how_to.md 23.3 KB
Newer Older
1
# How to xxx
2

3
This tutorial collects answers to any `How to xxx with MMYOLO`. Feel free to update this doc if you meet new questions about `How to` and find the answers!
4

5
## Add plugins to the backbone network
6

7
Please see [Plugins](plugins.md).
8 9 10 11 12 13 14 15

## Apply multiple Necks

If you want to stack multiple Necks, you can directly set the Neck parameters in the config. MMYOLO supports concatenating multiple Necks in the form of `List`. You need to ensure that the output channel of the previous Neck matches the input channel of the next Neck. If you need to adjust the number of channels, you can insert the `mmdet.ChannelMapper` module to align the number of channels between multiple Necks. The specific configuration is as follows:

```python
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'

16 17
deepen_factor = _base_.deepen_factor
widen_factor = _base_.widen_factor
18 19 20 21 22 23 24 25
model = dict(
    type='YOLODetector',
    neck=[
        dict(
            type='YOLOv5PAFPN',
            deepen_factor=deepen_factor,
            widen_factor=widen_factor,
            in_channels=[256, 512, 1024],
26
            out_channels=[256, 512, 1024], # The out_channels is controlled by widen_factor,so the YOLOv5PAFPN's out_channels equls to out_channels * widen_factor
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
            num_csp_blocks=3,
            norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
            act_cfg=dict(type='SiLU', inplace=True)),
        dict(
            type='mmdet.ChannelMapper',
            in_channels=[128, 256, 512],
            out_channels=128,
        ),
        dict(
            type='mmdet.DyHead',
            in_channels=128,
            out_channels=256,
            num_blocks=2,
            # disable zero_init_offset to follow official implementation
            zero_init_offset=False)
    ]
43 44
    bbox_head=dict(head_module=dict(in_channels=[512,512,512])) # The out_channels is controlled by widen_factor,so the YOLOv5HeadModuled in_channels * widen_factor equals to  the last neck's out_channels
)
45
```
46

47
## Replace the backbone network
48 49 50 51 52 53

```{note}
1. When using other backbone networks, you need to ensure that the output channels of the backbone network match the input channels of the neck network.
2. The configuration files given below only ensure that the training will work correctly, and their training performance may not be optimal. Because some backbones require specific learning rates, optimizers, and other hyperparameters. Related contents will be added in the "Training Tips" section later.
```

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
### Use backbone network implemented in MMYOLO

Suppose you want to use `YOLOv6EfficientRep` as the backbone network of `YOLOv5`, the example config is as the following:

```python
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'

model = dict(
    backbone=dict(
        type='YOLOv6EfficientRep',
        norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
        act_cfg=dict(type='ReLU', inplace=True))
)
```

### Use backbone network implemented in other OpenMMLab repositories

The model registry in MMYOLO, MMDetection, MMClassification, and MMSegmentation all inherit from the root registry in MMEngine in the OpenMMLab 2.0 system, allowing these repositories to directly use modules already implemented by each other. Therefore, in MMYOLO, users can use backbone networks from MMDetection and MMClassification without reimplementation.

#### Use backbone network implemented in MMDetection
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

1. Suppose you want to use `ResNet-50` as the backbone network of `YOLOv5`, the example config is as the following:

   ```python
   _base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'

   deepen_factor = _base_.deepen_factor
   widen_factor = 1.0
   channels = [512, 1024, 2048]

   model = dict(
       backbone=dict(
           _delete_=True, # Delete the backbone field in _base_
           type='mmdet.ResNet', # Using ResNet from mmdet
           depth=50,
           num_stages=4,
           out_indices=(1, 2, 3),
           frozen_stages=1,
           norm_cfg=dict(type='BN', requires_grad=True),
           norm_eval=True,
           style='pytorch',
           init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
       neck=dict(
           type='YOLOv5PAFPN',
           widen_factor=widen_factor,
           in_channels=channels, # Note: The 3 channels of ResNet-50 output are [512, 1024, 2048], which do not match the original yolov5-s neck and need to be changed.
           out_channels=channels),
       bbox_head=dict(
           type='YOLOv5Head',
           head_module=dict(
               type='YOLOv5HeadModule',
               in_channels=channels, # input channels of head need to be changed accordingly
               widen_factor=widen_factor))
   )
   ```

2. Suppose you want to use `SwinTransformer-Tiny` as the backbone network of `YOLOv5`, the example config is as the following:

   ```python
   _base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'

   deepen_factor = _base_.deepen_factor
   widen_factor = 1.0
   channels = [192, 384, 768]
   checkpoint_file = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth'  # noqa

   model = dict(
       backbone=dict(
           _delete_=True, # Delete the backbone field in _base_
           type='mmdet.SwinTransformer', # Using SwinTransformer from mmdet
           embed_dims=96,
           depths=[2, 2, 6, 2],
           num_heads=[3, 6, 12, 24],
           window_size=7,
           mlp_ratio=4,
           qkv_bias=True,
           qk_scale=None,
           drop_rate=0.,
           attn_drop_rate=0.,
           drop_path_rate=0.2,
           patch_norm=True,
           out_indices=(1, 2, 3),
           with_cp=False,
           convert_weights=True,
           init_cfg=dict(type='Pretrained', checkpoint=checkpoint_file)),
       neck=dict(
           type='YOLOv5PAFPN',
           deepen_factor=deepen_factor,
           widen_factor=widen_factor,
           in_channels=channels, # Note: The 3 channels of SwinTransformer-Tiny output are [192, 384, 768], which do not match the original yolov5-s neck and need to be changed.
           out_channels=channels),
       bbox_head=dict(
           type='YOLOv5Head',
           head_module=dict(
               type='YOLOv5HeadModule',
               in_channels=channels, # input channels of head need to be changed accordingly
               widen_factor=widen_factor))
   )
   ```

154
#### Use backbone network implemented in MMClassification
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

1. Suppose you want to use `ConvNeXt-Tiny` as the backbone network of `YOLOv5`, the example config is as the following:

   ```python
   _base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'

   # please run the command, mim install "mmcls>=1.0.0rc2", to install mmcls
   # import mmcls.models to trigger register_module in mmcls
   custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)
   checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-tiny_3rdparty_32xb128-noema_in1k_20220301-795e9634.pth'  # noqa
   deepen_factor = _base_.deepen_factor
   widen_factor = 1.0
   channels = [192, 384, 768]

   model = dict(
       backbone=dict(
           _delete_=True, # Delete the backbone field in _base_
           type='mmcls.ConvNeXt', # Using ConvNeXt from mmcls
           arch='tiny',
           out_indices=(1, 2, 3),
           drop_path_rate=0.4,
           layer_scale_init_value=1.0,
           gap_before_final_norm=False,
           init_cfg=dict(
               type='Pretrained', checkpoint=checkpoint_file,
               prefix='backbone.')), # The pre-trained weights of backbone network in MMCls have prefix='backbone.'. The prefix in the keys will be removed so that these weights can be normally loaded.
       neck=dict(
           type='YOLOv5PAFPN',
           deepen_factor=deepen_factor,
           widen_factor=widen_factor,
           in_channels=channels, # Note: The 3 channels of ConvNeXt-Tiny output are [192, 384, 768], which do not match the original yolov5-s neck and need to be changed.
           out_channels=channels),
       bbox_head=dict(
           type='YOLOv5Head',
           head_module=dict(
               type='YOLOv5HeadModule',
               in_channels=channels, # input channels of head need to be changed accordingly
               widen_factor=widen_factor))
   )
   ```

2. Suppose you want to use `MobileNetV3-small` as the backbone network of `YOLOv5`, the example config is as the following:

   ```python
   _base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'

   # please run the command, mim install "mmcls>=1.0.0rc2", to install mmcls
   # import mmcls.models to trigger register_module in mmcls
   custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)
   checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/mobilenet_v3/convert/mobilenet_v3_small-8427ecf0.pth'  # noqa
   deepen_factor = _base_.deepen_factor
   widen_factor = 1.0
   channels = [24, 48, 96]

   model = dict(
       backbone=dict(
           _delete_=True, # Delete the backbone field in _base_
           type='mmcls.MobileNetV3', # Using MobileNetV3 from mmcls
           arch='small',
           out_indices=(3, 8, 11), # Modify out_indices
           init_cfg=dict(
               type='Pretrained',
               checkpoint=checkpoint_file,
               prefix='backbone.')), # The pre-trained weights of backbone network in MMCls have prefix='backbone.'. The prefix in the keys will be removed so that these weights can be normally loaded.
       neck=dict(
           type='YOLOv5PAFPN',
           deepen_factor=deepen_factor,
           widen_factor=widen_factor,
           in_channels=channels, # Note: The 3 channels of MobileNetV3 output are [24, 48, 96], which do not match the original yolov5-s neck and need to be changed.
           out_channels=channels),
       bbox_head=dict(
           type='YOLOv5Head',
           head_module=dict(
               type='YOLOv5HeadModule',
               in_channels=channels, # input channels of head need to be changed accordingly
               widen_factor=widen_factor))
   )
   ```

234
#### Use backbone network in `timm` through MMClassification
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

MMClassification also provides a wrapper for the Py**T**orch **Im**age **M**odels (`timm`) backbone network, users can directly use the backbone network in `timm` through MMClassification. Suppose you want to use `EfficientNet-B1` as the backbone network of `YOLOv5`, the example config is as the following:

```python
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'

# please run the command, mim install "mmcls>=1.0.0rc2", to install mmcls
# and the command, pip install timm, to install timm
# import mmcls.models to trigger register_module in mmcls
custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)

deepen_factor = _base_.deepen_factor
widen_factor = 1.0
channels = [40, 112, 320]

model = dict(
    backbone=dict(
        _delete_=True, # Delete the backbone field in _base_
        type='mmcls.TIMMBackbone', # Using timm from mmcls
        model_name='efficientnet_b1', # Using efficientnet_b1 in timm
        features_only=True,
        pretrained=True,
        out_indices=(2, 3, 4)),
    neck=dict(
        type='YOLOv5PAFPN',
        deepen_factor=deepen_factor,
        widen_factor=widen_factor,
        in_channels=channels, # Note: The 3 channels of EfficientNet-B1 output are [40, 112, 320], which do not match the original yolov5-s neck and need to be changed.
        out_channels=channels),
    bbox_head=dict(
        type='YOLOv5Head',
        head_module=dict(
            type='YOLOv5HeadModule',
            in_channels=channels, # input channels of head need to be changed accordingly
            widen_factor=widen_factor))
)
```
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

#### Use backbone network implemented in MMSelfSup

Suppose you want to use `ResNet-50` which is self-supervised trained by `MoCo v3` in MMSelfSup as the backbone network of `YOLOv5`, the example config is as the following:

```python
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'

# please run the command, mim install "mmselfsup>=1.0.0rc3", to install mmselfsup
# import mmselfsup.models to trigger register_module in mmselfsup
custom_imports = dict(imports=['mmselfsup.models'], allow_failed_imports=False)
checkpoint_file = 'https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k/mocov3_resnet50_8xb512-amp-coslr-800e_in1k_20220927-e043f51a.pth'  # noqa
deepen_factor = _base_.deepen_factor
widen_factor = 1.0
channels = [512, 1024, 2048]

model = dict(
    backbone=dict(
        _delete_=True, # Delete the backbone field in _base_
        type='mmselfsup.ResNet',
        depth=50,
        num_stages=4,
        out_indices=(2, 3, 4), # Note: out_indices of ResNet in MMSelfSup are 1 larger than those in MMdet and MMCls
        frozen_stages=1,
        norm_cfg=dict(type='BN', requires_grad=True),
        norm_eval=True,
        style='pytorch',
        init_cfg=dict(type='Pretrained', checkpoint=checkpoint_file)),
    neck=dict(
        type='YOLOv5PAFPN',
        deepen_factor=deepen_factor,
        widen_factor=widen_factor,
        in_channels=channels, # Note: The 3 channels of ResNet-50 output are [512, 1024, 2048], which do not match the original yolov5-s neck and need to be changed.
        out_channels=channels),
    bbox_head=dict(
        type='YOLOv5Head',
        head_module=dict(
            type='YOLOv5HeadModule',
            in_channels=channels, # input channels of head need to be changed accordingly
            widen_factor=widen_factor))
)
```
314

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
#### Don't used pre-training weights

When we replace the backbone network, the model initialization is trained by default loading the pre-training weight of the backbone network. Instead of using the pre-training weights of the backbone network, if you want to train the time model from scratch,
You can set `init_cfg` in 'backbone' to 'None'. In this case, the backbone network will be initialized with the default initialization method, instead of using the trained pre-training weight.

```python
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'

deepen_factor = _base_.deepen_factor
widen_factor = 1.0
channels = [512, 1024, 2048]

model = dict(
   backbone=dict(
       _delete_=True, # Delete the backbone field in _base_
       type='mmdet.ResNet', # Using ResNet from mmdet
       depth=50,
       num_stages=4,
       out_indices=(1, 2, 3),
       frozen_stages=1,
       norm_cfg=dict(type='BN', requires_grad=True),
       norm_eval=True,
       style='pytorch',
       init_cfg=None # If init_cfg is set to None, backbone will not be initialized with pre-trained weights
   ),
   neck=dict(
       type='YOLOv5PAFPN',
       widen_factor=widen_factor,
       in_channels=channels, # Note: The 3 channels of ResNet-50 output are [512, 1024, 2048], which do not match the original yolov5-s neck and need to be changed.
       out_channels=channels),
   bbox_head=dict(
       type='YOLOv5Head',
       head_module=dict(
           type='YOLOv5HeadModule',
           in_channels=channels, # input channels of head need to be changed accordingly
           widen_factor=widen_factor))
)
```

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
#### Freeze the weight of backbone or neck

In MMYOLO, we can freeze some `stages` of the backbone network by setting `frozen_stages` parameters, so that these `stage` parameters do not participate in model updating.
It should be noted that `frozen_stages = i` means that all parameters from the initial `stage` to the `i`<sup>th</sup> `stage` will be frozen. The following is an example of `YOLOv5`. Other algorithms are the same logic.

```python
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'

model = dict(
    backbone=dict(
        frozen_stages=1 # Indicates that the parameters in the first stage and all stages before it are frozen
    ))
```

In addition, it's able to freeze the whole `neck` with the parameter `freeze_all` in MMYOLO. The following is an example of `YOLOv5`. Other algorithms are the same logic.

```python
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'

model = dict(
    neck=dict(
        freeze_all=True # If freeze_all=True, all parameters of the neck will be frozen
    ))
```

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
## Output prediction results

If you want to save the prediction results as a specific file for offline evaluation, MMYOLO currently supports both json and pkl formats.

```{note}
The json file only save `image_id`, `bbox`, `score` and `category_id`. The json file can be read using the json library.
The pkl file holds more content than the json file, and also holds information such as the file name and size of the predicted image; the pkl file can be read using the pickle library. The pkl file can be read using the pickle library.
```

### Output into json file

If you want to output the prediction results as a json file, the command is as follows.

```shell
python tools/test.py {path_to_config} {path_to_checkpoint} --json-prefix {json_prefix}
```

The argument after `--json-prefix` should be a filename prefix (no need to enter the `.json` suffix) and can also contain a path. For a concrete example:

```shell
python tools/test.py configs\yolov5\yolov5_s-v61_syncbn_8xb16-300e_coco.py yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth --json-prefix work_dirs/demo/json_demo
```

Running the above command will output the `json_demo.bbox.json` file in the `work_dirs/demo` folder.

### Output into pkl file

If you want to output the prediction results as a pkl file, the command is as follows.

```shell
python tools/test.py {path_to_config} {path_to_checkpoint} --out {path_to_output_file}
```

The argument after `--out` should be a full filename (**must be** with a `.pkl` or `.pickle` suffix) and can also contain a path. For a concrete example:

```shell
python tools/test.py configs\yolov5\yolov5_s-v61_syncbn_8xb16-300e_coco.py yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth --out work_dirs/demo/pkl_demo.pkl
```

Running the above command will output the `pkl_demo.pkl` file in the `work_dirs/demo` folder.
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529

## Use mim to run scripts from other OpenMMLab repositories

```{note}
1. All script calls across libraries are currently not supported and are being fixed. More examples will be added to this document when the fix is complete. 2.
2. mAP plotting and average training speed calculation are fixed in the MMDetection dev-3.x branch, which currently needs to be installed via the source code to be run successfully.
```

## Log Analysis

#### Curve plotting

`tools/analysis_tools/analyze_logs.py` plots loss/mAP curves given a training log file. Run `pip install seaborn` first to install the dependency.

```shell
mim run mmdet analyze_logs plot_curve \
    ${LOG} \                                     # path of train log in json format
    [--keys ${KEYS}] \                           # the metric that you want to plot, default to 'bbox_mAP'
    [--start-epoch ${START_EPOCH}]               # the epoch that you want to start, default to 1
    [--eval-interval ${EVALUATION_INTERVAL}] \   # the evaluation interval when training, default to 1
    [--title ${TITLE}] \                         # title of figure
    [--legend ${LEGEND}] \                       # legend of each plot, default to None
    [--backend ${BACKEND}] \                     # backend of plt, default to None
    [--style ${STYLE}] \                         # style of plt, default to 'dark'
    [--out ${OUT_FILE}]                          # the path of output file
# [] stands for optional parameters, when actually entering the command line, you do not need to enter []
```

Examples:

- Plot the classification loss of some run.

  ```shell
  mim run mmdet analyze_logs plot_curve \
      yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700.log.json \
      --keys loss_cls \
      --legend loss_cls
  ```

  <img src="https://user-images.githubusercontent.com/27466624/204747359-754555df-1f97-4d5c-87ca-9ad3a0badcce.png" width="600"/>

- Plot the classification and regression loss of some run, and save the figure to a pdf.

  ```shell
  mim run mmdet analyze_logs plot_curve \
      yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700.log.json \
      --keys loss_cls loss_bbox \
      --legend loss_cls loss_bbox \
      --out losses_yolov5_s.pdf
  ```

  <img src="https://user-images.githubusercontent.com/27466624/204748560-2d17ce4b-fb5f-4732-a962-329109e73aad.png" width="600"/>

- Compare the bbox mAP of two runs in the same figure.

  ```shell
  mim run mmdet analyze_logs plot_curve \
      yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700.log.json \
      yolov5_n-v61_syncbn_fast_8xb16-300e_coco_20220919_090739.log.json \
      --keys bbox_mAP \
      --legend yolov5_s yolov5_n \
      --eval-interval 10 # Note that the evaluation interval must be the same as during training. Otherwise, it will raise an error.
  ```

<img src="https://user-images.githubusercontent.com/27466624/204748704-21db9f9e-386e-449c-91c7-2ce3f8b51f24.png" width="600"/>

#### Compute the average training speed

```shell
mim run mmdet analyze_logs cal_train_time \
    ${LOG} \                                # path of train log in json format
    [--include-outliers]                    # include the first value of every epoch when computing the average time
```

Examples:

```shell
mim run mmdet analyze_logs cal_train_time \
    yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700.log.json
```

The output is expected to be like the following.

```text
-----Analyze train time of yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700.log.json-----
slowest epoch 278, average time is 0.1705 s/iter
fastest epoch 300, average time is 0.1510 s/iter
time std over epochs is 0.0026
average iter time: 0.1556 s/iter
```

### Print the whole config

`print_config.py` in MMDetection prints the whole config verbatim, expanding all its imports. The command is as following.

```shell
mim run mmdet print_config \
    ${CONFIG} \                              # path of the config file
    [--save-path] \                          # save path of whole config, suffixed with .py, .json or .yml
    [--cfg-options ${OPTIONS [OPTIONS...]}]  # override some settings in the used config
```

Examples:

```shell
mim run mmdet print_config \
    configs/yolov5/yolov5_s-v61_syncbn_fast_1xb4-300e_balloon.py \
    --save-path ./work_dirs/yolov5_s-v61_syncbn_fast_1xb4-300e_balloon.py
```

Running the above command will save the `yolov5_s-v61_syncbn_fast_1xb4-300e_balloon.py` config file with the inheritance relationship expanded to \`\`yolov5_s-v61_syncbn_fast_1xb4-300e_balloon_whole.py`in the`./work_dirs\` folder.
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

## Set the random seed

If you want to set the random seed during training, you can use the following command.

```shell
python ./tools/train.py \
    ${CONFIG} \                               # path of the config file
    --cfg-options randomness.seed=2023 \      # set seed to 2023
    [randomness.diff_rank_seed=True] \        # set different seeds according to global rank
    [randomness.deterministic=True]           # set the deterministic option for CUDNN backend
# [] stands for optional parameters, when actually entering the command line, you do not need to enter []
```

`randomness` has three parameters that can be set, with the following meanings.

- `randomness.seed=2023`, set the random seed to 2023.
- `randomness.diff_rank_seed=True`, set different seeds according to global rank. Defaults to False.
- `randomness.deterministic=True`, set the deterministic option for cuDNN backend, i.e., set `torch.backends.cudnn.deterministic` to True and `torch.backends.cudnn.benchmark` to False. Defaults to False. See https://pytorch.org/docs/stable/notes/randomness.html for more details.