det_r50_vd_db.yml 3.0 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5
Global:
  use_gpu: true
  epoch_num: 1200
  log_smooth_window: 20
  print_batch_step: 2
W
WenmuZhou 已提交
6
  save_model_dir: ./output/det_r50_vd/
W
WenmuZhou 已提交
7 8 9 10 11 12
  save_epoch_step: 1200
  # evaluation is run every 5000 iterations after the 4000th iteration
  eval_batch_step: 8
  # if pretrained_model is saved in static mode, load_static_weights must set to True
  load_static_weights: True
  cal_metric_during_train: False
W
WenmuZhou 已提交
13 14
  pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained/
  checkpoints:
15
  save_inference_dir:
W
WenmuZhou 已提交
16 17 18
  use_visualdl: True
  infer_img: doc/imgs_en/img_10.jpg
  save_res_path: ./output/det_db/predicts_db.txt
19

W
WenmuZhou 已提交
20 21 22 23 24 25 26 27 28
Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  learning_rate:
    lr: 0.001
  regularizer:
    name: 'L2'
    factor: 0
L
LDOUBLEV 已提交
29

W
WenmuZhou 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42
Architecture:
  type: det
  algorithm: DB
  Transform:
  Backbone:
    name: ResNet
    layers: 50
  Neck:
    name: FPN
    out_channels: 256
  Head:
    name: DBHead
    k: 50
L
LDOUBLEV 已提交
43 44

Loss:
W
WenmuZhou 已提交
45
  name: DBLoss
L
LDOUBLEV 已提交
46 47 48 49 50 51 52
  balance_loss: true
  main_loss_type: DiceLoss
  alpha: 5
  beta: 10
  ohem_ratio: 3

PostProcess:
W
WenmuZhou 已提交
53
  name: DBPostProcess
L
LDOUBLEV 已提交
54
  thresh: 0.3
W
WenmuZhou 已提交
55
  box_thresh: 0.6
L
LDOUBLEV 已提交
56 57
  max_candidates: 1000
  unclip_ratio: 1.5
W
WenmuZhou 已提交
58 59 60 61 62 63 64 65

Metric:
  name: DetMetric
  main_indicator: hmean

TRAIN:
  dataset:
    name: SimpleDataSet
W
WenmuZhou 已提交
66
    data_dir: ./detection/
W
WenmuZhou 已提交
67
    file_list:
W
WenmuZhou 已提交
68
      - ./detection/train_icdar2015_label.txt # dataset1
W
WenmuZhou 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    ratio_list: [1.0]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - DetLabelEncode: # Class handling label
      - IaaAugment:
          augmenter_args:
            - { 'type': Fliplr, 'args': { 'p': 0.5 } }
            - { 'type': Affine, 'args': { 'rotate': [ -10,10 ] } }
            - { 'type': Resize,'args': { 'size': [ 0.5,3 ] } }
      - EastRandomCropData:
          size: [ 640,640 ]
          max_tries: 50
          keep_ratio: true
      - MakeBorderMap:
          shrink_ratio: 0.4
          thresh_min: 0.3
          thresh_max: 0.7
      - MakeShrinkMap:
          shrink_ratio: 0.4
          min_text_size: 8
      - NormalizeImage:
          scale: 1./255.
          mean: [ 0.485, 0.456, 0.406 ]
          std: [ 0.229, 0.224, 0.225 ]
          order: 'hwc'
      - ToCHWImage:
      - keepKeys:
W
WenmuZhou 已提交
98
          keep_keys: ['image','threshold_map','threshold_mask','shrink_map','shrink_mask'] # dataloader will return list in this order
W
WenmuZhou 已提交
99 100 101 102
  loader:
    shuffle: True
    drop_last: False
    batch_size: 16
W
WenmuZhou 已提交
103
    num_workers: 8
W
WenmuZhou 已提交
104 105 106 107

EVAL:
  dataset:
    name: SimpleDataSet
W
WenmuZhou 已提交
108
    data_dir: ./detection/
W
WenmuZhou 已提交
109
    file_list:
W
WenmuZhou 已提交
110
      - ./detection/test_icdar2015_label.txt
W
WenmuZhou 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - DetLabelEncode: # Class handling label
      - DetResizeForTest:
          image_shape: [736,1280]
      - NormalizeImage:
          scale: 1./255.
          mean: [ 0.485, 0.456, 0.406 ]
          std: [ 0.229, 0.224, 0.225 ]
          order: 'hwc'
      - ToCHWImage:
      - keepKeys:
          keep_keys: ['image','shape','polys','ignore_tags']
  loader:
    shuffle: False
    drop_last: False
    batch_size: 1 # must be 1
W
WenmuZhou 已提交
130
    num_workers: 8