提交 24f57726 编写于 作者: U Unknown 提交者: liutuo

add space to depth and pass test and benchmark

add test and benchmark to depth_to_space.
add space_to_depth ops
add test and benchmark to space_to_depth and pass the test and bm
上级 2b68e7e9
......@@ -83,6 +83,7 @@ extern void Register_Pooling(OperatorRegistry *op_registry);
extern void Register_ResizeBilinear(OperatorRegistry *op_registry);
extern void Register_Softmax(OperatorRegistry *op_registry);
extern void Register_SpaceToBatchND(OperatorRegistry *op_registry);
extern void Register_SpaceToDepth(OperatorRegistry *op_registry);
extern void Register_MatMul(OperatorRegistry *op_registry);
extern void Register_WinogradTransform(OperatorRegistry *op_registry);
extern void Register_WinogradInverseTransform(OperatorRegistry *op_registry);
......@@ -113,6 +114,7 @@ OperatorRegistry::OperatorRegistry() {
ops::Register_ResizeBilinear(this);
ops::Register_Softmax(this);
ops::Register_SpaceToBatchND(this);
ops::Register_SpaceToDepth(this);
ops::Register_MatMul(this);
ops::Register_WinogradTransform(this);
ops::Register_WinogradInverseTransform(this);
......
......@@ -23,16 +23,7 @@ struct DepthToSpaceOpFunctor {
const int input_width = input->dim(2);
const int input_depth = input->dim(3);
std::cout << "input shape: {" << batch_size <<", ";
std::cout << input_height << ", ";
std::cout << input_width << ", ";
std::cout << input_depth << ", ";
std::cout << "block size= " << block_size_<<std::endl;
const int block_size_sq = block_size_ * block_size_;
const index_t output_depth = input_depth / block_size_sq;
const index_t output_depth = input_depth / (block_size_ * block_size_);
const index_t output_width = input_width * block_size_;
const index_t output_height = input_height * block_size_;
output_shape[0] = batch_size;
......@@ -40,15 +31,10 @@ struct DepthToSpaceOpFunctor {
output_shape[2] = output_width;
output_shape[3] = output_depth;
std::cout << "output shape: {" << batch_size <<", ";
std::cout << output_height << ", ";
std::cout << output_width << ", ";
std::cout << output_depth << ", "<<std::endl;
output->Resize(output_shape);
// Tensor::MappingGuard logits_guard(input);
// Tensor::MappingGuard output_guard(output);
Tensor::MappingGuard logits_guard(input);
Tensor::MappingGuard output_guard(output);
const T *input_ptr = input->data<T>();
T *output_ptr = output->mutable_data<T>();
......@@ -74,12 +60,7 @@ struct DepthToSpaceOpFunctor {
}
const int block_size_;
};
/*
template <>
void DepthToSpaceOpFunctor<DeviceType::NEON, float>::operator()(const Tensor *input,
Tensor *output,
StatsFuture *future);
*/
template <typename T>
struct DepthToSpaceOpFunctor<DeviceType::OPENCL, T> {
......
#include <common.h>
__kernel void depth_to-space(__read_only image2d_t input,
__kernel void depth_to_space(__read_only image2d_t input,
__private const int block_size,
__private const int batch_size,
__private const int input_height,
__private const int input_width,
__private const int input_depth,
__private const int output_height,
__private const int output_width,
__private const int output_depth,
__write_only image2d_t output) {
const int ch_blk = get_global_id(0);
const int w = get_global_id(1);
const int hb = get_global_id(2);
const int width = get_global_size(1);
const int out_idx = mad24(ch_blk, width, w);
const int out_d = get_global_id(0);
const int out_w = get_global_id(1);
const int out_h = get_global_id(2);
const int output_width = get_global_size(1);
const int d = out_idx % output_depth;
const int out_idx2 = out_idx / output_depth;
const int w = out_idx2 % output_width
const int out_pos = mad24(out_d, output_width, out_w);
for (short g_blk = 0; g_blk < group_blks; ++g_blk) {
// fetch 4 groups, for each group fetch 4 channels
in_chan_data0 = READ_IMAGET(input, SAMPLER, (int2)(in_x, hb_idx));
in_x += channels_per_group_blks_width;
in_chan_data1 = READ_IMAGET(input, SAMPLER, (int2)(in_x, hb_idx));
in_x += channels_per_group_blks_width;
in_chan_data2 = READ_IMAGET(input, SAMPLER, (int2)(in_x, hb_idx));
in_x += channels_per_group_blks_width;
in_chan_data3 = READ_IMAGET(input, SAMPLER, (int2)(in_x, hb_idx));
in_x += channels_per_group_blks_width;
out_chan_data0 = (DATA_TYPE4)(in_chan_data0.x, in_chan_data1.x, in_chan_data2.x, in_chan_data3.x);
out_chan_data1 = (DATA_TYPE4)(in_chan_data0.y, in_chan_data1.y, in_chan_data2.y, in_chan_data3.y);
out_chan_data2 = (DATA_TYPE4)(in_chan_data0.z, in_chan_data1.z, in_chan_data2.z, in_chan_data3.z);
out_chan_data3 = (DATA_TYPE4)(in_chan_data0.w, in_chan_data1.w, in_chan_data2.w, in_chan_data3.w);
int out_x = mad24(mad24(group_chan_blk_idx, groups, g_blk), width, width_idx);
WRITE_IMAGET(output, (int2)(out_x, hb_idx), out_chan_data0);
out_x += groups_blks_width;
WRITE_IMAGET(output, (int2)(out_x, hb_idx), out_chan_data1);
out_x += groups_blks_width;
WRITE_IMAGET(output, (int2)(out_x, hb_idx), out_chan_data2);
out_x += groups_blks_width;
WRITE_IMAGET(output, (int2)(out_x, hb_idx), out_chan_data3);
}
const int input_width = output_width / block_size;
const int in_h = out_h / block_size;
const int offset_h = out_h % block_size;
const int in_w = out_w / block_size;
const int offset_w = out_w % block_size;
const int offset_d = (offset_h * block_size + offset_w) * output_depth;
const int in_d = out_d + offset_d;
const int in_pos = mad24(in_d, input_width, in_w);
DATA_TYPE4 in_data = READ_IMAGET(input, SAMPLER, (int2)(in_pos, in_h));
WRITE_IMAGET(output, (int2)(out_pos, out_h), in_data);
}
#include <common.h>
__kernel void space_to_depth(__read_only image2d_t input,
__private const int block_size,
__private const int input_depth,
__write_only image2d_t output) {
const int d = get_global_id(0);
const int w = get_global_id(1);
const int h = get_global_id(2);
const int input_width = get_global_size(1);
const int in_pos = mad24(d, input_width, w);
const int output_width = input_width / block_size;
const int out_h = h / block_size;
const int offset_h = h % block_size;
const int out_w = w / block_size;
const int offset_w = w % block_size;
const int offset_d = (offset_h * block_size + offset_w) * input_depth;
const int out_d = d + offset_d;
const int out_pos = mad24(out_d, output_width, out_w);
DATA_TYPE4 in_data = READ_IMAGET(input, SAMPLER, (int2)(in_pos, h));
WRITE_IMAGET(output, (int2)(out_pos, out_h), in_data);
}
//
// Copyright (c) 2018 XiaoMi All rights reserved.
//
#include "mace/kernels/depth_to_space.h"
#include "mace/core/runtime/opencl/cl2_header.h"
#include "mace/core/runtime/opencl/opencl_runtime.h"
#include "mace/kernels/opencl/helper.h"
#include "mace/utils/utils.h"
#include "mace/utils/tuner.h"
namespace mace {
namespace kernels {
template <typename T>
void DepthToSpaceOpFunctor<DeviceType::OPENCL, T>::operator()(
const Tensor *input,
Tensor *output,
StatsFuture *future) {
const index_t batch = input->dim(0);
const index_t input_h = input->dim(1);
const index_t input_w = input->dim(2);
const index_t input_d = input->dim(3);
const index_t output_h = input_h * block_size_;
const index_t output_w = input_w * block_size_;
const index_t output_d = input_d / (block_size_ * block_size_);
std::vector<index_t> output_shape = {batch, output_h, output_w, output_d};
std::vector<size_t> image_shape;
CalImage2DShape(output_shape, BufferType::IN_OUT_CHANNEL, &image_shape);
output->ResizeImage(output_shape, image_shape);
const int output_depth_blocks = RoundUpDiv4(output_d);
if (kernel_.get() == nullptr) {
auto runtime = OpenCLRuntime::Global();
std::set<std::string> built_options;
std::string kernel_name = MACE_OBFUSCATE_SYMBOL("depth_to_space");
built_options.emplace("-Ddepth_to_space=" + kernel_name);
auto dt = DataTypeToEnum<T>::value;
built_options.emplace("-DDATA_TYPE=" + DtToUpstreamCLDt(dt));
built_options.emplace("-DCMD_DATA_TYPE=" + DtToUpstreamCLCMDDt(dt));
kernel_ = runtime->BuildKernel("depth_to_space", kernel_name,
built_options);
}
if (!IsVecEqual(input_shape_, input->shape())) {
uint32_t idx = 0;
kernel_.setArg(idx++, *(input->opencl_image()));
kernel_.setArg(idx++, block_size_);
kernel_.setArg(idx++, output_depth_blocks);
kernel_.setArg(idx++, *(output->opencl_image()));
input_shape_ = input->shape();
}
const uint32_t gws[3] = {static_cast<uint32_t>(output_depth_blocks),
static_cast<uint32_t>(output_w),
static_cast<uint32_t>(output_h * batch)};
const std::vector<uint32_t> lws = {8, 16, 8, 1};
std::stringstream ss;
ss << "depth_to_space_opencl_kernel_"
<< output->dim(0) << "_"
<< output->dim(1) << "_"
<< output->dim(2) << "_"
<< output->dim(3);
TuningOrRun3DKernel(kernel_, ss.str(), gws, lws, future);
}
template
struct DepthToSpaceOpFunctor<DeviceType::OPENCL, float>;
template
struct DepthToSpaceOpFunctor<DeviceType::OPENCL, half>;
} // namespace kernels
} // namespace mace
//
// Copyright (c) 2018 XiaoMi All rights reserved.
//
#include "mace/kernels/space_to_depth.h"
#include "mace/core/runtime/opencl/cl2_header.h"
#include "mace/core/runtime/opencl/opencl_runtime.h"
#include "mace/kernels/opencl/helper.h"
#include "mace/utils/utils.h"
#include "mace/utils/tuner.h"
namespace mace {
namespace kernels {
template <typename T>
void SpaceToDepthOpFunctor<DeviceType::OPENCL, T>::operator()(
const Tensor *input,
Tensor *output,
StatsFuture *future) {
const index_t batch_size = input->dim(0);
const index_t input_height = input->dim(1);
const index_t input_width = input->dim(2);
const index_t input_depth = input->dim(3);
const index_t output_height = input_height / block_size_;
const index_t output_width = input_width / block_size_;
const index_t output_depth = input_depth * block_size_ * block_size_;
std::vector<index_t> output_shape = {batch_size, output_height, output_width, output_depth};
std::vector<size_t> image_shape;
CalImage2DShape(output_shape, BufferType::IN_OUT_CHANNEL, &image_shape);
output->ResizeImage(output_shape, image_shape);
const int input_depth_blocks = RoundUpDiv4(input_depth);
if (kernel_.get() == nullptr) {
auto runtime = OpenCLRuntime::Global();
std::set<std::string> built_options;
std::string kernel_name = MACE_OBFUSCATE_SYMBOL("space_to_depth");
built_options.emplace("-Dspace_to_depth=" + kernel_name);
auto dt = DataTypeToEnum<T>::value;
built_options.emplace("-DDATA_TYPE=" + DtToUpstreamCLDt(dt));
built_options.emplace("-DCMD_DATA_TYPE=" + DtToUpstreamCLCMDDt(dt));
kernel_ = runtime->BuildKernel("space_to_depth", kernel_name,
built_options);
}
if (!IsVecEqual(input_shape_, input->shape())) {
uint32_t idx = 0;
kernel_.setArg(idx++, *(input->opencl_image()));
kernel_.setArg(idx++, block_size_);
kernel_.setArg(idx++, input_depth_blocks);
kernel_.setArg(idx++, *(output->opencl_image()));
input_shape_ = input->shape();
}
const uint32_t gws[3] = {static_cast<uint32_t>(input_depth_blocks),
static_cast<uint32_t>(input_width),
static_cast<uint32_t>(input_height * batch_size)};
const std::vector<uint32_t> lws = {8, 16, 8, 1};
std::stringstream ss;
ss << "space_to_depth_opencl_kernel_"
<< input->dim(0) << "_"
<< input->dim(1) << "_"
<< input->dim(2) << "_"
<< input->dim(3);
TuningOrRun3DKernel(kernel_, ss.str(), gws, lws, future);
}
template
struct SpaceToDepthOpFunctor<DeviceType::OPENCL, float>;
template
struct SpaceToDepthOpFunctor<DeviceType::OPENCL, half>;
} // namespace kernels
} // namespace mace
//
// Created by liutuo on 18-3-20.
//
#ifndef MACE_KERNELS_SPACE_TO_DEPTH_H
#define MACE_KERNELS_SPACE_TO_DEPTH_H
#include "mace/core/future.h"
#include "mace/core/tensor.h"
namespace mace {
namespace kernels {
template <DeviceType D, typename T>
struct SpaceToDepthOpFunctor {
explicit SpaceToDepthOpFunctor(const int block_size) : block_size_(block_size) {}
void operator()(const Tensor *input,
Tensor *output,
StatsFuture *future) {
const int batch_size = input->dim(0);
const int input_height = input->dim(1);
const int input_width = input->dim(2);
const int input_depth = input->dim(3);
const index_t output_depth = input_depth * block_size_ * block_size_;
const index_t output_width = input_width / block_size_;
const index_t output_height = input_height / block_size_;
std::vector<index_t> output_shape = {batch_size, output_height, output_width, output_depth};
output->Resize(output_shape);
Tensor::MappingGuard logits_guard(input);
Tensor::MappingGuard output_guard(output);
const T *input_ptr = input->data<T>();
T *output_ptr = output->mutable_data<T>();
#pragma omp parallel for
for (int b = 0; b < batch_size; ++b) {
for (int h = 0; h < input_height; ++h) {
const int out_h = h / block_size_;
const int offset_h = (h % block_size_);
for (int w = 0; w < input_width; ++w) {
const int out_w = w/ block_size_;
const int offset_w = (w % block_size_);
const int offset_d = (offset_h * block_size_ + offset_w) * input_depth;
for (int d = 0; d < input_depth; ++d) {
const int out_d = d + offset_d;
const int o_index = ((b * output_height + out_h) * output_width + out_w) * output_depth + out_d;
const int i_index = ((b * input_height + h) * input_width + w) * input_depth + d;
output_ptr[o_index] = input_ptr[i_index];
}
}
}
}
}
const int block_size_;
};
template <typename T>
struct SpaceToDepthOpFunctor<DeviceType::OPENCL, T> {
SpaceToDepthOpFunctor(const int block_size) : block_size_(block_size) {}
void operator()(const Tensor *input, Tensor *output, StatsFuture *future);
cl::Kernel kernel_;
const int block_size_;
std::vector<index_t> input_shape_;
};
} // namespace kernels
} // namespace mace
#endif //MACE_KERNELS_SPACE_TO_DEPTH_H
......@@ -13,7 +13,7 @@ void Register_DepthToSpace(OperatorRegistry *op_registry) {
.TypeConstraint<float>("T")
.Build(),
DepthToSpaceOp<DeviceType::CPU, float>);
/*
REGISTER_OPERATOR(op_registry, OpKeyBuilder("DepthToSpace")
.Device(DeviceType::OPENCL)
.TypeConstraint<float>("T")
......@@ -25,7 +25,7 @@ void Register_DepthToSpace(OperatorRegistry *op_registry) {
.TypeConstraint<half>("T")
.Build(),
DepthToSpaceOp<DeviceType::OPENCL, half>);
*/
}
} // namespace ops
......
......@@ -32,11 +32,9 @@ class DepthToSpaceOp : public Operator<D, T> {
MACE_CHECK(input_depth % (block_size * block_size) == 0,
"input depth should be dividable by block_size * block_size",
input->dim(3));
std::cout << "arg block_size: " << block_size << std::endl;
functor_(input, output, future);
return true;
}
protected:
OP_INPUT_TAGS(INPUT);
......
......@@ -65,9 +65,9 @@ static void DepthToSpace(
BM_DEPTH_TO_SPACE_MACRO(N, C, H, W, G, float, OPENCL); \
BM_DEPTH_TO_SPACE_MACRO(N, C, H, W, G, half, OPENCL);
BM_DEPTH_TO_SPACE(1, 64, 64, 64, 8);
BM_DEPTH_TO_SPACE(1, 64, 128, 128, 8);
BM_DEPTH_TO_SPACE(1, 64, 256, 256, 8);
BM_DEPTH_TO_SPACE(1, 64, 64, 64, 4);
BM_DEPTH_TO_SPACE(1, 64, 128, 128, 4);
BM_DEPTH_TO_SPACE(1, 64, 256, 256, 4);
} // namespace test
} // namespace ops
......
......@@ -22,15 +22,18 @@ TEST_F(DepthToSpaceOpTest, C8G4_CPU) {
// Add input data
net.AddInputFromArray<DeviceType::CPU, float>(
"Input", {1, 2, 2, 4},
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
"Input", {1, 1, 2, 16},
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31});
// Run
net.RunOp();
// Check
auto expected = CreateTensor<float>(
{1, 4, 4, 1}, {1, 2, 5, 6, 3, 4, 7, 8, 9, 10, 13, 14, 11, 12, 15, 16});
{1, 2, 4, 4},
{0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23,
8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31});
ExpectTensorNear<float>(*expected, *net.GetOutput("Output"), 0.001);
}
......@@ -50,7 +53,7 @@ TEST_F(DepthToSpaceOpTest, C16G4_OPENCL) {
OpDefBuilder("DepthToSpace", "DepthToSpaceTest")
.Input("InputImage")
.Output("OutputImage")
.AddIntArg("block_size", 1)
.AddIntArg("block_size", 2)
.Finalize(net.NewOperatorDef());
// Run
......@@ -62,9 +65,9 @@ TEST_F(DepthToSpaceOpTest, C16G4_OPENCL) {
// Check
auto expected = CreateTensor<float>(
{1, 1, 2, 16},
{0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15,
16, 20, 24, 28, 17, 21, 25, 29, 18, 22, 26, 30, 19, 23, 27, 31});
{1, 2, 4, 4},
{0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23,
8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31});
ExpectTensorNear<float>(*expected, *net.GetOutput("Output"), 0.001);
}
......
//
// Copyright (c) 2017 XiaoMi All rights reserved.
//
#include "mace/ops/space_to_depth.h"
namespace mace {
namespace ops {
void Register_SpaceToDepth(OperatorRegistry *op_registry) {
REGISTER_OPERATOR(op_registry, OpKeyBuilder("SpaceToDepth")
.Device(DeviceType::CPU)
.TypeConstraint<float>("T")
.Build(),
SpaceToDepthOp<DeviceType::CPU, float>);
REGISTER_OPERATOR(op_registry, OpKeyBuilder("SpaceToDepth")
.Device(DeviceType::OPENCL)
.TypeConstraint<float>("T")
.Build(),
SpaceToDepthOp<DeviceType::OPENCL, float>);
REGISTER_OPERATOR(op_registry, OpKeyBuilder("SpaceToDepth")
.Device(DeviceType::OPENCL)
.TypeConstraint<half>("T")
.Build(),
SpaceToDepthOp<DeviceType::OPENCL, half>);
}
} // namespace ops
} // namespace mace
//
// Copyright (c) 2017 XiaoMi All rights reserved.
//
#ifndef MACE_OPS_SPACE_TO_DEPTH_H_
#define MACE_OPS_SPACE_TO_DEPTH_H_
#include <memory>
#include <vector>
#include "mace/core/operator.h"
#include "mace/kernels/space_to_depth.h"
namespace mace {
namespace ops {
template <DeviceType D, typename T>
class SpaceToDepthOp : public Operator<D, T> {
public:
SpaceToDepthOp(const OperatorDef &op_def, Workspace *ws)
: Operator<D, T>(op_def, ws),
functor_(OperatorBase::GetSingleArgument<int>("block_size", 1)) {}
bool Run(StatsFuture *future) override {
const Tensor *input = this->Input(INPUT);
Tensor *output = this->Output(OUTPUT);
MACE_CHECK(input->dim_size() == 4, "input dim should be 4");
const int block_size = OperatorBase::GetSingleArgument<int>("block_size", 1);
const int input_height = input->dim(1);
const int input_width = input->dim(2);
const int input_depth = input->dim(3);
MACE_CHECK((input_width % block_size == 0) && (input_height % block_size == 0),
"input width and height should be dividable by block_size",
input->dim(3));
functor_(input, output, future);
return true;
}
protected:
OP_INPUT_TAGS(INPUT);
OP_OUTPUT_TAGS(OUTPUT);
private:
kernels::SpaceToDepthOpFunctor<D, T> functor_;
};
} // namespace ops
} // namespace mace
#endif // MACE_OPS_SPACE_TO_DEPTH_H_
//
// Copyright (c) 2017 XiaoMi All rights reserved.
//
#include "mace/core/operator.h"
#include "mace/core/testing/test_benchmark.h"
#include "mace/ops/ops_test_util.h"
namespace mace {
namespace ops {
namespace test {
template <DeviceType D, typename T>
static void SpaceToDepth(
int iters, int batch, int channels, int height, int width, int block_size) {
mace::testing::StopTiming();
OpsTestNet net;
// Add input data
net.AddRandomInput<D, float>("Input", {batch, height, width, channels});
if (D == DeviceType::OPENCL) {
BufferToImage<D, float>(&net, "Input", "InputImage",
kernels::BufferType::IN_OUT_CHANNEL);
OpDefBuilder("SpaceToDepth", "SpaceToDepthBM")
.Input("InputImage")
.Output("Output")
.AddIntArg("block_size", block_size)
.Finalize(net.NewOperatorDef());
} else {
OpDefBuilder("SpaceToDepth", "SpaceToDepthBM")
.Input("Input")
.Output("Output")
.Finalize(net.NewOperatorDef());
}
// Warm-up
for (int i = 0; i < 5; ++i) {
net.RunOp(D);
}
net.Sync();
mace::testing::StartTiming();
while (iters--) {
net.RunOp(D);
}
net.Sync();
}
#define BM_SPACE_TO_DEPTH_MACRO(N, C, H, W, G, TYPE, DEVICE) \
static void \
BM_SPACE_TO_DEPTH_##N##_##C##_##H##_##W##_##G##_##TYPE##_##DEVICE( \
int iters) { \
const int64_t tot = static_cast<int64_t>(iters) * N * C * H * W; \
mace::testing::MaccProcessed(tot); \
mace::testing::BytesProcessed(tot *(sizeof(TYPE))); \
SpaceToDepth<DEVICE, TYPE>(iters, N, C, H, W, G); \
} \
BENCHMARK(BM_SPACE_TO_DEPTH_##N##_##C##_##H##_##W##_##G##_##TYPE##_##DEVICE)
#define BM_SPACE_TO_DEPTH(N, C, H, W, G) \
BM_SPACE_TO_DEPTH_MACRO(N, C, H, W, G, float, CPU); \
BM_SPACE_TO_DEPTH_MACRO(N, C, H, W, G, float, OPENCL); \
BM_SPACE_TO_DEPTH_MACRO(N, C, H, W, G, half, OPENCL);
BM_SPACE_TO_DEPTH(1, 64, 64, 64, 4);
BM_SPACE_TO_DEPTH(1, 64, 128, 128, 4);
BM_SPACE_TO_DEPTH(1, 64, 256, 256, 4);
} // namespace test
} // namespace ops
} // namespace mace
//
// Copyright (c) 2017 XiaoMi All rights reserved.
//
#include "mace/core/operator.h"
#include "mace/ops/ops_test_util.h"
namespace mace {
namespace ops {
namespace test {
class SpaceToDepthOpTest : public OpsTestBase {};
TEST_F(SpaceToDepthOpTest, C8G4_CPU) {
// Construct graph
OpsTestNet net;
OpDefBuilder("SpaceToDepth", "SpaceToDepthTest")
.Input("Input")
.Output("Output")
.AddIntArg("block_size", 2)
.Finalize(net.NewOperatorDef());
// Add input data
net.AddInputFromArray<DeviceType::CPU, float>(
"Input", {1, 2, 4, 4},
{0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23,
8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31});
// Run
net.RunOp();
// Check
auto expected = CreateTensor<float>(
{1, 1, 2, 16},
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31});
ExpectTensorNear<float>(*expected, *net.GetOutput("Output"), 0.001);
}
TEST_F(SpaceToDepthOpTest, C16G4_OPENCL) {
// Construct graph
OpsTestNet net;
// Add input data
net.AddInputFromArray<DeviceType::OPENCL, float>(
"Input", {1, 2, 4, 4},
{0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23,
8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31});
BufferToImage<DeviceType::OPENCL, float>(&net, "Input", "InputImage",
kernels::BufferType::IN_OUT_CHANNEL);
OpDefBuilder("SpaceToDepth", "SpaceToDepthTest")
.Input("InputImage")
.Output("OutputImage")
.AddIntArg("block_size", 2)
.Finalize(net.NewOperatorDef());
// Run
net.RunOp(DeviceType::OPENCL);
// Transfer output
ImageToBuffer<DeviceType::OPENCL, float>(&net, "OutputImage", "Output",
kernels::BufferType::IN_OUT_CHANNEL);
// Check
auto expected = CreateTensor<float>(
{1, 1, 2, 16},
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31});
ExpectTensorNear<float>(*expected, *net.GetOutput("Output"), 0.001);
}
} // namespace test
} // namespace ops
} // namespace mace
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册