prepare.sh 2.6 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#!/bin/bash
FILENAME=$1
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer']
MODE=$2

dataline=$(cat ${FILENAME})

# parser params
IFS=$'\n'
lines=(${dataline})
function func_parser_key(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[0]}
    echo ${tmp}
}
function func_parser_value(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[1]}
    echo ${tmp}
}
IFS=$'\n'
# The training params
L
LDOUBLEV 已提交
27 28
model_name=$(func_parser_value "${lines[1]}")
train_model_list=$(func_parser_value "${lines[1]}")
L
LDOUBLEV 已提交
29

L
LDOUBLEV 已提交
30
trainer_list=$(func_parser_value "${lines[14]}")
L
LDOUBLEV 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64


# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer']
MODE=$2
# prepare pretrained weights and dataset 
wget -nc -P  ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar
cd pretrain_models && tar xf det_mv3_db_v2.0_train.tar && cd ../

if [ ${MODE} = "lite_train_infer" ];then
    # pretrain lite train data
    rm -rf ./train_data/icdar2015
    wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar
    cd ./train_data/ && tar xf icdar2015_lite.tar
    ln -s ./icdar2015_lite ./icdar2015
    cd ../
    epoch=10
    eval_batch_step=10
elif [ ${MODE} = "whole_train_infer" ];then
    rm -rf ./train_data/icdar2015
    wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar
    cd ./train_data/ && tar xf icdar2015.tar && cd ../
    epoch=500
    eval_batch_step=200
elif [ ${MODE} = "whole_infer" ];then
    rm -rf ./train_data/icdar2015
    wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_infer.tar
    cd ./train_data/ && tar xf icdar2015_infer.tar
    ln -s ./icdar2015_infer ./icdar2015
    cd ../
    epoch=10
    eval_batch_step=10
else
    rm -rf ./train_data/icdar2015
L
LDOUBLEV 已提交
65 66
    if [[ ${model_name} = "ocr_det" ]]; then
        wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar
L
LDOUBLEV 已提交
67 68
        eval_model_name="ch_ppocr_mobile_v2.0_det_infer"
        wget -nc  -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
L
LDOUBLEV 已提交
69
        cd ./inference && tar xf ${eval_model_name}.tar && tar xf ch_det_data_50.tar && cd ../
L
LDOUBLEV 已提交
70 71 72 73 74 75 76 77
    else 
        eval_model_name="ch_ppocr_mobile_v2.0_rec_train"
        wget -nc  -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar
        cd ./inference && tar xf ${eval_model_name}.tar && cd ../
    fi 
fi