predict_det_eval.py 13.7 KB
Newer Older
A
andyjpaddle 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

import cv2
import numpy as np
import time
import sys

import tools.infer.utility as utility
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.data import create_operators, transform
from ppocr.postprocess import build_post_process
import json
logger = get_logger()


class TextDetector(object):
    def __init__(self, args):
        self.args = args
        self.det_algorithm = args.det_algorithm
        self.use_onnx = args.use_onnx
        pre_process_list = [{
            'DetResizeForTest': {
                'limit_side_len': args.det_limit_side_len,
                'limit_type': args.det_limit_type,
            }
        }, {
            'NormalizeImage': {
                'std': [0.229, 0.224, 0.225],
                'mean': [0.485, 0.456, 0.406],
                'scale': '1./255.',
                'order': 'hwc'
            }
        }, {
            'ToCHWImage': None
        }, {
            'KeepKeys': {
                'keep_keys': ['image', 'shape']
            }
        }]
        postprocess_params = {}
        if self.det_algorithm == "DB":
            postprocess_params['name'] = 'DBPostProcess'
            postprocess_params["thresh"] = args.det_db_thresh
            postprocess_params["box_thresh"] = args.det_db_box_thresh
            postprocess_params["max_candidates"] = 1000
            postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
            postprocess_params["use_dilation"] = args.use_dilation
            postprocess_params["score_mode"] = args.det_db_score_mode
        elif self.det_algorithm == "EAST":
            postprocess_params['name'] = 'EASTPostProcess'
            postprocess_params["score_thresh"] = args.det_east_score_thresh
            postprocess_params["cover_thresh"] = args.det_east_cover_thresh
            postprocess_params["nms_thresh"] = args.det_east_nms_thresh
        elif self.det_algorithm == "SAST":
            pre_process_list[0] = {
                'DetResizeForTest': {
                    'resize_long': args.det_limit_side_len
                }
            }
            postprocess_params['name'] = 'SASTPostProcess'
            postprocess_params["score_thresh"] = args.det_sast_score_thresh
            postprocess_params["nms_thresh"] = args.det_sast_nms_thresh
            self.det_sast_polygon = args.det_sast_polygon
            if self.det_sast_polygon:
                postprocess_params["sample_pts_num"] = 6
                postprocess_params["expand_scale"] = 1.2
                postprocess_params["shrink_ratio_of_width"] = 0.2
            else:
                postprocess_params["sample_pts_num"] = 2
                postprocess_params["expand_scale"] = 1.0
                postprocess_params["shrink_ratio_of_width"] = 0.3
        elif self.det_algorithm == "PSE":
            postprocess_params['name'] = 'PSEPostProcess'
            postprocess_params["thresh"] = args.det_pse_thresh
            postprocess_params["box_thresh"] = args.det_pse_box_thresh
            postprocess_params["min_area"] = args.det_pse_min_area
            postprocess_params["box_type"] = args.det_pse_box_type
            postprocess_params["scale"] = args.det_pse_scale
            self.det_pse_box_type = args.det_pse_box_type
        elif self.det_algorithm == "FCE":
            pre_process_list[0] = {
                'DetResizeForTest': {
                    'rescale_img': [1080, 736]
                }
            }
            postprocess_params['name'] = 'FCEPostProcess'
            postprocess_params["scales"] = args.scales
            postprocess_params["alpha"] = args.alpha
            postprocess_params["beta"] = args.beta
            postprocess_params["fourier_degree"] = args.fourier_degree
            postprocess_params["box_type"] = args.det_fce_box_type
        else:
            logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
            sys.exit(0)

        self.preprocess_op = create_operators(pre_process_list)
        self.postprocess_op = build_post_process(postprocess_params)
        self.predictor, self.input_tensor, self.output_tensors, self.config = utility.create_predictor(
            args, 'det', logger)

        if self.use_onnx:
            img_h, img_w = self.input_tensor.shape[2:]
            if img_h is not None and img_w is not None and img_h > 0 and img_w > 0:
                pre_process_list[0] = {
                    'DetResizeForTest': {
                        'image_shape': [img_h, img_w]
                    }
                }
        self.preprocess_op = create_operators(pre_process_list)

        if args.benchmark:
            import auto_log
            pid = os.getpid()
            gpu_id = utility.get_infer_gpuid()
            self.autolog = auto_log.AutoLogger(
                model_name="det",
                model_precision=args.precision,
                batch_size=1,
                data_shape="dynamic",
                save_path=None,
                inference_config=self.config,
                pids=pid,
                process_name=None,
                gpu_ids=gpu_id if args.use_gpu else None,
                time_keys=[
                    'preprocess_time', 'inference_time', 'postprocess_time'
                ],
                warmup=2,
                logger=logger)

    def order_points_clockwise(self, pts):
        rect = np.zeros((4, 2), dtype="float32")
        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
        tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0)
        diff = np.diff(np.array(tmp), axis=1)
        rect[1] = tmp[np.argmin(diff)]
        rect[3] = tmp[np.argmax(diff)]
        return rect

    def clip_det_res(self, points, img_height, img_width):
        for pno in range(points.shape[0]):
            points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
            points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
        return points

    def filter_tag_det_res(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.order_points_clockwise(box)
            box = self.clip_det_res(box, img_height, img_width)
            rect_width = int(np.linalg.norm(box[0] - box[1]))
            rect_height = int(np.linalg.norm(box[0] - box[3]))
            if rect_width <= 3 or rect_height <= 3:
                continue
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

    def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.clip_det_res(box, img_height, img_width)
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

    def __call__(self, img):
        ori_im = img.copy()
        data = {'image': img}

        st = time.time()

        if self.args.benchmark:
            self.autolog.times.start()

        data = transform(data, self.preprocess_op)
        img, shape_list = data
        if img is None:
            return None, 0
        img = np.expand_dims(img, axis=0)
        shape_list = np.expand_dims(shape_list, axis=0)
        img = img.copy()

        if self.args.benchmark:
            self.autolog.times.stamp()
        if self.use_onnx:
            input_dict = {}
            input_dict[self.input_tensor.name] = img
            outputs = self.predictor.run(self.output_tensors, input_dict)
        else:
            self.input_tensor.copy_from_cpu(img)
            self.predictor.run()
            outputs = []
            for output_tensor in self.output_tensors:
                output = output_tensor.copy_to_cpu()
                outputs.append(output)
            if self.args.benchmark:
                self.autolog.times.stamp()

        preds = {}
        if self.det_algorithm == "EAST":
            preds['f_geo'] = outputs[0]
            preds['f_score'] = outputs[1]
        elif self.det_algorithm == 'SAST':
            preds['f_border'] = outputs[0]
            preds['f_score'] = outputs[1]
            preds['f_tco'] = outputs[2]
            preds['f_tvo'] = outputs[3]
        elif self.det_algorithm in ['DB', 'PSE']:
            preds['maps'] = outputs[0]
        elif self.det_algorithm == 'FCE':
            for i, output in enumerate(outputs):
                preds['level_{}'.format(i)] = output
        else:
            raise NotImplementedError

        #self.predictor.try_shrink_memory()
        post_result = self.postprocess_op(preds, shape_list)
        dt_boxes = post_result[0]['points']
        if (self.det_algorithm == "SAST" and self.det_sast_polygon) or (
                self.det_algorithm in ["PSE", "FCE"] and
                self.postprocess_op.box_type == 'poly'):
            dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
        else:
            dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)

        if self.args.benchmark:
            self.autolog.times.end(stamp=True)
        et = time.time()
        return dt_boxes, et - st


if __name__ == "__main__":
    from ppocr.metrics.eval_det_iou import DetectionIoUEvaluator
    evaluator = DetectionIoUEvaluator()
    args = utility.parse_args()

    # image_file_list = get_image_file_list(args.image_dir)
    def _check_image_file(path):
        img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif'}
        return any([path.lower().endswith(e) for e in img_end])

    def get_image_file_list_from_txt(img_file):
        imgs_lists = []
        label_lists = []
        if img_file is None or not os.path.exists(img_file):
            raise Exception("not found any img file in {}".format(img_file))

        img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif'}
        root_dir = img_file.split('/')[0]
        with open(img_file, 'r') as f:
            lines = f.readlines()
            for line in lines:
                line = line.replace('\n', '').split('\t')
                file_path, label = line[0], line[1]
                file_path = os.path.join(root_dir, file_path)
                if os.path.isfile(file_path) and _check_image_file(file_path):
                    imgs_lists.append(file_path)
                    label_lists.append(label)

        if len(imgs_lists) == 0:
            raise Exception("not found any img file in {}".format(img_file))
        return imgs_lists, label_lists

    image_file_list, label_list = get_image_file_list_from_txt(args.image_dir)

    text_detector = TextDetector(args)
    count = 0
    total_time = 0
    draw_img_save = "./inference_results"

    if args.warmup:
        img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
        for i in range(2):
            res = text_detector(img)

    if not os.path.exists(draw_img_save):
        os.makedirs(draw_img_save)
    save_results = []
    results = []
    for idx in range(len(image_file_list)):
        image_file = image_file_list[idx]
        label = json.loads(label_list[idx])
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        st = time.time()
        dt_boxes, _ = text_detector(img)
        elapse = time.time() - st
        if count > 0:
            total_time += elapse
        count += 1
        save_pred = os.path.basename(image_file) + "\t" + str(
            json.dumps([x.tolist() for x in dt_boxes])) + "\n"
        save_results.append(save_pred)

        # for eval
        gt_info_list = []
        det_info_list = []
        for dt_box in dt_boxes:
            det_info = {
                'points': np.array(
                    dt_box, dtype=np.float32),
                'text': ''
            }
            det_info_list.append(det_info)
        for lab in label:
            gt_info = {
                'points': np.array(
                    lab['points'], dtype=np.float32),
                'text': '',
                'ignore': False
            }
            gt_info_list.append(gt_info)
        result = evaluator.evaluate_image(gt_info_list, det_info_list)
        results.append(result)

    metrics = evaluator.combine_results(results)
    print('predict det eval on ', args.image_dir)
    print('metrics: ', metrics)

# logger.info(save_pred)
# logger.info("The predict time of {}: {}".format(image_file, elapse))
# src_im = utility.draw_text_det_res(dt_boxes, image_file)
# img_name_pure = os.path.split(image_file)[-1]
# img_path = os.path.join(draw_img_save,
#                         "det_res_{}".format(img_name_pure))
# cv2.imwrite(img_path, src_im)
# logger.info("The visualized image saved in {}".format(img_path))

# with open(os.path.join(draw_img_save, "det_results.txt"), 'w') as f:
#     f.writelines(save_results)
#     f.close()
# if args.benchmark:
#     text_detector.autolog.report()