paddleocr.py 9.2 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys

__dir__ = os.path.dirname(__file__)
sys.path.append(os.path.join(__dir__, ''))

import cv2
import numpy as np
from pathlib import Path
import tarfile
import requests
from tqdm import tqdm

from tools.infer import predict_system
from ppocr.utils.utility import initial_logger

logger = initial_logger()
from ppocr.utils.utility import check_and_read_gif

__all__ = ['PaddleOCR']

model_params = {
    'ch_det_mv3_db': {
        'url':
        'https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar',
        'algorithm': 'DB',
    },
    'ch_rec_mv3_crnn_enhance': {
        'url':
        'https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar',
        'algorithm': 'CRNN'
    },
}

SUPPORT_DET_MODEL = ['DB']
SUPPORT_REC_MODEL = ['Rosetta', 'CRNN', 'STARNet', 'RARE']


def download_with_progressbar(url, save_path):
    response = requests.get(url, stream=True)
    total_size_in_bytes = int(response.headers.get('content-length', 0))
    block_size = 1024  # 1 Kibibyte
    progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
    with open(save_path, 'wb') as file:
        for data in response.iter_content(block_size):
            progress_bar.update(len(data))
            file.write(data)
    progress_bar.close()
    if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes:
        logger.error("ERROR, something went wrong")
        sys.exit(0)


def download_and_unzip(url, model_storage_directory):
    tmp_path = os.path.join(model_storage_directory, url.split('/')[-1])
    print('download {} to {}'.format(url, tmp_path))
    os.makedirs(model_storage_directory, exist_ok=True)
    download_with_progressbar(url, tmp_path)
    with tarfile.open(tmp_path, 'r') as tarObj:
        for filename in tarObj.getnames():
            tarObj.extract(filename, model_storage_directory)
    os.remove(tmp_path)


def maybe_download(model_storage_directory, model_name, mode='det'):
    algorithm = None
    # using custom model
    if os.path.exists(os.path.join(model_name, 'model')) and os.path.exists(
            os.path.join(model_name, 'params')):
        return model_name, algorithm
    # using the model of paddleocr
    model_path = os.path.join(model_storage_directory, model_name)
    if not os.path.exists(os.path.join(model_path,
                                       'model')) or not os.path.exists(
                                           os.path.join(model_path, 'params')):
        assert model_name in model_params, 'model must in {}'.format(
            model_params.keys())
        download_and_unzip(model_params[model_name]['url'],
                           model_storage_directory)
        algorithm = model_params[model_name]['algorithm']
    return model_path, algorithm


def parse_args():
    import argparse

    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    # params for prediction engine
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
    parser.add_argument("--gpu_mem", type=int, default=8000)

    # params for text detector
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_name", type=str, default='ch_det_mv3_db')
    parser.add_argument("--det_max_side_len", type=float, default=960)

    # DB parmas
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0)

    # EAST parmas
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

    # params for text recognizer
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument(
        "--rec_model_name", type=str, default='ch_rec_mv3_crnn_enhance')
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
    parser.add_argument("--rec_batch_num", type=int, default=30)
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
    parser.add_argument("--use_space_char", type=bool, default=True)
    parser.add_argument("--enable_mkldnn", type=bool, default=False)

    parser.add_argument("--model_storage_directory", type=str, default=False)
    parser.add_argument("--det", type=str2bool, default=True)
    parser.add_argument("--rec", type=str2bool, default=True)
    return parser.parse_args()


class PaddleOCR(predict_system.TextSystem):
    def __init__(self,
                 det_model_name='ch_det_mv3_db',
                 rec_model_name='ch_rec_mv3_crnn_enhance',
                 model_storage_directory=None,
                 log_level=20,
                 **kwargs):
        """
        paddleocr package
        args:
            det_model_name: det_model name, keep same with filename in paddleocr. default is ch_det_mv3_db
            det_model_name: rec_model name, keep same with filename in paddleocr. default is ch_rec_mv3_crnn_enhance
            model_storage_directory: model save path. default is ~/.paddleocr
                                    det model will save to  model_storage_directory/det_model
                                    rec model will save to  model_storage_directory/rec_model
            log_level:
            **kwargs: other params show in paddleocr --help
        """
        logger.setLevel(log_level)
        postprocess_params = parse_args()
        # init model dir
        if model_storage_directory:
            self.model_storage_directory = model_storage_directory
        else:
            self.model_storage_directory = os.path.expanduser(
                "~/.paddleocr/") + '/model'
        Path(self.model_storage_directory).mkdir(parents=True, exist_ok=True)

        # download model
        det_model_path, det_algorithm = maybe_download(
            self.model_storage_directory, det_model_name, 'det')
        rec_model_path, rec_algorithm = maybe_download(
            self.model_storage_directory, rec_model_name, 'rec')
        # update model and post_process params
        postprocess_params.__dict__.update(**kwargs)
        postprocess_params.det_model_dir = det_model_path
        postprocess_params.rec_model_dir = rec_model_path
        if det_algorithm is not None:
            postprocess_params.det_algorithm = det_algorithm
        if rec_algorithm is not None:
            postprocess_params.rec_algorithm = rec_algorithm

        if postprocess_params.det_algorithm not in SUPPORT_DET_MODEL:
            logger.error('det_algorithm must in {}'.format(SUPPORT_DET_MODEL))
            sys.exit(0)
        if postprocess_params.rec_algorithm not in SUPPORT_REC_MODEL:
            logger.error('rec_algorithm must in {}'.format(SUPPORT_REC_MODEL))
            sys.exit(0)

        postprocess_params.rec_char_dict_path = Path(
            __file__).parent / postprocess_params.rec_char_dict_path

        # init det_model and rec_model
        super().__init__(postprocess_params)

    def ocr(self, img, det=True, rec=True):
        """
        ocr with paddleocr
        args:
            img: img for ocr, support ndarray, img_path and list or ndarray
            det: use text detection or not, if false, only rec will be exec. default is True
            rec: use text recognition or not, if false, only det will be exec. default is True
        """
        assert isinstance(img, (np.ndarray, list, str))
        if isinstance(img, str):
            image_file = img
            img, flag = check_and_read_gif(image_file)
            if not flag:
                img = cv2.imread(image_file)
            if img is None:
                logger.error("error in loading image:{}".format(image_file))
                return None
        if det and rec:
            dt_boxes, rec_res = self.__call__(img)
            return [[box.tolist(), res] for box, res in zip(dt_boxes, rec_res)]
        elif det and not rec:
            dt_boxes, elapse = self.text_detector(img)
            if dt_boxes is None:
                return None
            return [box.tolist() for box in dt_boxes]
        else:
            if not isinstance(img, list):
                img = [img]
            rec_res, elapse = self.text_recognizer(img)
            return rec_res