batch_norm.cc 2.9 KB
Newer Older
L
Liangliang He 已提交
1
// Copyright 2018 Xiaomi, Inc.  All rights reserved.
李寅 已提交
2
//
L
Liangliang He 已提交
3 4 5
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
李寅 已提交
6
//
L
Liangliang He 已提交
7 8 9 10 11 12 13
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
李寅 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

#include "mace/kernels/batch_norm.h"

namespace mace {
namespace kernels {

void BatchNormFunctor<DeviceType::NEON, float>::operator()(
  const Tensor *input,
  const Tensor *scale,
  const Tensor *offset,
  const Tensor *mean,
  const Tensor *var,
  const float epsilon,
  Tensor *output,
  StatsFuture *future) {
  // Batch normalization in the paper https://arxiv.org/abs/1502.03167 .
  // The calculation formula for inference is
  // Y = \frac{ \scale } { \sqrt{var+\variance_epsilon} } * X +
  //          ( \offset - \frac { \scale * mean } {
  //          \sqrt{var+\variance_epsilon} }
  // new_scale = \frac{ \scale } { \sqrt{var+\variance_epsilon} }
  // new_offset = \offset - mean * common_val;
  // Y = new_scale * X + new_offset;
  const index_t batch = input->dim(0);
  const index_t channels = input->dim(1);
  const index_t height = input->dim(2);
  const index_t width = input->dim(3);

  const float *input_ptr = input->data<float>();
  const float *scale_ptr = scale->data<float>();
  const float *offset_ptr = offset->data<float>();
  float *output_ptr = output->mutable_data<float>();

  std::vector<float> new_scale;
  std::vector<float> new_offset;
  if (!folded_constant_) {
    new_scale.resize(channels);
    new_offset.resize(channels);
    const float *mean_ptr = mean->data<float>();
    const float *var_ptr = var->data<float>();
#pragma omp parallel for
    for (index_t c = 0; c < channels; ++c) {
      new_scale[c] = scale_ptr[c] / std::sqrt(var_ptr[c] + epsilon);
      new_offset[c] = offset_ptr[c] - mean_ptr[c] * new_scale[c];
    }
  }

  const float *scale_data = folded_constant_ ? scale_ptr : new_scale.data();
  const float *offset_data = folded_constant_ ? offset_ptr : new_offset.data();

  index_t channel_size = height * width;
  index_t batch_size = channels * channel_size;

  // NEON is slower, so stick to the trivial implementaion
#pragma omp parallel for collapse(2)
  for (index_t b = 0; b < batch; ++b) {
    for (index_t c = 0; c < channels; ++c) {
      index_t offset = b * batch_size + c * channel_size;
      for (index_t hw = 0; hw < height * width; ++hw) {
        output_ptr[offset + hw] =
          scale_data[c] * input_ptr[offset + hw] + offset_data[c];
      }
    }
  }
  DoActivation(output_ptr, output_ptr, output->size(), activation_,
               relux_max_limit_);
}

}  // namespace kernels
}  // namespace mace