/train_data/total_text/train/
J
Jethong 已提交
31 32 33
  |- rgb/           total_text数据集的训练数据
      |- gt_0.png
      | ...  
J
Jethong 已提交
34
  |- poly/           total_text数据集的测试标注
J
Jethong 已提交
35 36
      |- gt_0.txt
      | ...
37 38 39 40 41 42 43 44
```

提供的标注文件格式如下,中间用"\t"分隔:
```
" 图像标注信息--十四点标注数据                                                                                                                                                              图像标注信息--识别标注  
1004.0,689.0,1019.0,698.0,1034.0,708.0,1049.0,718.0,1064.0,728.0,1079.0,738.0,1095.0,748.0,1094.0,774.0,1079.0,765.0,1065.0,756.0,1050.0,747.0,1036.0,738.0,1021.0,729.0,1007.0,721.0    EST
1102.0,755.0,1116.0,764.0,1131.0,773.0,1146.0,783.0,1161.0,792.0,1176.0,801.0,1191.0,811.0,1193.0,837.0,1178.0,828.0,1164.0,819.0,1150.0,810.0,1135.0,801.0,1121.0,792.0,1107.0,784.0    1972
```
J
Jethong 已提交
45
标注文件当中,其中每一个txt文件代表一组数据,文件名就是同级目录rgb/下面的文件名。以第一行为例,前面28个代表文本框的十四个点坐标(x,y),从左上角的点开始顺时针排列。
46 47 48 49 50 51 52 53 54
最后一个代表文字的识别结果,**当其内容为“###”时,表示该文本框无效,在训练时会跳过。**
如果您想在其他数据集上训练,可以按照上述形式构建标注文件。

## 快速启动训练

首先下载模型backbone的pretrain model,PaddleOCR的检测模型目前支持两种backbone,分别是MobileNetV3、ResNet_vd系列,
您可以根据需求使用[PaddleClas](https://github.com/PaddlePaddle/PaddleClas/tree/master/ppcls/modeling/architectures)中的模型更换backbone。
```shell
cd PaddleOCR/
J
Jethong 已提交
55 56
下载ResNet50_vd的动态图预训练模型
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams
57

J
Jethong 已提交
58 59
./pretrain_models/
  └─ ResNet50_vd_ssld_pretrained.pdparams
60 61 62 63 64 65 66 67 68

```

#### 启动训练

*如果您安装的是cpu版本,请将配置文件中的 `use_gpu` 字段修改为false*

```shell
# 单机单卡训练 e2e 模型
J
Jethong 已提交
69
python3 tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./pretrain_models/ResNet50_vd_ssld_pretrained Global.load_static_weights=False
70
# 单机多卡训练,通过 --gpus 参数设置使用的GPU ID
J
Jethong 已提交
71
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./pretrain_models/ResNet50_vd_ssld_pretrained  Global.load_static_weights=False
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
```


上述指令中,通过-c 选择训练使用configs/e2e/e2e_r50_vd_pg.yml配置文件。
有关配置文件的详细解释,请参考[链接](./config.md)

您也可以通过-o参数在不需要修改yml文件的情况下,改变训练的参数,比如,调整训练的学习率为0.0001
```shell
python3 tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml -o Optimizer.base_lr=0.0001
```

#### 断点训练

如果训练程序中断,如果希望加载训练中断的模型从而恢复训练,可以通过指定Global.checkpoints指定要加载的模型路径:
```shell
python3 tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.checkpoints=./your/trained/model
```

**注意**`Global.checkpoints`的优先级高于`Global.pretrain_weights`的优先级,即同时指定两个参数时,优先加载`Global.checkpoints`指定的模型,如果`Global.checkpoints`指定的模型路径有误,会加载`Global.pretrain_weights`指定的模型。

## 指标评估

PaddleOCR计算三个OCR端到端相关的指标,分别是:Precision、Recall、Hmean。

运行如下代码,根据配置文件`e2e_r50_vd_pg.yml``save_res_path`指定的测试集检测结果文件,计算评估指标。

评估时设置后处理参数`max_side_len=768`,使用不同数据集、不同模型训练,可调整参数进行优化
训练中模型参数默认保存在`Global.save_model_dir`目录下。在评估指标时,需要设置`Global.checkpoints`指向保存的参数文件。
```shell
python3 tools/eval.py -c configs/e2e/e2e_r50_vd_pg.yml  -o Global.checkpoints="{path/to/weights}/best_accuracy"
```



## 测试端到端效果

测试单张图像的端到端识别效果
```shell
python3 tools/infer_e2e.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy" Global.load_static_weights=false
```

测试文件夹下所有图像的端到端识别效果
```shell
python3 tools/infer_e2e.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.infer_img="./doc/imgs_en/" Global.pretrained_model="./output/det_db/best_accuracy" Global.load_static_weights=false
```