提交 154472d8 编写于 作者: L Liangliang He

Merge branch 'support_super_resolution' into 'master'

Support super resolution & fix d2s opencl bugs

See merge request !334
......@@ -73,6 +73,7 @@ extern void Register_BufferToImage(OperatorRegistry *op_registry);
extern void Register_ChannelShuffle(OperatorRegistry *op_registry);
extern void Register_Concat(OperatorRegistry *op_registry);
extern void Register_Conv2D(OperatorRegistry *op_registry);
extern void Register_CWise(OperatorRegistry *op_registry);
extern void Register_DepthToSpace(OperatorRegistry *op_registry);
extern void Register_DepthwiseConv2d(OperatorRegistry *op_registry);
extern void Register_Eltwise(OperatorRegistry *op_registry);
......@@ -109,6 +110,7 @@ OperatorRegistry::OperatorRegistry() {
ops::Register_ChannelShuffle(this);
ops::Register_Concat(this);
ops::Register_Conv2D(this);
ops::Register_CWise(this);
ops::Register_DepthToSpace(this);
ops::Register_DepthwiseConv2d(this);
ops::Register_Eltwise(this);
......
//
// Copyright (c) 2017 XiaoMi All rights reserved.
//
#ifndef MACE_KERNELS_CWISE_H_
#define MACE_KERNELS_CWISE_H_
#include <algorithm>
#include <vector>
#include "mace/core/future.h"
#include "mace/core/runtime/opencl/cl2_header.h"
#include "mace/core/tensor.h"
namespace mace {
namespace kernels {
enum CWiseType {
MUL = 0,
ADD = 1,
MAX = 2,
MIN = 3,
SUB = 4,
DIV = 5,
NEG = 6,
ABS = 7,
};
struct CWiseFunctorBase {
CWiseFunctorBase(const CWiseType type, const float coeff)
: type_(type), coeff_(coeff) {}
CWiseType type_;
float coeff_;
};
template <DeviceType D, typename T>
struct CWiseFunctor : CWiseFunctorBase {
CWiseFunctor(const CWiseType type, const float coeff)
: CWiseFunctorBase(type, coeff) {}
void operator()(const Tensor *input,
Tensor *output,
StatsFuture *future) {
Tensor::MappingGuard input_guard(input);
Tensor::MappingGuard output_guard(output);
const T *input_ptr = input->data<T>();
T *output_ptr = output->mutable_data<T>();
const index_t size = input->size();
switch (type_) {
case MUL:
#pragma omp parallel for
for (index_t i = 0; i < size; ++i) {
output_ptr[i] = coeff_ * input_ptr[i];
}
break;
case ADD:
#pragma omp parallel for
for (index_t i = 0; i < size; ++i) {
output_ptr[i] = coeff_ + input_ptr[i];
}
break;
case MAX:
#pragma omp parallel for
for (index_t i = 0; i < size; ++i) {
output_ptr[i] = std::max<T>(input_ptr[i], coeff_);
}
break;
case MIN:
#pragma omp parallel for
for (index_t i = 0; i < size; ++i) {
output_ptr[i] = std::min<T>(input_ptr[i], coeff_);
}
break;
case SUB:
#pragma omp parallel for
for (index_t i = 0; i < size; ++i) {
output_ptr[i] = input_ptr[i] - coeff_;
}
break;
case DIV:
#pragma omp parallel for
for (index_t i = 0; i < size; ++i) {
output_ptr[i] = input_ptr[i] / coeff_;
}
break;
case NEG:
#pragma omp parallel for
for (index_t i = 0; i < size; ++i) {
output_ptr[i] = 0 - input_ptr[i];
}
break;
case ABS:
#pragma omp parallel for
for (index_t i = 0; i < size; ++i) {
T val = input_ptr[i];
output_ptr[i] = (val > 0)? val : 0 - val;
}
break;
default:
LOG(FATAL) << "CWise op not support type " << type_;
}
}
};
template <typename T>
struct CWiseFunctor<DeviceType::OPENCL, T> : CWiseFunctorBase {
CWiseFunctor(const CWiseType type, const float coeff)
: CWiseFunctorBase(type, coeff) {}
void operator()(const Tensor *input,
Tensor *output,
StatsFuture *future);
cl::Kernel kernel_;
std::vector<index_t> input_shape_;
};
} // namespace kernels
} // namespace mace
#endif // MACE_KERNELS_CWISE_H_
......@@ -19,6 +19,7 @@ enum EltwiseType {
SUM = 1,
MAX = 2,
MIN = 3,
SUB = 4,
};
struct EltwiseFunctorBase {
......@@ -80,6 +81,12 @@ struct EltwiseFunctor : EltwiseFunctorBase {
output_ptr[i] = std::min<T>(input0_ptr[i], input1_ptr[i]);
}
break;
case SUB:
#pragma omp parallel for
for (index_t i = 0; i < size; ++i) {
output_ptr[i] = input0_ptr[i] - input1_ptr[i];
}
break;
default:
LOG(FATAL) << "Eltwise op not support type " << type_;
}
......
#include <common.h>
__kernel void cwise(__read_only image2d_t input, /* [c%4 * w * c/4, h * b] */
__private const float value,
__write_only image2d_t output) {
const int w = get_global_id(0);
const int hb = get_global_id(1);
DATA_TYPE4 in0 = READ_IMAGET(input, SAMPLER, (int2)(w, hb));
DATA_TYPE4 in1 = (DATA_TYPE4){value, value, value, value};
DATA_TYPE4 out;
#if CWISE_TYPE == 0
out = in0 * in1;
#elif CWISE_TYPE == 1
out = in0 + in1;
#elif CWISE_TYPE == 2
out.x = fmax(in0.x, value);
out.y = fmax(in0.y, value);
out.z = fmax(in0.z, value);
out.z = fmax(in0.w, value);
#elif CWISE_TYPE == 3
out.x = fmin(in0.x, value);
out.y = fmin(in0.y, value);
out.z = fmin(in0.z, value);
out.z = fmin(in0.w, value);
#elif CWISE_TYPE == 4
out = in0 - in1;
#elif CWISE_TYPE == 5
out = in0 / in1;
#elif CWISE_TYPE == 6
in1 = (DATA_TYPE4)(0, 0, 0, 0);
out = in1 - in0;
#elif CWISE_TYPE == 7
out.x = fabs(in0.x);
out.y = fabs(in0.y);
out.z = fabs(in0.z);
out.w = fabs(in0.w);
#endif
WRITE_IMAGET(output, (int2)(w, hb), out);
}
......@@ -4,36 +4,33 @@ __kernel void depth_to_space(
UNIFORM_WORK_GROUP_SIZE_PARAMS_IN_DIM_3
__read_only image2d_t input,
__private const int block_size,
__private const int output_depth,
__private const int input_height,
__private const int input_width,
__private const int input_depth_blocks,
__private const int output_height,
__private const int output_width,
__private const int output_depth_blocks,
__write_only image2d_t output) {
const int out_d = get_global_id(0);
const int out_w = get_global_id(1);
const int out_h = get_global_id(2);
#ifndef NON_UNIFORM_WORK_GROUP
if (out_d >= global_size_dim0 || out_w >= global_size_dim1
|| out_h >= global_size_dim2) {
if (out_d >= output_depth_blocks || out_h >= output_height || out_w >= output_width)
return;
}
const int output_width = global_size_dim1;
#else
const int output_width = get_global_size(1);
#endif
const int out_pos = mad24(out_d, output_width, out_w);
const int input_width = output_width / block_size;
const int in_h = out_h / block_size;
const int offset_h = out_h % block_size;
const int in_w = out_w / block_size;
const int offset_w = out_w % block_size;
const int offset_d = (offset_h * block_size + offset_w) * output_depth;
const int offset_d = (offset_h * block_size + offset_w) * output_depth_blocks;
const int in_d = out_d + offset_d;
const int in_pos = mad24(in_d, input_width, in_w);
if (in_h >= input_height || in_w >= input_width || in_d >= input_depth_blocks)
return;
const int in_pos = mad24(in_d, input_width, in_w);
DATA_TYPE4 in_data = READ_IMAGET(input, SAMPLER, (int2)(in_pos, in_h));
WRITE_IMAGET(output, (int2)(out_pos, out_h), in_data);
}
......@@ -42,35 +39,34 @@ __kernel void space_to_depth(
UNIFORM_WORK_GROUP_SIZE_PARAMS_IN_DIM_3
__read_only image2d_t input,
__private const int block_size,
__private const int input_depth,
__private const int input_height,
__private const int input_width,
__private const int input_depth_blocks,
__private const int output_height,
__private const int output_width,
__private const int output_depth_blocks,
__write_only image2d_t output) {
const int d = get_global_id(0);
const int w = get_global_id(1);
const int h = get_global_id(2);
#ifndef NON_UNIFORM_WORK_GROUP
if (d >= global_size_dim0 || w >= global_size_dim1
|| h >= global_size_dim2) {
if (h >= input_height || w >= input_width || d >= input_depth_blocks)
return;
}
const int input_width = global_size_dim1;
#else
const int input_width = get_global_size(1);
#endif
const int in_pos = mad24(d, input_width, w);
const int output_width = input_width / block_size;
const int out_h = h / block_size;
const int offset_h = h % block_size;
const int out_w = w / block_size;
const int offset_w = w % block_size;
const int offset_d = (offset_h * block_size + offset_w) * input_depth;
const int offset_d = (offset_h * block_size + offset_w) * input_depth_blocks;
const int out_d = d + offset_d;
const int out_pos = mad24(out_d, output_width, out_w);
DATA_TYPE4 in_data = READ_IMAGET(input, SAMPLER, (int2)(in_pos, h));
if (out_d >= output_depth_blocks || out_h >= output_height || out_w >= output_width)
return;
const int out_pos = mad24(out_d, output_width, out_w);
DATA_TYPE4 in_data = READ_IMAGET(input, SAMPLER, (int2)(in_pos, h));
WRITE_IMAGET(output, (int2)(out_pos, out_h), in_data);
}
......@@ -33,8 +33,9 @@ __kernel void eltwise(
out = fmax(in0, in1);
#elif ELTWISE_TYPE == 3
out = fmin(in0, in1);
#elif ELTWISE_TYPE == 4
out = in0 - in1;
#endif
WRITE_IMAGET(output, (int2)(w, hb), out);
}
//
// Copyright (c) 2017 XiaoMi All rights reserved.
//
#include "mace/kernels/cwise.h"
#include "mace/core/runtime/opencl/opencl_runtime.h"
#include "mace/kernels/opencl/helper.h"
#include "mace/utils/tuner.h"
namespace mace {
namespace kernels {
template <typename T>
void CWiseFunctor<DeviceType::OPENCL, T>::operator()(const Tensor *input,
Tensor *output,
StatsFuture *future) {
const index_t batch = input->dim(0);
const index_t height = input->dim(1);
const index_t width = input->dim(2);
const index_t channels = input->dim(3);
const index_t channel_blocks = RoundUpDiv4(channels);
const index_t width_pixels = channel_blocks * width;
const index_t batch_height_pixels = batch * height;
if (kernel_.get() == nullptr) {
auto runtime = OpenCLRuntime::Global();
std::set<std::string> built_options;
auto dt = DataTypeToEnum<T>::value;
std::string kernel_name = MACE_OBFUSCATE_SYMBOL("cwise");
built_options.emplace("-Dcwise=" + kernel_name);
built_options.emplace("-DDATA_TYPE=" + DtToUpstreamCLDt(dt));
built_options.emplace("-DCMD_DATA_TYPE=" + DtToUpstreamCLCMDDt(dt));
built_options.emplace(MakeString("-DCWISE_TYPE=", type_));
kernel_ = runtime->BuildKernel("cwise", kernel_name, built_options);
}
if (!IsVecEqual(input_shape_, input->shape())) {
uint32_t idx = 0;
kernel_.setArg(idx++, *(input->opencl_image()));
kernel_.setArg(idx++, static_cast<float>(coeff_));
kernel_.setArg(idx++, *(output->opencl_image()));
input_shape_ = input->shape();
}
const uint32_t gws[2] = {static_cast<uint32_t>(width_pixels),
static_cast<uint32_t>(batch_height_pixels)};
const std::vector<uint32_t> lws = {64, 16, 1};
std::stringstream ss;
ss << "cwise_opencl_kernel_" << output->dim(0) << "_" << output->dim(1)
<< "_" << output->dim(2) << "_" << output->dim(3);
TuningOrRun2DKernel(kernel_, ss.str(), gws, lws, future);
}
template struct CWiseFunctor<DeviceType::OPENCL, float>;
template struct CWiseFunctor<DeviceType::OPENCL, half>;
} // namespace kernels
} // namespace mace
......@@ -20,7 +20,6 @@ void DepthToSpaceOpFunctor<DeviceType::OPENCL, T>::operator()(
const index_t input_width = input->dim(2);
const index_t input_depth = input->dim(3);
int depth_blocks = 1;
const char *kernel_name = nullptr;
index_t output_height, output_width, output_depth;
......@@ -28,15 +27,15 @@ void DepthToSpaceOpFunctor<DeviceType::OPENCL, T>::operator()(
output_height = input_height * block_size_;
output_width = input_width * block_size_;
output_depth = input_depth / (block_size_ * block_size_);
depth_blocks = RoundUpDiv4(output_depth);
kernel_name = "depth_to_space";
} else {
output_height = input_height / block_size_;
output_width = input_width / block_size_;
output_depth = input_depth * block_size_ * block_size_;
depth_blocks = RoundUpDiv4(input_depth);
kernel_name = "space_to_depth";
}
const index_t input_depth_blocks = RoundUpDiv4(input_depth);
const index_t output_depth_blocks = RoundUpDiv4(output_depth);
std::vector<index_t> output_shape = {batch, output_height, output_width,
output_depth};
......@@ -54,13 +53,14 @@ void DepthToSpaceOpFunctor<DeviceType::OPENCL, T>::operator()(
kernel_name_ss << "-D" << kernel_name << "=" << obfuscated_kernel_name;
built_options.emplace(kernel_name_ss.str());
auto dt = DataTypeToEnum<T>::value;
built_options.emplace("-DDATA_TYPE=" + DtToUpstreamCLDt(dt));
built_options.emplace("-DCMD_DATA_TYPE=" + DtToUpstreamCLCMDDt(dt));
built_options.emplace("-DDATA_TYPE=" + DtToCLDt(dt));
built_options.emplace("-DCMD_DATA_TYPE=" + DtToCLCMDDt(dt));
if (runtime->IsNonUniformWorkgroupsSupported()) {
built_options.emplace("-DNON_UNIFORM_WORK_GROUP");
}
kernel_ =
runtime->BuildKernel("depth_to_space", kernel_name, built_options);
runtime->BuildKernel("depth_to_space",
obfuscated_kernel_name, built_options);
kwg_size_ =
static_cast<uint32_t>(runtime->GetKernelMaxWorkGroupSize(kernel_));
......@@ -70,13 +70,13 @@ void DepthToSpaceOpFunctor<DeviceType::OPENCL, T>::operator()(
std::stringstream ss;
if (!IsVecEqual(input_shape_, input->shape())) {
if (d2s_) {
gws[0] = static_cast<uint32_t>(depth_blocks);
gws[0] = static_cast<uint32_t>(output_depth_blocks);
gws[1] = static_cast<uint32_t>(output_width);
gws[2] = static_cast<uint32_t>(output_height * batch);
ss << "depth_to_space_opencl_kernel_" << output->dim(0) << "_"
<< output->dim(1) << "_" << output->dim(2) << "_" << output->dim(3);
} else {
gws[0] = static_cast<uint32_t>(depth_blocks);
gws[0] = static_cast<uint32_t>(input_depth_blocks);
gws[1] = static_cast<uint32_t>(input_width);
gws[2] = static_cast<uint32_t>(input_height * batch);
ss << "space_to_depth_opencl_kernel_" << input->dim(0) << "_"
......@@ -90,8 +90,13 @@ void DepthToSpaceOpFunctor<DeviceType::OPENCL, T>::operator()(
kernel_.setArg(idx++, gws[2]);
}
kernel_.setArg(idx++, *(input->opencl_image()));
kernel_.setArg(idx++, block_size_);
kernel_.setArg(idx++, depth_blocks);
kernel_.setArg(idx++, static_cast<int32_t>(block_size_));
kernel_.setArg(idx++, static_cast<int32_t>(input_height));
kernel_.setArg(idx++, static_cast<int32_t>(input_width));
kernel_.setArg(idx++, static_cast<int32_t>(input_depth_blocks));
kernel_.setArg(idx++, static_cast<int32_t>(output_height));
kernel_.setArg(idx++, static_cast<int32_t>(output_width));
kernel_.setArg(idx++, static_cast<int32_t>(output_depth_blocks));
kernel_.setArg(idx++, *(output->opencl_image()));
input_shape_ = input->shape();
......
......@@ -51,7 +51,8 @@ void SpaceToBatchFunctor<DeviceType::OPENCL, T>::operator()(
built_options.emplace("-DNON_UNIFORM_WORK_GROUP");
}
kernel_ =
runtime->BuildKernel("space_to_batch", kernel_name, built_options);
runtime->BuildKernel("space_to_batch",
obfuscated_kernel_name, built_options);
kwg_size_ =
static_cast<uint32_t>(runtime->GetKernelMaxWorkGroupSize(kernel_));
......
......@@ -31,7 +31,6 @@ class Conv2dOp : public ConvPool2dOpBase<D, T> {
const Tensor *filter = this->Input(FILTER);
const Tensor *bias = this->InputSize() >= 3 ? this->Input(BIAS) : nullptr;
Tensor *output = this->Output(OUTPUT);
functor_(input, filter, bias, output, future);
return true;
......
//
// Copyright (c) 2017 XiaoMi All rights reserved.
//
#include "mace/ops/cwise.h"
namespace mace {
namespace ops {
void Register_CWise(OperatorRegistry *op_registry) {
REGISTER_OPERATOR(op_registry, OpKeyBuilder("CWise")
.Device(DeviceType::CPU)
.TypeConstraint<float>("T")
.Build(),
CWiseOp<DeviceType::CPU, float>);
REGISTER_OPERATOR(op_registry, OpKeyBuilder("CWise")
.Device(DeviceType::OPENCL)
.TypeConstraint<float>("T")
.Build(),
CWiseOp<DeviceType::OPENCL, float>);
REGISTER_OPERATOR(op_registry, OpKeyBuilder("CWise")
.Device(DeviceType::OPENCL)
.TypeConstraint<half>("T")
.Build(),
CWiseOp<DeviceType::OPENCL, half>);
}
} // namespace ops
} // namespace mace
//
// Copyright (c) 2017 XiaoMi All rights reserved.
//
#ifndef MACE_OPS_CWISE_H_
#define MACE_OPS_CWISE_H_
#include <string>
#include "mace/core/operator.h"
#include "mace/kernels/cwise.h"
namespace mace {
namespace ops {
template <DeviceType D, class T>
class CWiseOp : public Operator<D, T> {
public:
CWiseOp(const OperatorDef &operator_def, Workspace *ws)
: Operator<D, T>(operator_def, ws),
x_(OperatorBase::GetSingleArgument<float>("x", 1.0)),
functor_(static_cast<kernels::CWiseType>(
OperatorBase::GetSingleArgument<int>(
"type", static_cast<int>(
kernels::CWiseType::ADD))),
this->x_) {}
bool Run(StatsFuture *future) override {
const Tensor *input_tensor = this->Input(INPUT);
Tensor *output_tensor = this->Output(OUTPUT);
output_tensor->ResizeLike(input_tensor);
functor_(input_tensor, output_tensor, future);
return true;
}
protected:
const float x_;
OP_INPUT_TAGS(INPUT);
OP_OUTPUT_TAGS(OUTPUT);
private:
kernels::CWiseFunctor<D, T> functor_;
};
} // namespace ops
} // namespace mace
#endif // MACE_OPS_CWISE_H_
//
// Copyright (c) 2017 XiaoMi All rights reserved.
//
#include "mace/core/operator.h"
#include "mace/core/runtime/opencl/opencl_runtime.h"
#include "mace/core/testing/test_benchmark.h"
#include "mace/ops/ops_test_util.h"
namespace mace {
namespace ops {
namespace test {
template <DeviceType D, typename T>
static void CWise(int iters, int batch, int channels,
int height, int width, float x, int type) {
mace::testing::StopTiming();
OpsTestNet net;
// Add input data
net.AddRandomInput<D, T>("Input", {batch, height, width, channels});
if (D == DeviceType::OPENCL) {
BufferToImage<D, T>(&net, "Input", "InputImage",
kernels::BufferType::IN_OUT_CHANNEL);
OpDefBuilder("CWise", "CWiseBM")
.Input("InputImage")
.Output("Output")
.AddIntArg("type", type)
.AddFloatArg("x", x)
.Finalize(net.NewOperatorDef());
} else {
OpDefBuilder("CWise", "CWiseBM")
.Input("Input")
.Output("Output")
.AddIntArg("type", type)
.AddFloatArg("x", x)
.Finalize(net.NewOperatorDef());
}
// Warm-up
for (int i = 0; i < 5; ++i) {
net.RunOp(D);
}
net.Sync();
mace::testing::StartTiming();
while (iters--) {
net.RunOp(D);
}
net.Sync();
}
#define BM_CWISE_MACRO(N, C, H, W, X, G, TYPE, DEVICE) \
static void \
BM_CWISE_##N##_##C##_##H##_##W##_##X##_##G##_##TYPE##_##DEVICE( \
int iters) { \
const int64_t tot = static_cast<int64_t>(iters) * N * C * H * W; \
mace::testing::MaccProcessed(tot); \
mace::testing::BytesProcessed(tot *(sizeof(TYPE))); \
CWise<DEVICE, TYPE>(iters, N, C, H, W, X, G); \
} \
BENCHMARK( \
BM_CWISE_##N##_##C##_##H##_##W##_##X##_##G##_##TYPE##_##DEVICE)
#define BM_CWISE(N, C, H, W, X, G) \
BM_CWISE_MACRO(N, C, H, W, X, G, float, CPU); \
BM_CWISE_MACRO(N, C, H, W, X, G, float, OPENCL); \
BM_CWISE_MACRO(N, C, H, W, X, G, half, OPENCL);
BM_CWISE(1, 1, 512, 512, 2, 0);
BM_CWISE(1, 3, 128, 128, 2, 1);
BM_CWISE(1, 3, 512, 512, 2, 4);
BM_CWISE(1, 32, 112, 112, 2, 5);
BM_CWISE(1, 32, 112, 112, 2, 6);
BM_CWISE(1, 32, 112, 112, 2, 7);
BM_CWISE(1, 64, 256, 256, 3, 0);
BM_CWISE(1, 64, 512, 512, 3, 1);
BM_CWISE(1, 128, 56, 56, 3, 4);
BM_CWISE(1, 128, 256, 256, 3, 5);
BM_CWISE(1, 64, 512, 512, 3, 6);
BM_CWISE(1, 64, 512, 512, 3, 7);
BM_CWISE(1, 256, 14, 14, 3, 0);
BM_CWISE(1, 512, 14, 14, 3, 1);
BM_CWISE(1, 1024, 7, 7, 3, 4);
BM_CWISE(32, 1, 256, 256, 3, 5);
BM_CWISE(32, 1, 256, 256, 3, 6);
BM_CWISE(32, 1, 256, 256, 3, 7);
} // namespace test
} // namespace ops
} // namespace mace
//
// Copyright (c) 2017 XiaoMi All rights reserved.
//
#include "mace/core/operator.h"
#include "mace/ops/ops_test_util.h"
#include "../kernels/cwise.h"
namespace mace {
namespace ops {
namespace test {
class CWiseOpTest : public OpsTestBase {};
template <DeviceType D>
void Simple(const kernels::CWiseType type,
const std::vector<index_t> &shape,
const std::vector<float> &input0,
const float x,
const std::vector<float> &output) {
// Construct graph
OpsTestNet net;
// Add input data
net.AddInputFromArray<D, float>("Input1", shape, input0);
if (D == DeviceType::CPU) {
OpDefBuilder("CWise", "CWiseTest")
.Input("Input1")
.AddIntArg("type", static_cast<int>(type))
.AddFloatArg("x", x)
.Output("Output")
.Finalize(net.NewOperatorDef());
// Run
net.RunOp(D);
} else {
BufferToImage<D, half>(&net, "Input1", "InputImg1",
kernels::BufferType::IN_OUT_CHANNEL);
OpDefBuilder("CWise", "CWiseTest")
.Input("InputImg1")
.AddIntArg("type", static_cast<int>(type))
.AddFloatArg("x", x)
.Output("OutputImg")
.Finalize(net.NewOperatorDef());
// Run
net.RunOp(D);
ImageToBuffer<D, float>(&net, "OutputImg", "Output",
kernels::BufferType::IN_OUT_CHANNEL);
}
auto expected = CreateTensor<float>(shape, output);
ExpectTensorNear<float>(*expected, *net.GetOutput("Output"), 1e-3);
}
TEST_F(CWiseOpTest, CPUSimple) {
Simple<DeviceType::CPU>(kernels::CWiseType::MUL, {1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, 0.1, {0.1, 0.2, .3, .4, .5, .6});
Simple<DeviceType::CPU>(kernels::CWiseType::ADD, {1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, 2.0, {3, 4, 5, 6, 7, 8});
Simple<DeviceType::CPU>(kernels::CWiseType::DIV, {1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, 0.1, {10, 20, 30, 40, 50, 60});
Simple<DeviceType::CPU>(kernels::CWiseType::SUB, {1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, 2.0, {-1, 0, 1, 2, 3, 4});
Simple<DeviceType::CPU>(kernels::CWiseType::NEG, {1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, 2.0, {-1, -2, -3, -4, -5, -6});
Simple<DeviceType::CPU>(kernels::CWiseType::ABS, {1, 1, 2, 3},
{1, -2, -0.0001, 4, 5, 6}, 2.0, {1, 2, 0.0001, 4, 5, 6});
}
TEST_F(CWiseOpTest, GPUSimple) {
Simple<DeviceType::OPENCL>(kernels::CWiseType::MUL, {1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, 0.1, {0.1, 0.2, .3, .4, .5, .6});
Simple<DeviceType::OPENCL>(kernels::CWiseType::ADD, {1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, 2.0, {3, 4, 5, 6, 7, 8});
Simple<DeviceType::OPENCL>(kernels::CWiseType::DIV, {1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, 0.1, {10, 20, 30, 40, 50, 60});
Simple<DeviceType::OPENCL>(kernels::CWiseType::SUB, {1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, 2.0, {-1, 0, 1, 2, 3, 4});
Simple<DeviceType::OPENCL>(kernels::CWiseType::NEG, {1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, 2.0, {-1, -2, -3, -4, -5, -6});
Simple<DeviceType::OPENCL>(kernels::CWiseType::ABS, {1, 1, 2, 3},
{1, -2, -0.0001, 4, 5, 6}, 2.0, {1, 2, 0.0001, 4, 5, 6});
}
template <DeviceType D, typename T>
void RandomTest(const kernels::CWiseType type,
const std::vector<index_t> &shape) {
testing::internal::LogToStderr();
srand(time(NULL));
// Construct graph
OpsTestNet net;
// Add input data
net.AddRandomInput<D, float>("Input1", shape);
OpDefBuilder("CWise", "CWiseTest")
.Input("Input1")
.AddIntArg("type", static_cast<int>(type))
.AddFloatArg("x", 1.2)
.Output("Output")
.Finalize(net.NewOperatorDef());
// Run
net.RunOp();
BufferToImage<D, T>(&net, "Input1", "InputImg1",
kernels::BufferType::IN_OUT_CHANNEL);
OpDefBuilder("CWise", "CWiseTest")
.Input("InputImg1")
.AddIntArg("type", static_cast<int>(type))
.AddFloatArg("x", 1.2)
.AddIntArg("T", static_cast<int>(DataTypeToEnum<T>::value))
.Output("OutputImg")
.Finalize(net.NewOperatorDef());
// Run
net.RunOp(D);
ImageToBuffer<D, float>(&net, "OutputImg", "OPENCLOutput",
kernels::BufferType::IN_OUT_CHANNEL);
if (DataTypeToEnum<T>::value == DT_FLOAT) {
ExpectTensorNear<float>(*net.GetTensor("Output"),
*net.GetOutput("OPENCLOutput"), 1e-3);
} else {
ExpectTensorNear<float>(*net.GetTensor("Output"),
*net.GetOutput("OPENCLOutput"), 1e-1);
}
}
TEST_F(CWiseOpTest, OPENCLRandomFloat) {
RandomTest<DeviceType::OPENCL, float>(kernels::CWiseType::MUL,
{3, 23, 37, 19});
RandomTest<DeviceType::OPENCL, float>(kernels::CWiseType::ADD,
{13, 32, 32, 64});
RandomTest<DeviceType::OPENCL, float>(kernels::CWiseType::SUB,
{3, 32, 32, 64});
RandomTest<DeviceType::OPENCL, float>(kernels::CWiseType::DIV,
{13, 32, 32, 64});
RandomTest<DeviceType::OPENCL, float>(kernels::CWiseType::NEG,
{13, 32, 32, 64});
}
TEST_F(CWiseOpTest, OPENCLRandomHalf) {
RandomTest<DeviceType::OPENCL, half>(kernels::CWiseType::MUL,
{3, 23, 37, 19});
RandomTest<DeviceType::OPENCL, half>(kernels::CWiseType::ADD,
{13, 32, 32, 64});
RandomTest<DeviceType::OPENCL, half>(kernels::CWiseType::SUB,
{3, 32, 32, 64});
RandomTest<DeviceType::OPENCL, half>(kernels::CWiseType::DIV,
{13, 32, 32, 64});
RandomTest<DeviceType::OPENCL, half>(kernels::CWiseType::NEG,
{13, 32, 32, 64});
}
} // namespace test
} // namespace ops
} // namespace mace
......@@ -19,18 +19,16 @@ class DepthToSpaceOp : public Operator<D, T> {
public:
DepthToSpaceOp(const OperatorDef &op_def, Workspace *ws)
: Operator<D, T>(op_def, ws),
functor_(OperatorBase::GetSingleArgument<int>("block_size", 1), true) {}
block_size_(OperatorBase::GetSingleArgument<int>("block_size", 1)),
functor_(this->block_size_, true) {}
bool Run(StatsFuture *future) override {
const Tensor *input = this->Input(INPUT);
Tensor *output = this->Output(OUTPUT);
MACE_CHECK(input->dim_size() == 4, "input dim should be 4");
const int block_size =
OperatorBase::GetSingleArgument<int>("block_size", 1);
int input_depth = input->dim(3);
MACE_CHECK(input_depth % (block_size * block_size) == 0,
MACE_CHECK(input_depth % (block_size_ * block_size_) == 0,
"input depth should be dividable by block_size * block_size",
input->dim(3));
MACE_CHECK((input_depth % 4) == 0,
......@@ -40,6 +38,7 @@ class DepthToSpaceOp : public Operator<D, T> {
}
protected:
const int block_size_;
OP_INPUT_TAGS(INPUT);
OP_OUTPUT_TAGS(OUTPUT);
......
//
// Copyright (c) 2017 XiaoMi All rights reserved.
//
#include <fstream>
#include <vector>
#include "mace/core/operator.h"
#include "mace/ops/ops_test_util.h"
......@@ -48,6 +50,7 @@ void RunDepthToSpace(const bool d2s,
ExpectTensorNear<float>(*expected, *net.GetOutput("Output"), 0.001);
}
class SpaceToDepthOpTest : public OpsTestBase {};
TEST_F(SpaceToDepthOpTest, Input2x4x4_B2_CPU) {
......@@ -70,6 +73,8 @@ TEST_F(SpaceToDepthOpTest, Input2x4x4_B2_OPENCL) {
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31});
}
TEST_F(SpaceToDepthOpTest, Input2x2x4_B2_CPU) {
RunDepthToSpace<DeviceType::CPU>(false, {1, 2, 2, 4},
{1, 2, 3, 4, 5, 6, 7, 8,
......@@ -132,46 +137,83 @@ TEST_F(DepthToSpaceOpTest, Input1x1x16_B2_OPENCL) {
9, 10, 11, 12, 13, 14, 15, 16});
}
/*
TEST_F(DepthToSpaceOpTest, Input2x2x3_B2_CPU) {
RunDepthToSpace<DeviceType::CPU>({1, 2, 2, 3},
{1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12},
2,
{1, 1, 1, 12},
{1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12});
TEST_F(DepthToSpaceOpTest, InputLarger_B2_OPENCL) {
const std::vector<float > in = std::vector<float >(192 * 192 *128, 1.0);
RunDepthToSpace<DeviceType::OPENCL>(true, {1, 192, 192, 128},
in,
2,
{1, 384, 384, 32},
in);
}
template <DeviceType D, typename T>
void RandomTest(const bool d2s, const int block_size,
const std::vector<index_t> &shape) {
testing::internal::LogToStderr();
srand(time(NULL));
// Construct graph
OpsTestNet net;
const char *ops_name = (d2s) ? "DepthToSpace" : "SpaceToDepth";
const char *ops_test_name = (d2s) ? "DepthToSpaceTest" : "SpaceToDepthTest";
// Add input data
net.AddRandomInput<D, float>("Input1", shape);
OpDefBuilder(ops_name, ops_test_name)
.Input("Input1")
.AddIntArg("block_size", block_size)
.Output("Output")
.Finalize(net.NewOperatorDef());
// Run
net.RunOp();
BufferToImage<D, T>(&net, "Input1", "InputImg1",
kernels::BufferType::IN_OUT_CHANNEL);
OpDefBuilder(ops_name, ops_test_name)
.Input("InputImg1")
.AddIntArg("block_size", block_size)
.AddIntArg("T", static_cast<int>(DataTypeToEnum<T>::value))
.Output("OutputImg")
.Finalize(net.NewOperatorDef());
// Run
net.RunOp(D);
ImageToBuffer<D, float>(&net, "OutputImg", "OPENCLOutput",
kernels::BufferType::IN_OUT_CHANNEL);
if (DataTypeToEnum<T>::value == DT_FLOAT) {
ExpectTensorNear<float>(*net.GetTensor("Output"),
*net.GetOutput("OPENCLOutput"), 1e-3);
} else {
ExpectTensorNear<float>(*net.GetTensor("Output"),
*net.GetOutput("OPENCLOutput"), 1e-1);
}
}
TEST_F(DepthToSpaceOpTest, Input2x2x3_B2_OPENCL) {
RunDepthToSpace<DeviceType::OPENCL>({1, 2, 2, 6},
{1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12
},
2,
{1, 1, 1, 12},
{1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12});
TEST_F(DepthToSpaceOpTest, OPENCLRandomFloat) {
RandomTest<DeviceType::OPENCL, float>(true, 2, {1, 192, 192, 128});
}
TEST_F(DepthToSpaceOpTest, Input2x2x2_B2_CPU) {
TEST_F(DepthToSpaceOpTest, OPENCLRandomHalf) {
RandomTest<DeviceType::OPENCL, half>(true, 2, {1, 192, 192, 128});
}
RunDepthToSpace<DeviceType::CPU>({1, 2, 2, 2},
{1, 10, 2, 20, 3, 30, 4, 40},
2,
{1, 1, 1, 8},
{1, 10, 2, 20, 3, 30, 4, 40});
TEST_F(SpaceToDepthOpTest, OPENCLRandomFloat) {
RandomTest<DeviceType::OPENCL, float>(false, 2, {1, 384, 384, 32});
}
TEST_F(DepthToSpaceOpTest, Input2x2x2_B2_OPENCL) {
TEST_F(SpaceToDepthOpTest, OPENCLRandomHalf) {
RandomTest<DeviceType::OPENCL, half>(false, 2, {1, 384, 384, 32});
}
RunDepthToSpace<DeviceType::OPENCL>({1, 2, 2, 2},
{1, 10, 2, 20, 3, 30, 4, 40},
2,
{1, 1, 1, 8},
{1, 10, 2, 20, 3, 30, 4, 40});
}*/
} // namespace test
} // namespace ops
} // namespace mace
......@@ -19,6 +19,21 @@ pooling_type_mode = {
'MaxPool': 2
}
# the order should be the same as
# eltwise type's in mace/kernels/eltwise.h
# and also cwise type's in mace/kernels/cwise.h
# cuz these math ops should have compatible with "EltWise" and "CWise"
math_type_mode = {
'MUL': 0,
'ADD': 1,
'MAX': 2,
'MIN': 3,
'SUB': 4,
'DIV': 5,
'NEG': 6,
'ABS': 7
}
buffer_type_map = {
'CONV2D_FILTER' : 0,
'IN_OUT_CHANNEL' : 1,
......@@ -622,6 +637,59 @@ class TFConverter(object):
self.add_output_shape(op.outputs, op_def)
self.resolved_ops[op.name] = 1
self.unused_tensor.add(get_input_tensor(op, 1).name)
def convert_math(self, op, math_type):
op_def = self.net_def.op.add()
arg = op_def.arg.add()
arg.name = 'T'
arg.i = self.dt
op_def.name = op.name
if len(op.inputs) == 1:
op_def.type = "CWise"
op_def.input.extend([input.name for input in op.inputs])
x_arg = op_def.arg.add()
x_arg.name = 'x'
x_arg.f = 0
elif len(op.inputs) >= 2:
input_tensor0 = get_input_tensor(op, 0)
input_tensor1 = get_input_tensor(op, 1)
if input_tensor0.shape == input_tensor1.shape:
op_def.type = "Eltwise"
op_def.input.extend([input.name for input in op.inputs])
else:
op_def.type = "CWise"
x_value = 0
if len(input_tensor1.shape)==4:
op_def.input.extend([op.inputs[1].name])
x_value = get_input_tensor(op, 0).eval().astype(np.float32)
else:
op_def.input.extend([op.inputs[0].name])
x_value = get_input_tensor(op, 1).eval().astype(np.float32)
x_arg = op_def.arg.add()
x_arg.name = 'x'
x_arg.f = x_value
type_arg = op_def.arg.add()
type_arg.name = 'type'
type_arg.i = math_type_mode[math_type]
op_def.output.extend([output.name for output in op.outputs])
self.add_output_shape(op.outputs, op_def)
self.resolved_ops[op.name] = 1
def convert_depth_to_space(self, op, d2s):
op_def = self.net_def.op.add()
arg = op_def.arg.add()
arg.name = 'T'
arg.i = self.dt
op_def.name = op.name
op_def.type = op.type
op_def.input.extend([op.inputs[0].name])
op_def.output.extend([output.name for output in op.outputs])
size_arg = op_def.arg.add()
size_arg.name = 'block_size'
size_arg.i = op.get_attr('block_size')
self.add_output_shape(op.outputs, op_def)
self.resolved_ops[op.name] = 1
def convert_bias_add(self, op):
op_def = mace_pb2.OperatorDef()
......@@ -850,6 +918,16 @@ class TFConverter(object):
self.convert_space_to_batch(op, False)
elif op.type == 'BatchToSpaceND':
self.convert_space_to_batch(op, True)
elif op.type == 'DepthToSpace':
self.convert_depth_to_space(op, True)
elif op.type == 'SpaceToDepth':
self.convert_depth_to_space(op, False)
elif op.type in ['Neg', 'neg', 'Negative', 'negative']:
self.convert_math(op, 'NEG')
elif op.type == 'Mul':
self.convert_math(op, 'MUL')
elif op.type == 'Sub':
self.convert_math(op, 'SUB')
elif self.is_softmax(op):
self.convert_softmax(op)
elif op.type in ['Relu', 'Sigmoid', 'Tanh']:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册