rec_model.py 7.6 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import fluid

from ppocr.utils.utility import create_module
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from copy import deepcopy


class RecModel(object):
    def __init__(self, params):
        super(RecModel, self).__init__()
        global_params = params['Global']
        char_num = global_params['char_ops'].get_char_num()
        global_params['char_num'] = char_num
T
tink2123 已提交
33
        self.char_type = global_params['character_type']
T
tink2123 已提交
34
        self.infer_img = global_params['infer_img']
L
LDOUBLEV 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
        if "TPS" in params:
            tps_params = deepcopy(params["TPS"])
            tps_params.update(global_params)
            self.tps = create_module(tps_params['function'])\
                (params=tps_params)
        else:
            self.tps = None

        backbone_params = deepcopy(params["Backbone"])
        backbone_params.update(global_params)
        self.backbone = create_module(backbone_params['function'])\
                (params=backbone_params)

        head_params = deepcopy(params["Head"])
        head_params.update(global_params)
        self.head = create_module(head_params['function'])\
                (params=head_params)

        loss_params = deepcopy(params["Loss"])
        loss_params.update(global_params)
        self.loss = create_module(loss_params['function'])\
                (params=loss_params)

        self.loss_type = global_params['loss_type']
        self.image_shape = global_params['image_shape']
        self.max_text_length = global_params['max_text_length']
T
tink2123 已提交
61
        self.num_heads = global_params["num_heads"]
L
LDOUBLEV 已提交
62 63 64 65 66

    def create_feed(self, mode):
        image_shape = deepcopy(self.image_shape)
        image_shape.insert(0, -1)
        if mode == "train":
T
tink2123 已提交
67
            image = fluid.data(name='image', shape=image_shape, dtype='float32')
L
LDOUBLEV 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80
            if self.loss_type == "attention":
                label_in = fluid.data(
                    name='label_in',
                    shape=[None, 1],
                    dtype='int32',
                    lod_level=1)
                label_out = fluid.data(
                    name='label_out',
                    shape=[None, 1],
                    dtype='int32',
                    lod_level=1)
                feed_list = [image, label_in, label_out]
                labels = {'label_in': label_in, 'label_out': label_out}
T
tink2123 已提交
81 82 83 84 85 86 87 88 89 90 91 92
            elif self.loss_type == "srn":
                encoder_word_pos = fluid.data(name="encoder_word_pos", shape=[-1, int((image_shape[-2] / 8) * (image_shape[-1] / 8)), 1], dtype="int64")
                gsrm_word_pos = fluid.data(name="gsrm_word_pos", shape=[-1, self.max_text_length, 1], dtype="int64")
                gsrm_slf_attn_bias1 = fluid.data(name="gsrm_slf_attn_bias1", shape=[-1, self.num_heads, self.max_text_length, self.max_text_length])
                gsrm_slf_attn_bias2 = fluid.data(name="gsrm_slf_attn_bias2", shape=[-1, self.num_heads, self.max_text_length, self.max_text_length])
                lbl_weight = fluid.layers.data(name="lbl_weight", shape=[-1, 1], dtype='int64')
                label = fluid.data(
                    name='label', shape=[-1, 1], dtype='int32', lod_level=1)
                feed_list = [image, label, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2, lbl_weight]
                labels = {'label': label, 'encoder_word_pos': encoder_word_pos,
                          'gsrm_word_pos': gsrm_word_pos, 'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1,
                          'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2,'lbl_weight':lbl_weight}
L
LDOUBLEV 已提交
93 94 95 96 97 98 99 100 101 102 103
            else:
                label = fluid.data(
                    name='label', shape=[None, 1], dtype='int32', lod_level=1)
                feed_list = [image, label]
                labels = {'label': label}
            loader = fluid.io.DataLoader.from_generator(
                feed_list=feed_list,
                capacity=64,
                use_double_buffer=True,
                iterable=False)
        else:
T
tink2123 已提交
104 105
            labels = None
            loader = None
T
tink2123 已提交
106
            if self.char_type == "ch" and self.infer_img:
T
tink2123 已提交
107 108 109 110 111
                image_shape[-1] = -1
                if self.tps != None:
                    logger.info(
                        "WARNRNG!!!\n"
                        "TPS does not support variable shape in chinese!"
T
tink2123 已提交
112
                        "We set img_shape to be the same , it may affect the inference effect"
T
tink2123 已提交
113
                    )
T
tink2123 已提交
114
                    image_shape = deepcopy(self.image_shape)
T
tink2123 已提交
115 116 117 118 119 120 121 122 123
                    image = fluid.data(name='image', shape=image_shape, dtype='float32')
            if self.loss_type == "srn":
                encoder_word_pos = fluid.data(name="encoder_word_pos", shape=[-1, int((image_shape[-2] / 8) * (image_shape[-1] / 8)), 1], dtype="int64")
                gsrm_word_pos = fluid.data(name="gsrm_word_pos", shape=[-1, self.max_text_length, 1], dtype="int64")
                gsrm_slf_attn_bias1 = fluid.data(name="gsrm_slf_attn_bias1", shape=[-1, self.num_heads, self.max_text_length, self.max_text_length])
                gsrm_slf_attn_bias2 = fluid.data(name="gsrm_slf_attn_bias2", shape=[-1, self.num_heads, self.max_text_length, self.max_text_length])
                feed_list = [image, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2]
                labels = {'encoder_word_pos': encoder_word_pos, 'gsrm_word_pos': gsrm_word_pos,
                        'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1, 'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2}
L
LDOUBLEV 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        return image, labels, loader

    def __call__(self, mode):
        image, labels, loader = self.create_feed(mode)
        if self.tps is None:
            inputs = image
        else:
            inputs = self.tps(image)
        conv_feas = self.backbone(inputs)
        predicts = self.head(conv_feas, labels, mode)
        decoded_out = predicts['decoded_out']
        if mode == "train":
            loss = self.loss(predicts, labels)
            if self.loss_type == "attention":
                label = labels['label_out']
            else:
                label = labels['label']
T
tink2123 已提交
141 142 143 144 145 146 147
            if self.loss_type == 'srn':
                total_loss, img_loss, word_loss = self.loss(predicts, labels)
                outputs = {'total_loss':total_loss, 'img_loss':img_loss, 'word_loss':word_loss,
                           'decoded_out':decoded_out, 'label':label}
            else:
                outputs = {'total_loss':loss, 'decoded_out':\
                    decoded_out, 'label':label}
L
LDOUBLEV 已提交
148
            return loader, outputs
T
tink2123 已提交
149

L
LDOUBLEV 已提交
150
        elif mode == "export":
L
LDOUBLEV 已提交
151
            predict = predicts['predict']
D
dyning 已提交
152 153
            if self.loss_type == "ctc":
                predict = fluid.layers.softmax(predict)
L
LDOUBLEV 已提交
154
            return [image, {'decoded_out': decoded_out, 'predicts': predict}]
L
LDOUBLEV 已提交
155
        else:
D
dyning 已提交
156 157 158
            predict = predicts['predict']
            if self.loss_type == "ctc":
                predict = fluid.layers.softmax(predict)
T
tink2123 已提交
159
            return loader, {'decoded_out': decoded_out, 'predicts': predict}