extract_textpoint.py 19.1 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
J
Jethong 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
Jethong 已提交
14 15 16 17 18 19 20 21 22 23
"""Contains various CTC decoders."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import cv2
import math

import numpy as np
from itertools import groupby
24
from skimage.morphology._skeletonize import thin
J
Jethong 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521


def softmax(logits):
    """
    logits: N x d
    """
    max_value = np.max(logits, axis=1, keepdims=True)
    exp = np.exp(logits - max_value)
    exp_sum = np.sum(exp, axis=1, keepdims=True)
    dist = exp / exp_sum
    return dist


def get_keep_pos_idxs(labels, remove_blank=None):
    """
    Remove duplicate and get pos idxs of keep items.
    The value of keep_blank should be [None, 95].
    """
    duplicate_len_list = []
    keep_pos_idx_list = []
    keep_char_idx_list = []
    for k, v_ in groupby(labels):
        current_len = len(list(v_))
        if k != remove_blank:
            current_idx = int(sum(duplicate_len_list) + current_len // 2)
            keep_pos_idx_list.append(current_idx)
            keep_char_idx_list.append(k)
        duplicate_len_list.append(current_len)
    return keep_char_idx_list, keep_pos_idx_list


def remove_blank(labels, blank=0):
    new_labels = [x for x in labels if x != blank]
    return new_labels


def insert_blank(labels, blank=0):
    new_labels = [blank]
    for l in labels:
        new_labels += [l, blank]
    return new_labels


def ctc_greedy_decoder(probs_seq, blank=95, keep_blank_in_idxs=True):
    """
    CTC greedy (best path) decoder.
    """
    raw_str = np.argmax(np.array(probs_seq), axis=1)
    remove_blank_in_pos = None if keep_blank_in_idxs else blank
    dedup_str, keep_idx_list = get_keep_pos_idxs(
        raw_str, remove_blank=remove_blank_in_pos)
    dst_str = remove_blank(dedup_str, blank=blank)
    return dst_str, keep_idx_list


def instance_ctc_greedy_decoder(gather_info,
                                logits_map,
                                keep_blank_in_idxs=True):
    """
    gather_info: [[x, y], [x, y] ...]
    logits_map: H x W X (n_chars + 1)
    """
    _, _, C = logits_map.shape
    ys, xs = zip(*gather_info)
    logits_seq = logits_map[list(ys), list(xs)]  # n x 96
    probs_seq = softmax(logits_seq)
    dst_str, keep_idx_list = ctc_greedy_decoder(
        probs_seq, blank=C - 1, keep_blank_in_idxs=keep_blank_in_idxs)
    keep_gather_list = [gather_info[idx] for idx in keep_idx_list]
    return dst_str, keep_gather_list


def ctc_decoder_for_image(gather_info_list, logits_map,
                          keep_blank_in_idxs=True):
    """
    CTC decoder using multiple processes.
    """
    decoder_results = []
    for gather_info in gather_info_list:
        res = instance_ctc_greedy_decoder(
            gather_info, logits_map, keep_blank_in_idxs=keep_blank_in_idxs)
        decoder_results.append(res)
    return decoder_results


def sort_with_direction(pos_list, f_direction):
    """
    f_direction: h x w x 2
    pos_list: [[y, x], [y, x], [y, x] ...]
    """

    def sort_part_with_direction(pos_list, point_direction):
        pos_list = np.array(pos_list).reshape(-1, 2)
        point_direction = np.array(point_direction).reshape(-1, 2)
        average_direction = np.mean(point_direction, axis=0, keepdims=True)
        pos_proj_leng = np.sum(pos_list * average_direction, axis=1)
        sorted_list = pos_list[np.argsort(pos_proj_leng)].tolist()
        sorted_direction = point_direction[np.argsort(pos_proj_leng)].tolist()
        return sorted_list, sorted_direction

    pos_list = np.array(pos_list).reshape(-1, 2)
    point_direction = f_direction[pos_list[:, 0], pos_list[:, 1]]  # x, y
    point_direction = point_direction[:, ::-1]  # x, y -> y, x
    sorted_point, sorted_direction = sort_part_with_direction(pos_list,
                                                              point_direction)

    point_num = len(sorted_point)
    if point_num >= 16:
        middle_num = point_num // 2
        first_part_point = sorted_point[:middle_num]
        first_point_direction = sorted_direction[:middle_num]
        sorted_fist_part_point, sorted_fist_part_direction = sort_part_with_direction(
            first_part_point, first_point_direction)

        last_part_point = sorted_point[middle_num:]
        last_point_direction = sorted_direction[middle_num:]
        sorted_last_part_point, sorted_last_part_direction = sort_part_with_direction(
            last_part_point, last_point_direction)
        sorted_point = sorted_fist_part_point + sorted_last_part_point
        sorted_direction = sorted_fist_part_direction + sorted_last_part_direction

    return sorted_point, np.array(sorted_direction)


def add_id(pos_list, image_id=0):
    """
    Add id for gather feature, for inference.
    """
    new_list = []
    for item in pos_list:
        new_list.append((image_id, item[0], item[1]))
    return new_list


def sort_and_expand_with_direction(pos_list, f_direction):
    """
    f_direction: h x w x 2
    pos_list: [[y, x], [y, x], [y, x] ...]
    """
    h, w, _ = f_direction.shape
    sorted_list, point_direction = sort_with_direction(pos_list, f_direction)

    # expand along
    point_num = len(sorted_list)
    sub_direction_len = max(point_num // 3, 2)
    left_direction = point_direction[:sub_direction_len, :]
    right_dirction = point_direction[point_num - sub_direction_len:, :]

    left_average_direction = -np.mean(left_direction, axis=0, keepdims=True)
    left_average_len = np.linalg.norm(left_average_direction)
    left_start = np.array(sorted_list[0])
    left_step = left_average_direction / (left_average_len + 1e-6)

    right_average_direction = np.mean(right_dirction, axis=0, keepdims=True)
    right_average_len = np.linalg.norm(right_average_direction)
    right_step = right_average_direction / (right_average_len + 1e-6)
    right_start = np.array(sorted_list[-1])

    append_num = max(
        int((left_average_len + right_average_len) / 2.0 * 0.15), 1)
    left_list = []
    right_list = []
    for i in range(append_num):
        ly, lx = np.round(left_start + left_step * (i + 1)).flatten().astype(
            'int32').tolist()
        if ly < h and lx < w and (ly, lx) not in left_list:
            left_list.append((ly, lx))
        ry, rx = np.round(right_start + right_step * (i + 1)).flatten().astype(
            'int32').tolist()
        if ry < h and rx < w and (ry, rx) not in right_list:
            right_list.append((ry, rx))

    all_list = left_list[::-1] + sorted_list + right_list
    return all_list


def sort_and_expand_with_direction_v2(pos_list, f_direction, binary_tcl_map):
    """
    f_direction: h x w x 2
    pos_list: [[y, x], [y, x], [y, x] ...]
    binary_tcl_map: h x w
    """
    h, w, _ = f_direction.shape
    sorted_list, point_direction = sort_with_direction(pos_list, f_direction)

    # expand along
    point_num = len(sorted_list)
    sub_direction_len = max(point_num // 3, 2)
    left_direction = point_direction[:sub_direction_len, :]
    right_dirction = point_direction[point_num - sub_direction_len:, :]

    left_average_direction = -np.mean(left_direction, axis=0, keepdims=True)
    left_average_len = np.linalg.norm(left_average_direction)
    left_start = np.array(sorted_list[0])
    left_step = left_average_direction / (left_average_len + 1e-6)

    right_average_direction = np.mean(right_dirction, axis=0, keepdims=True)
    right_average_len = np.linalg.norm(right_average_direction)
    right_step = right_average_direction / (right_average_len + 1e-6)
    right_start = np.array(sorted_list[-1])

    append_num = max(
        int((left_average_len + right_average_len) / 2.0 * 0.15), 1)
    max_append_num = 2 * append_num

    left_list = []
    right_list = []
    for i in range(max_append_num):
        ly, lx = np.round(left_start + left_step * (i + 1)).flatten().astype(
            'int32').tolist()
        if ly < h and lx < w and (ly, lx) not in left_list:
            if binary_tcl_map[ly, lx] > 0.5:
                left_list.append((ly, lx))
            else:
                break

    for i in range(max_append_num):
        ry, rx = np.round(right_start + right_step * (i + 1)).flatten().astype(
            'int32').tolist()
        if ry < h and rx < w and (ry, rx) not in right_list:
            if binary_tcl_map[ry, rx] > 0.5:
                right_list.append((ry, rx))
            else:
                break

    all_list = left_list[::-1] + sorted_list + right_list
    return all_list


def generate_pivot_list_curved(p_score,
                               p_char_maps,
                               f_direction,
                               score_thresh=0.5,
                               is_expand=True,
                               is_backbone=False,
                               image_id=0):
    """
    return center point and end point of TCL instance; filter with the char maps;
    """
    p_score = p_score[0]
    f_direction = f_direction.transpose(1, 2, 0)
    p_tcl_map = (p_score > score_thresh) * 1.0
    skeleton_map = thin(p_tcl_map)
    instance_count, instance_label_map = cv2.connectedComponents(
        skeleton_map.astype(np.uint8), connectivity=8)

    # get TCL Instance
    all_pos_yxs = []
    center_pos_yxs = []
    end_points_yxs = []
    instance_center_pos_yxs = []
    if instance_count > 0:
        for instance_id in range(1, instance_count):
            pos_list = []
            ys, xs = np.where(instance_label_map == instance_id)
            pos_list = list(zip(ys, xs))

            ### FIX-ME, eliminate outlier
            if len(pos_list) < 3:
                continue

            if is_expand:
                pos_list_sorted = sort_and_expand_with_direction_v2(
                    pos_list, f_direction, p_tcl_map)
            else:
                pos_list_sorted, _ = sort_with_direction(pos_list, f_direction)
            all_pos_yxs.append(pos_list_sorted)

    # use decoder to filter backgroud points.
    p_char_maps = p_char_maps.transpose([1, 2, 0])
    decode_res = ctc_decoder_for_image(
        all_pos_yxs, logits_map=p_char_maps, keep_blank_in_idxs=True)
    for decoded_str, keep_yxs_list in decode_res:
        if is_backbone:
            keep_yxs_list_with_id = add_id(keep_yxs_list, image_id=image_id)
            instance_center_pos_yxs.append(keep_yxs_list_with_id)
        else:
            end_points_yxs.extend((keep_yxs_list[0], keep_yxs_list[-1]))
            center_pos_yxs.extend(keep_yxs_list)

    if is_backbone:
        return instance_center_pos_yxs
    else:
        return center_pos_yxs, end_points_yxs


def generate_pivot_list_horizontal(p_score,
                                   p_char_maps,
                                   f_direction,
                                   score_thresh=0.5,
                                   is_backbone=False,
                                   image_id=0):
    """
    return center point and end point of TCL instance; filter with the char maps;
    """
    p_score = p_score[0]
    f_direction = f_direction.transpose(1, 2, 0)
    p_tcl_map_bi = (p_score > score_thresh) * 1.0
    instance_count, instance_label_map = cv2.connectedComponents(
        p_tcl_map_bi.astype(np.uint8), connectivity=8)

    # get TCL Instance
    all_pos_yxs = []
    center_pos_yxs = []
    end_points_yxs = []
    instance_center_pos_yxs = []

    if instance_count > 0:
        for instance_id in range(1, instance_count):
            pos_list = []
            ys, xs = np.where(instance_label_map == instance_id)
            pos_list = list(zip(ys, xs))

            ### FIX-ME, eliminate outlier
            if len(pos_list) < 5:
                continue

            # add rule here
            main_direction = extract_main_direction(pos_list,
                                                    f_direction)  # y x
            reference_directin = np.array([0, 1]).reshape([-1, 2])  # y x
            is_h_angle = abs(np.sum(
                main_direction * reference_directin)) < math.cos(math.pi / 180 *
                                                                 70)

            point_yxs = np.array(pos_list)
            max_y, max_x = np.max(point_yxs, axis=0)
            min_y, min_x = np.min(point_yxs, axis=0)
            is_h_len = (max_y - min_y) < 1.5 * (max_x - min_x)

            pos_list_final = []
            if is_h_len:
                xs = np.unique(xs)
                for x in xs:
                    ys = instance_label_map[:, x].copy().reshape((-1, ))
                    y = int(np.where(ys == instance_id)[0].mean())
                    pos_list_final.append((y, x))
            else:
                ys = np.unique(ys)
                for y in ys:
                    xs = instance_label_map[y, :].copy().reshape((-1, ))
                    x = int(np.where(xs == instance_id)[0].mean())
                    pos_list_final.append((y, x))

            pos_list_sorted, _ = sort_with_direction(pos_list_final,
                                                     f_direction)
            all_pos_yxs.append(pos_list_sorted)

    # use decoder to filter backgroud points.
    p_char_maps = p_char_maps.transpose([1, 2, 0])
    decode_res = ctc_decoder_for_image(
        all_pos_yxs, logits_map=p_char_maps, keep_blank_in_idxs=True)
    for decoded_str, keep_yxs_list in decode_res:
        if is_backbone:
            keep_yxs_list_with_id = add_id(keep_yxs_list, image_id=image_id)
            instance_center_pos_yxs.append(keep_yxs_list_with_id)
        else:
            end_points_yxs.extend((keep_yxs_list[0], keep_yxs_list[-1]))
            center_pos_yxs.extend(keep_yxs_list)

    if is_backbone:
        return instance_center_pos_yxs
    else:
        return center_pos_yxs, end_points_yxs


def generate_pivot_list(p_score,
                        p_char_maps,
                        f_direction,
                        score_thresh=0.5,
                        is_backbone=False,
                        is_curved=True,
                        image_id=0):
    """
    Warp all the function together.
    """
    if is_curved:
        return generate_pivot_list_curved(
            p_score,
            p_char_maps,
            f_direction,
            score_thresh=score_thresh,
            is_expand=True,
            is_backbone=is_backbone,
            image_id=image_id)
    else:
        return generate_pivot_list_horizontal(
            p_score,
            p_char_maps,
            f_direction,
            score_thresh=score_thresh,
            is_backbone=is_backbone,
            image_id=image_id)


# for refine module
def extract_main_direction(pos_list, f_direction):
    """
    f_direction: h x w x 2
    pos_list: [[y, x], [y, x], [y, x] ...]
    """
    pos_list = np.array(pos_list)
    point_direction = f_direction[pos_list[:, 0], pos_list[:, 1]]
    point_direction = point_direction[:, ::-1]  # x, y -> y, x
    average_direction = np.mean(point_direction, axis=0, keepdims=True)
    average_direction = average_direction / (
        np.linalg.norm(average_direction) + 1e-6)
    return average_direction


def sort_by_direction_with_image_id_deprecated(pos_list, f_direction):
    """
    f_direction: h x w x 2
    pos_list: [[id, y, x], [id, y, x], [id, y, x] ...]
    """
    pos_list_full = np.array(pos_list).reshape(-1, 3)
    pos_list = pos_list_full[:, 1:]
    point_direction = f_direction[pos_list[:, 0], pos_list[:, 1]]  # x, y
    point_direction = point_direction[:, ::-1]  # x, y -> y, x
    average_direction = np.mean(point_direction, axis=0, keepdims=True)
    pos_proj_leng = np.sum(pos_list * average_direction, axis=1)
    sorted_list = pos_list_full[np.argsort(pos_proj_leng)].tolist()
    return sorted_list


def sort_by_direction_with_image_id(pos_list, f_direction):
    """
    f_direction: h x w x 2
    pos_list: [[y, x], [y, x], [y, x] ...]
    """

    def sort_part_with_direction(pos_list_full, point_direction):
        pos_list_full = np.array(pos_list_full).reshape(-1, 3)
        pos_list = pos_list_full[:, 1:]
        point_direction = np.array(point_direction).reshape(-1, 2)
        average_direction = np.mean(point_direction, axis=0, keepdims=True)
        pos_proj_leng = np.sum(pos_list * average_direction, axis=1)
        sorted_list = pos_list_full[np.argsort(pos_proj_leng)].tolist()
        sorted_direction = point_direction[np.argsort(pos_proj_leng)].tolist()
        return sorted_list, sorted_direction

    pos_list = np.array(pos_list).reshape(-1, 3)
    point_direction = f_direction[pos_list[:, 1], pos_list[:, 2]]  # x, y
    point_direction = point_direction[:, ::-1]  # x, y -> y, x
    sorted_point, sorted_direction = sort_part_with_direction(pos_list,
                                                              point_direction)

    point_num = len(sorted_point)
    if point_num >= 16:
        middle_num = point_num // 2
        first_part_point = sorted_point[:middle_num]
        first_point_direction = sorted_direction[:middle_num]
        sorted_fist_part_point, sorted_fist_part_direction = sort_part_with_direction(
            first_part_point, first_point_direction)

        last_part_point = sorted_point[middle_num:]
        last_point_direction = sorted_direction[middle_num:]
        sorted_last_part_point, sorted_last_part_direction = sort_part_with_direction(
            last_part_point, last_point_direction)
        sorted_point = sorted_fist_part_point + sorted_last_part_point
        sorted_direction = sorted_fist_part_direction + sorted_last_part_direction

    return sorted_point


def generate_pivot_list_tt_inference(p_score,
                                     p_char_maps,
                                     f_direction,
                                     score_thresh=0.5,
                                     is_backbone=False,
                                     is_curved=True,
                                     image_id=0):
    """
    return center point and end point of TCL instance; filter with the char maps;
    """
    p_score = p_score[0]
    f_direction = f_direction.transpose(1, 2, 0)
    p_tcl_map = (p_score > score_thresh) * 1.0
    skeleton_map = thin(p_tcl_map)
    instance_count, instance_label_map = cv2.connectedComponents(
        skeleton_map.astype(np.uint8), connectivity=8)

    # get TCL Instance
    all_pos_yxs = []
    if instance_count > 0:
        for instance_id in range(1, instance_count):
            pos_list = []
            ys, xs = np.where(instance_label_map == instance_id)
            pos_list = list(zip(ys, xs))
            ### FIX-ME, eliminate outlier
            if len(pos_list) < 3:
                continue
            pos_list_sorted = sort_and_expand_with_direction_v2(
                pos_list, f_direction, p_tcl_map)
            pos_list_sorted_with_id = add_id(pos_list_sorted, image_id=image_id)
            all_pos_yxs.append(pos_list_sorted_with_id)
    return all_pos_yxs