type.go 20.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
// Copyright 2009 The Go Authors.  All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// DWARF type information structures.
// The format is heavily biased toward C, but for simplicity
// the String methods use a pseudo-Go syntax.

package dwarf

import (
12
	"fmt"
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
	"reflect"
	"strconv"
)

// A Type conventionally represents a pointer to any of the
// specific Type structures (CharType, StructType, etc.).
type Type interface {
	Common() *CommonType
	String() string
	Size() int64
}

// A CommonType holds fields common to multiple types.
// If a field is not known or not applicable for a given type,
// the zero value is used.
type CommonType struct {
	ByteSize    int64        // size of value of this type, in bytes
	Name        string       // name that can be used to refer to type
	ReflectKind reflect.Kind // the reflect kind of the type.
	Offset      Offset       // the offset at which this type was read
}

func (c *CommonType) Common() *CommonType { return c }

func (c *CommonType) Size() int64 { return c.ByteSize }

// Basic types

// A BasicType holds fields common to all basic types.
type BasicType struct {
	CommonType
	BitSize   int64
	BitOffset int64
}

func (b *BasicType) Basic() *BasicType { return b }

func (t *BasicType) String() string {
	if t.Name != "" {
		return t.Name
	}
	return "?"
}

// A CharType represents a signed character type.
type CharType struct {
	BasicType
}

// A UcharType represents an unsigned character type.
type UcharType struct {
	BasicType
}

// An IntType represents a signed integer type.
type IntType struct {
	BasicType
}

// A UintType represents an unsigned integer type.
type UintType struct {
	BasicType
}

// A FloatType represents a floating point type.
type FloatType struct {
	BasicType
}

// A ComplexType represents a complex floating point type.
type ComplexType struct {
	BasicType
}

// A BoolType represents a boolean type.
type BoolType struct {
	BasicType
}

// An AddrType represents a machine address type.
type AddrType struct {
	BasicType
}

// An UnspecifiedType represents an implicit, unknown, ambiguous or nonexistent type.
type UnspecifiedType struct {
	BasicType
}

// qualifiers

// A QualType represents a type that has the C/C++ "const", "restrict", or "volatile" qualifier.
type QualType struct {
	CommonType
	Qual string
	Type Type
}

func (t *QualType) String() string { return t.Qual + " " + t.Type.String() }

func (t *QualType) Size() int64 { return t.Type.Size() }

// An ArrayType represents a fixed size array type.
type ArrayType struct {
	CommonType
	Type          Type
	StrideBitSize int64 // if > 0, number of bits to hold each element
	Count         int64 // if == -1, an incomplete array, like char x[].
}

func (t *ArrayType) String() string {
	return "[" + strconv.FormatInt(t.Count, 10) + "]" + t.Type.String()
}

func (t *ArrayType) Size() int64 { return t.Count * t.Type.Size() }

// A VoidType represents the C void type.
type VoidType struct {
	CommonType
}

func (t *VoidType) String() string { return "void" }

// A PtrType represents a pointer type.
type PtrType struct {
	CommonType
	Type Type
}

142
func (t *PtrType) String() string { return "*" + t.Type.String() }
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

// A StructType represents a struct, union, or C++ class type.
type StructType struct {
	CommonType
	StructName string
	Kind       string // "struct", "union", or "class".
	Field      []*StructField
	Incomplete bool // if true, struct, union, class is declared but not defined
}

// A StructField represents a field in a struct, union, or C++ class type.
type StructField struct {
	Name       string
	Type       Type
	ByteOffset int64
	ByteSize   int64
	BitOffset  int64 // within the ByteSize bytes at ByteOffset
	BitSize    int64 // zero if not a bit field
}

func (t *StructType) String() string {
	if t.StructName != "" {
		return t.Kind + " " + t.StructName
	}
	return t.Defn()
}

func (t *StructType) Defn() string {
	s := t.Kind
	if t.StructName != "" {
		s += " " + t.StructName
	}
	if t.Incomplete {
		s += " /*incomplete*/"
		return s
	}
	s += " {"
	for i, f := range t.Field {
		if i > 0 {
			s += "; "
		}
		s += f.Name + " " + f.Type.String()
		s += "@" + strconv.FormatInt(f.ByteOffset, 10)
		if f.BitSize > 0 {
			s += " : " + strconv.FormatInt(f.BitSize, 10)
			s += "@" + strconv.FormatInt(f.BitOffset, 10)
		}
	}
	s += "}"
	return s
}

// A SliceType represents a Go slice type. It looks like a StructType, describing
// the runtime-internal structure, with extra fields.
type SliceType struct {
	StructType
	ElemType Type
}

func (t *SliceType) String() string {
	if t.Name != "" {
		return t.Name
	}
	return "[]" + t.ElemType.String()
}

// A StringType represents a Go string type. It looks like a StructType, describing
// the runtime-internal structure, but we wrap it for neatness.
type StringType struct {
	StructType
}

func (t *StringType) String() string {
	if t.Name != "" {
		return t.Name
	}
	return "string"
}

// An InterfaceType represents a Go interface.
type InterfaceType struct {
	TypedefType
}

func (t *InterfaceType) String() string {
	if t.Name != "" {
		return t.Name
	}
	return "Interface"
}

// An EnumType represents an enumerated type.
// The only indication of its native integer type is its ByteSize
// (inside CommonType).
type EnumType struct {
	CommonType
	EnumName string
	Val      []*EnumValue
}

// An EnumValue represents a single enumeration value.
type EnumValue struct {
	Name string
	Val  int64
}

func (t *EnumType) String() string {
	s := "enum"
	if t.EnumName != "" {
		s += " " + t.EnumName
	}
	s += " {"
	for i, v := range t.Val {
		if i > 0 {
			s += "; "
		}
		s += v.Name + "=" + strconv.FormatInt(v.Val, 10)
	}
	s += "}"
	return s
}

// A FuncType represents a function type.
type FuncType struct {
	CommonType
	ReturnType Type
	ParamType  []Type
}

func (t *FuncType) String() string {
	s := "func("
	for i, t := range t.ParamType {
		if i > 0 {
			s += ", "
		}
		s += t.String()
	}
	s += ")"
	if t.ReturnType != nil {
		s += " " + t.ReturnType.String()
	}
	return s
}

// A DotDotDotType represents the variadic ... function parameter.
type DotDotDotType struct {
	CommonType
}

func (t *DotDotDotType) String() string { return "..." }

// A TypedefType represents a named type.
type TypedefType struct {
	CommonType
	Type Type
}

func (t *TypedefType) String() string { return t.Name }

func (t *TypedefType) Size() int64 { return t.Type.Size() }

// A MapType represents a Go map type. It looks like a TypedefType, describing
// the runtime-internal structure, with extra fields.
type MapType struct {
	TypedefType
	KeyType  Type
	ElemType Type
}

func (t *MapType) String() string {
	if t.Name != "" {
		return t.Name
	}
	return "map[" + t.KeyType.String() + "]" + t.ElemType.String()
}

// A ChanType represents a Go channel type.
type ChanType struct {
	TypedefType
	ElemType Type
}

func (t *ChanType) String() string {
	if t.Name != "" {
		return t.Name
	}
	return "chan " + t.ElemType.String()
}

// typeReader is used to read from either the info section or the
// types section.
type typeReader interface {
	Seek(Offset)
	Next() (*Entry, error)
	clone() typeReader
	offset() Offset
	// AddressSize returns the size in bytes of addresses in the current
	// compilation unit.
	AddressSize() int
}

// Type reads the type at off in the DWARF ``info'' section.
func (d *Data) Type(off Offset) (Type, error) {
	return d.readType("info", d.Reader(), off, d.typeCache)
}

func getKind(e *Entry) reflect.Kind {
	integer, _ := e.Val(AttrGoKind).(int64)
	return reflect.Kind(integer)
}

// readType reads a type from r at off of name using and updating a
// type cache.
func (d *Data) readType(name string, r typeReader, off Offset, typeCache map[Offset]Type) (Type, error) {
	if t, ok := typeCache[off]; ok {
		return t, nil
	}
	r.Seek(off)
	e, err := r.Next()
	if err != nil {
		return nil, err
	}
	addressSize := r.AddressSize()
	if e == nil || e.Offset != off {
		return nil, DecodeError{name, off, "no type at offset"}
	}

	// Parse type from Entry.
	// Must always set typeCache[off] before calling
	// d.Type recursively, to handle circular types correctly.
	var typ Type

	nextDepth := 0

	// Get next child; set err if error happens.
	next := func() *Entry {
		if !e.Children {
			return nil
		}
		// Only return direct children.
		// Skip over composite entries that happen to be nested
		// inside this one. Most DWARF generators wouldn't generate
		// such a thing, but clang does.
		// See golang.org/issue/6472.
		for {
			kid, err1 := r.Next()
			if err1 != nil {
				err = err1
				return nil
			}
			if kid == nil {
				err = DecodeError{name, r.offset(), "unexpected end of DWARF entries"}
				return nil
			}
			if kid.Tag == 0 {
				if nextDepth > 0 {
					nextDepth--
					continue
				}
				return nil
			}
			if kid.Children {
				nextDepth++
			}
			if nextDepth > 0 {
				continue
			}
			return kid
		}
	}

	// Get Type referred to by Entry's attr.
	// Set err if error happens.  Not having a type is an error.
	typeOf := func(e *Entry, attr Attr) Type {
		tval := e.Val(attr)
		var t Type
		switch toff := tval.(type) {
		case Offset:
			if t, err = d.readType(name, r.clone(), toff, typeCache); err != nil {
				return nil
			}
		case uint64:
			if t, err = d.sigToType(toff); err != nil {
				return nil
			}
		default:
			// It appears that no Type means "void".
			return new(VoidType)
		}
		return t
	}

	switch e.Tag {
	case TagArrayType:
		// Multi-dimensional array.  (DWARF v2 §5.4)
		// Attributes:
		//	AttrType:subtype [required]
		//	AttrStrideSize: distance in bits between each element of the array
		//	AttrStride: distance in bytes between each element of the array
		//	AttrByteSize: size of entire array
		// Children:
		//	TagSubrangeType or TagEnumerationType giving one dimension.
		//	dimensions are in left to right order.
		t := new(ArrayType)
447
		t.Name, _ = e.Val(AttrName).(string)
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
		t.ReflectKind = getKind(e)
		typ = t
		typeCache[off] = t
		if t.Type = typeOf(e, AttrType); err != nil {
			goto Error
		}
		if bytes, ok := e.Val(AttrStride).(int64); ok {
			t.StrideBitSize = 8 * bytes
		} else if bits, ok := e.Val(AttrStrideSize).(int64); ok {
			t.StrideBitSize = bits
		} else {
			// If there's no stride specified, assume it's the size of the
			// array's element type.
			t.StrideBitSize = 8 * t.Type.Size()
		}

		// Accumulate dimensions,
		ndim := 0
		for kid := next(); kid != nil; kid = next() {
			// TODO(rsc): Can also be TagEnumerationType
			// but haven't seen that in the wild yet.
			switch kid.Tag {
			case TagSubrangeType:
				count, ok := kid.Val(AttrCount).(int64)
				if !ok {
					// Old binaries may have an upper bound instead.
					count, ok = kid.Val(AttrUpperBound).(int64)
					if ok {
						count++ // Length is one more than upper bound.
					} else {
						count = -1 // As in x[].
					}
				}
				if ndim == 0 {
					t.Count = count
				} else {
					// Multidimensional array.
					// Create new array type underneath this one.
					t.Type = &ArrayType{Type: t.Type, Count: count}
				}
				ndim++
			case TagEnumerationType:
				err = DecodeError{name, kid.Offset, "cannot handle enumeration type as array bound"}
				goto Error
			}
		}
		if ndim == 0 {
			// LLVM generates this for x[].
			t.Count = -1
		}

	case TagBaseType:
		// Basic type.  (DWARF v2 §5.1)
		// Attributes:
		//	AttrName: name of base type in programming language of the compilation unit [required]
		//	AttrEncoding: encoding value for type (encFloat etc) [required]
		//	AttrByteSize: size of type in bytes [required]
		//	AttrBitOffset: for sub-byte types, size in bits
		//	AttrBitSize: for sub-byte types, bit offset of high order bit in the AttrByteSize bytes
		name, _ := e.Val(AttrName).(string)
		enc, ok := e.Val(AttrEncoding).(int64)
		if !ok {
			err = DecodeError{name, e.Offset, "missing encoding attribute for " + name}
			goto Error
		}
		switch enc {
		default:
			err = DecodeError{name, e.Offset, "unrecognized encoding attribute value"}
			goto Error

		case encAddress:
			typ = new(AddrType)
		case encBoolean:
			typ = new(BoolType)
		case encComplexFloat:
			typ = new(ComplexType)
			if name == "complex" {
				// clang writes out 'complex' instead of 'complex float' or 'complex double'.
				// clang also writes out a byte size that we can use to distinguish.
				// See issue 8694.
				switch byteSize, _ := e.Val(AttrByteSize).(int64); byteSize {
				case 8:
					name = "complex float"
				case 16:
					name = "complex double"
				}
			}
		case encFloat:
			typ = new(FloatType)
		case encSigned:
			typ = new(IntType)
		case encUnsigned:
			typ = new(UintType)
		case encSignedChar:
			typ = new(CharType)
		case encUnsignedChar:
			typ = new(UcharType)
		}
		typeCache[off] = typ
		t := typ.(interface {
			Basic() *BasicType
		}).Basic()
		t.Name = name
		t.BitSize, _ = e.Val(AttrBitSize).(int64)
		t.BitOffset, _ = e.Val(AttrBitOffset).(int64)
		t.ReflectKind = getKind(e)

	case TagClassType, TagStructType, TagUnionType:
		// Structure, union, or class type.  (DWARF v2 §5.5)
		// Also Slices and Strings (Go-specific).
		// Attributes:
		//	AttrName: name of struct, union, or class
		//	AttrByteSize: byte size [required]
		//	AttrDeclaration: if true, struct/union/class is incomplete
		// 	AttrGoElem: present for slices only.
		// Children:
		//	TagMember to describe one member.
		//		AttrName: name of member [required]
		//		AttrType: type of member [required]
		//		AttrByteSize: size in bytes
		//		AttrBitOffset: bit offset within bytes for bit fields
		//		AttrBitSize: bit size for bit fields
		//		AttrDataMemberLoc: location within struct [required for struct, class]
		// There is much more to handle C++, all ignored for now.
		t := new(StructType)
		t.ReflectKind = getKind(e)
		switch t.ReflectKind {
		case reflect.Slice:
			slice := new(SliceType)
			slice.ElemType = typeOf(e, AttrGoElem)
			t = &slice.StructType
			typ = slice
		case reflect.String:
			str := new(StringType)
			t = &str.StructType
			typ = str
		default:
			typ = t
		}
		typeCache[off] = typ
		switch e.Tag {
		case TagClassType:
			t.Kind = "class"
		case TagStructType:
			t.Kind = "struct"
		case TagUnionType:
			t.Kind = "union"
		}
A
Alessandro Arzilli 已提交
596
		t.Name, _ = e.Val(AttrName).(string)
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
		t.StructName, _ = e.Val(AttrName).(string)
		t.Incomplete = e.Val(AttrDeclaration) != nil
		t.Field = make([]*StructField, 0, 8)
		var lastFieldType Type
		var lastFieldBitOffset int64
		for kid := next(); kid != nil; kid = next() {
			if kid.Tag == TagMember {
				f := new(StructField)
				if f.Type = typeOf(kid, AttrType); err != nil {
					goto Error
				}
				switch loc := kid.Val(AttrDataMemberLoc).(type) {
				case []byte:
					// TODO: Should have original compilation
					// unit here, not unknownFormat.
612 613 614 615
					if len(loc) == 0 {
						// Empty exprloc. f.ByteOffset=0.
						break
					}
616
					b := makeBuf(d, unknownFormat{}, "location", 0, loc)
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
					op := b.uint8()
					switch op {
					case opPlusUconst:
						// Handle opcode sequence [DW_OP_plus_uconst <uleb128>]
						f.ByteOffset = int64(b.uint())
						b.assertEmpty()
					case opConsts:
						// Handle opcode sequence [DW_OP_consts <sleb128> DW_OP_plus]
						f.ByteOffset = b.int()
						op = b.uint8()
						if op != opPlus {
							err = DecodeError{name, kid.Offset, fmt.Sprintf("unexpected opcode 0x%x", op)}
							goto Error
						}
						b.assertEmpty()
					default:
						err = DecodeError{name, kid.Offset, fmt.Sprintf("unexpected opcode 0x%x", op)}
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
						goto Error
					}
					if b.err != nil {
						err = b.err
						goto Error
					}
				case int64:
					f.ByteOffset = loc
				}

				haveBitOffset := false
				f.Name, _ = kid.Val(AttrName).(string)
				f.ByteSize, _ = kid.Val(AttrByteSize).(int64)
				f.BitOffset, haveBitOffset = kid.Val(AttrBitOffset).(int64)
				f.BitSize, _ = kid.Val(AttrBitSize).(int64)
				t.Field = append(t.Field, f)

				bito := f.BitOffset
				if !haveBitOffset {
					bito = f.ByteOffset * 8
				}
				if bito == lastFieldBitOffset && t.Kind != "union" {
					// Last field was zero width.  Fix array length.
					// (DWARF writes out 0-length arrays as if they were 1-length arrays.)
					zeroArray(lastFieldType)
				}
				lastFieldType = f.Type
				lastFieldBitOffset = bito
			}
		}
		if t.Kind != "union" {
			b, ok := e.Val(AttrByteSize).(int64)
			if ok && b*8 == lastFieldBitOffset {
				// Final field must be zero width.  Fix array length.
				zeroArray(lastFieldType)
			}
		}

	case TagConstType, TagVolatileType, TagRestrictType:
		// Type modifier (DWARF v2 §5.2)
		// Attributes:
		//	AttrType: subtype
		t := new(QualType)
677
		t.Name, _ = e.Val(AttrName).(string)
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
		t.ReflectKind = getKind(e)
		typ = t
		typeCache[off] = t
		if t.Type = typeOf(e, AttrType); err != nil {
			goto Error
		}
		switch e.Tag {
		case TagConstType:
			t.Qual = "const"
		case TagRestrictType:
			t.Qual = "restrict"
		case TagVolatileType:
			t.Qual = "volatile"
		}

	case TagEnumerationType:
		// Enumeration type (DWARF v2 §5.6)
		// Attributes:
		//	AttrName: enum name if any
		//	AttrByteSize: bytes required to represent largest value
		// Children:
		//	TagEnumerator:
		//		AttrName: name of constant
		//		AttrConstValue: value of constant
		t := new(EnumType)
		t.ReflectKind = getKind(e)
		typ = t
		typeCache[off] = t
706
		t.Name, _ = e.Val(AttrName).(string)
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
		t.EnumName, _ = e.Val(AttrName).(string)
		t.Val = make([]*EnumValue, 0, 8)
		for kid := next(); kid != nil; kid = next() {
			if kid.Tag == TagEnumerator {
				f := new(EnumValue)
				f.Name, _ = kid.Val(AttrName).(string)
				f.Val, _ = kid.Val(AttrConstValue).(int64)
				n := len(t.Val)
				if n >= cap(t.Val) {
					val := make([]*EnumValue, n, n*2)
					copy(val, t.Val)
					t.Val = val
				}
				t.Val = t.Val[0 : n+1]
				t.Val[n] = f
			}
		}

	case TagPointerType:
		// Type modifier (DWARF v2 §5.2)
		// Attributes:
		//	AttrType: subtype [not required!  void* has no AttrType]
		//	AttrAddrClass: address class [ignored]
		t := new(PtrType)
A
Alessandro Arzilli 已提交
731
		t.Name, _ = e.Val(AttrName).(string)
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
		t.ReflectKind = getKind(e)
		typ = t
		typeCache[off] = t
		if e.Val(AttrType) == nil {
			t.Type = &VoidType{}
			break
		}
		t.Type = typeOf(e, AttrType)

	case TagSubroutineType:
		// Subroutine type.  (DWARF v2 §5.7)
		// Attributes:
		//	AttrType: type of return value if any
		//	AttrName: possible name of type [ignored]
		//	AttrPrototyped: whether used ANSI C prototype [ignored]
		// Children:
		//	TagFormalParameter: typed parameter
		//		AttrType: type of parameter
		//	TagUnspecifiedParameter: final ...
		t := new(FuncType)
752
		t.Name, _ = e.Val(AttrName).(string)
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
		t.ReflectKind = getKind(e)
		typ = t
		typeCache[off] = t
		if t.ReturnType = typeOf(e, AttrType); err != nil {
			goto Error
		}
		t.ParamType = make([]Type, 0, 8)
		for kid := next(); kid != nil; kid = next() {
			var tkid Type
			switch kid.Tag {
			default:
				continue
			case TagFormalParameter:
				if tkid = typeOf(kid, AttrType); err != nil {
					goto Error
				}
			case TagUnspecifiedParameters:
				tkid = &DotDotDotType{}
			}
			t.ParamType = append(t.ParamType, tkid)
		}

	case TagTypedef:
		// Typedef (DWARF v2 §5.3)
		// Also maps and channels (Go-specific).
		// Attributes:
		//	AttrName: name [required]
		//	AttrType: type definition [required]
		//	AttrGoKey: present for maps.
		//	AttrGoElem: present for maps and channels.
		t := new(TypedefType)
		t.ReflectKind = getKind(e)
		switch t.ReflectKind {
		case reflect.Map:
			m := new(MapType)
			m.KeyType = typeOf(e, AttrGoKey)
			m.ElemType = typeOf(e, AttrGoElem)
			t = &m.TypedefType
			typ = m
		case reflect.Chan:
			c := new(ChanType)
			c.ElemType = typeOf(e, AttrGoElem)
			t = &c.TypedefType
			typ = c
		case reflect.Interface:
			it := new(InterfaceType)
			t = &it.TypedefType
			typ = it
		default:
			typ = t
		}
		typeCache[off] = typ
		t.Name, _ = e.Val(AttrName).(string)
		t.Type = typeOf(e, AttrType)

	case TagUnspecifiedType:
		// Unspecified type (DWARF v3 §5.2)
		// Attributes:
		//      AttrName: name
		t := new(UnspecifiedType)
		typ = t
		typeCache[off] = t
		t.Name, _ = e.Val(AttrName).(string)
	}

	if err != nil {
		goto Error
	}

	typ.Common().Offset = off

	{
		b, ok := e.Val(AttrByteSize).(int64)
		if !ok {
			b = -1
			switch t := typ.(type) {
			case *TypedefType:
				b = t.Type.Size()
			case *MapType:
				b = t.Type.Size()
			case *ChanType:
				b = t.Type.Size()
			case *InterfaceType:
				b = t.Type.Size()
			case *PtrType:
				b = int64(addressSize)
			}
		}
		typ.Common().ByteSize = b
	}
	return typ, nil

Error:
	// If the parse fails, take the type out of the cache
	// so that the next call with this offset doesn't hit
	// the cache and return success.
	delete(typeCache, off)
	return nil, err
}

func zeroArray(t Type) {
	for {
		at, ok := t.(*ArrayType)
		if !ok {
			break
		}
		at.Count = 0
		t = at.Type
	}
}