sync_batch_norm_utils.h 17.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <cfloat>
#include <cmath>
#include <string>
#include <vector>
#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
L
LiYuRio 已提交
29 30 31 32
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
#endif
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/kernels/funcs/norm_utils.h"

namespace phi {

template <typename T>
using CudnnDataType = paddle::platform::CudnnDataType<T>;
template <typename T>
using BatchNormParamType = typename CudnnDataType<T>::BatchNormParamType;

template <typename T, int BlockDim, DataLayout layout>
__global__ void KeLocalStats(
    const T *x, int N, int M, int C, BatchNormParamType<T> *mean_var) {
  typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  for (int k = blockIdx.x; k < C; k += gridDim.x) {
    BatchNormParamType<T> x_sum = 0.;
    BatchNormParamType<T> x2_sum = 0.;
    for (int i = threadIdx.x; i < N * M; i += BlockDim) {
      int id = layout == DataLayout::kNCHW ? (i / M) * C * M + k * M + i % M
                                           : i * C + k;
      auto x_in = static_cast<BatchNormParamType<T>>(x[id]);
      x_sum += x_in;
      x2_sum += x_in * x_in;
    }
    __syncthreads();
    auto out = BlockReduce(temp_storage).Reduce(x_sum, cub::Sum());
    __syncthreads();
    if (threadIdx.x == 0) {
      mean_var[k] = out / (N * M);
    }
    out = BlockReduce(temp_storage).Reduce(x2_sum, cub::Sum());
    __syncthreads();
    if (threadIdx.x == 0) {
      mean_var[k + C] = out / (N * M);
    }
  }
  if (blockIdx.x == 0 && threadIdx.x == 0) {
    mean_var[2 * C] = static_cast<BatchNormParamType<T>>(1.0);
  }
}

template <typename T>
__global__ void KeSyncAndMovingStats(BatchNormParamType<T> *means,
                                     BatchNormParamType<T> *variances,
                                     BatchNormParamType<T> *num_dev,
                                     const int C,
                                     const BatchNormParamType<T> momentum,
                                     const double epsilon,
                                     BatchNormParamType<T> *sv_mean_data,
                                     BatchNormParamType<T> *sv_inv_var_data,
                                     BatchNormParamType<T> *moving_means,
                                     BatchNormParamType<T> *moving_variances) {
  // sync stats across multi-devices
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (int i = gid; i < C; i += stride) {
    auto mean = means[i] / (*num_dev);
    auto var = variances[i] / (*num_dev);
    var = var - mean * mean;

    // sync stats
    sv_mean_data[i] = mean;
    sv_inv_var_data[i] = 1.0 / sqrt(var + epsilon);
    variances[i] = var;

    // moving stats
    moving_means[i] = moving_means[i] * momentum + mean * (1. - momentum);
    moving_variances[i] =
        moving_variances[i] * momentum + var * (1. - momentum);
  }
}

template <typename T, DataLayout layout>
static __global__ void KeNormAffine(const T *x,
                                    const BatchNormParamType<T> *scale,
                                    const BatchNormParamType<T> *bias,
                                    const BatchNormParamType<T> *mean,
                                    const BatchNormParamType<T> *variance,
                                    const double epsilon,
                                    const int C,
                                    const int M,
                                    const int num,
                                    T *y) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (int i = gid; i < num; i += stride) {
    const int c = layout == DataLayout::kNCHW ? (i / M) % C : i % C;
    auto x_i = static_cast<BatchNormParamType<T>>(x[i]);
    auto y_i =
        (x_i - mean[c]) / sqrt(variance[c] + epsilon) * scale[c] + bias[c];
    y[i] = static_cast<T>(y_i);
  }
}

template <typename T, const int BlockDim, DataLayout layout>
__global__ void KeBackwardLocalStats(const T *dy,
                                     const T *x,
                                     const BatchNormParamType<T> *means,
                                     int N,
                                     int M,
                                     int C,
                                     BatchNormParamType<T> *sum_dy_prod) {
  typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  for (int k = blockIdx.x; k < C; k += gridDim.x) {
    BatchNormParamType<T> sum1 = 0.;
    BatchNormParamType<T> sum2 = 0.;
    auto mean = means[k];
    for (int i = threadIdx.x; i < N * M; i += blockDim.x) {
      int id = layout == DataLayout::kNCHW ? (i / M) * C * M + k * M + i % M
                                           : i * C + k;
      auto g = static_cast<BatchNormParamType<T>>(dy[id]);
      sum1 += g;
      auto x_i = static_cast<BatchNormParamType<T>>(x[id]);
      sum2 += g * (x_i - mean);
    }

    __syncthreads();
    auto out = BlockReduce(temp_storage).Reduce(sum1, cub::Sum());
    __syncthreads();
    if (threadIdx.x == 0) {
      sum_dy_prod[k] = out;
    }
    out = BlockReduce(temp_storage).Reduce(sum2, cub::Sum());
    __syncthreads();
    if (threadIdx.x == 0) {
      sum_dy_prod[k + C] = out;
    }
  }
  if (blockIdx.x == 0 && threadIdx.x == 0) {
    sum_dy_prod[2 * C] = 1.0;
  }
}

template <typename T, int BlockDim, DataLayout layout>
static __global__ void KeBNBackwardScaleBias(
    const T *dy,
    const T *x,
    const BatchNormParamType<T> *mean,
    const BatchNormParamType<T> *inv_variance,
    const double epsilon,
    const int N,
    const int C,
    const int HxW,
    BatchNormParamType<T> *dscale,
    BatchNormParamType<T> *dbias) {
  const int outer_size = C;
  const int inner_size = N * HxW;
  typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage temp_storage;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    BatchNormParamType<T> ds_sum = 0.;
    BatchNormParamType<T> db_sum = 0.;

    auto inv_var_i = inv_variance[i];
    auto mean_i = mean[i];
    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int id = layout == DataLayout::kNCHW
                         ? ((j / HxW) * C + i) * HxW + (j % HxW)
                         : j * outer_size + i;
      auto x_i = static_cast<BatchNormParamType<T>>(x[id]);
      auto dy_i = static_cast<BatchNormParamType<T>>(dy[id]);
      ds_sum += dy_i * (x_i - mean_i);
      db_sum += dy_i;
    }
    __syncthreads();
    auto os = BlockReduce(temp_storage).Reduce(ds_sum, cub::Sum());
    __syncthreads();
    auto ob = BlockReduce(temp_storage).Reduce(db_sum, cub::Sum());
    __syncthreads();
    if (threadIdx.x == 0) {
      dscale[i] = os * inv_var_i;
      dbias[i] = ob;
    }
    __syncthreads();
  }
}

template <typename T, DataLayout layout>
static __global__ void KeBNRestoreData(T *x,
                                       const BatchNormParamType<T> *scale,
                                       const BatchNormParamType<T> *bias,
                                       const BatchNormParamType<T> *mean,
                                       const BatchNormParamType<T> *sv_inv,
                                       const double epsilon,
                                       int C,
                                       int M,
                                       int num,
                                       const T *y) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (int i = gid; i < num; i += stride) {
    const int c = layout == DataLayout::kNCHW ? (i / M) % C : i % C;
    auto y_i = static_cast<BatchNormParamType<T>>(y[i]);
    auto x_i = (y_i - bias[c]) / scale[c] / sv_inv[c] + mean[c];
    x[i] = static_cast<T>(x_i);
  }
}

template <typename T, DataLayout layout>
static __global__ void KeBNBackwardData(
    const T *dy,
    const T *x,
    const BatchNormParamType<T> *gamma,
    const BatchNormParamType<T> *mean,
    const BatchNormParamType<T> *inv_variance,
    const BatchNormParamType<T> *g_sum_dy,
    const BatchNormParamType<T> *g_sum_dy_prod,
    const BatchNormParamType<T> *num_dev,
    const double epsilon,
    const int C,
    const int HxW,
    const int num,
    T *dx) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  auto scale = static_cast<BatchNormParamType<T>>(C) / num;
  auto dev_num = num_dev[0];
  for (int i = gid; i < num; i += stride) {
    const int c = layout == DataLayout::kNCHW ? i / HxW % C : i % C;
    auto inv_var = inv_variance[c];
    auto s_d = gamma[c];
    auto gvar =
        -(g_sum_dy_prod[c] / dev_num) * s_d * inv_var * (inv_var * inv_var);
    auto gmean = -(g_sum_dy[c] / dev_num) * s_d * inv_var;

    auto x_i = static_cast<BatchNormParamType<T>>(x[i]);
    auto dy_i = static_cast<BatchNormParamType<T>>(dy[i]);
    auto dx_i =
        dy_i * s_d * inv_var + gmean * scale + gvar * scale * (x_i - mean[c]);
    dx[i] = static_cast<T>(dx_i);
  }
}

template <typename T, typename Context>
void SyncBatchNormGradFunctor(
    const Context &ctx,
    const DenseTensor *input_x,
    const DenseTensor *input_y,
    const DenseTensor &scale,
    const DenseTensor &bias,
    // const paddle::optional<DenseTensor>& mean,
    // const paddle::optional<DenseTensor>& variance,
    const DenseTensor &saved_mean,
    const DenseTensor &saved_variance,
    // const paddle::optional<DenseTensor>& reserve_space,
    const DenseTensor &y_grad,
    // float momentum,
    float epsilon_f,
    const std::string &data_layout_str,
    // bool is_test,
    // bool use_global_stats,
    // bool trainable_statistics,
    // bool fuse_with_relu,
    DenseTensor *x_grad,
    DenseTensor *scale_grad,
    DenseTensor *bias_grad) {
  double epsilon = static_cast<double>(epsilon_f);

298
  const DataLayout layout = phi::StringToDataLayout(data_layout_str);
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

  const auto *d_y = &y_grad;

  auto *d_x = x_grad;
  auto *d_scale = scale_grad;
  auto *d_bias = bias_grad;

  const DenseTensor *x;
  bool is_inplace = false;
  if (input_y) {
    is_inplace = true;
    x = input_y;
  } else {
    x = input_x;
  }
  const auto &x_dims = x->dims();

  PADDLE_ENFORCE_GE(x_dims.size(),
                    2,
                    phi::errors::InvalidArgument(
                        "The Input X dim size should be larger than 1."));
  PADDLE_ENFORCE_LE(x_dims.size(),
                    5,
                    phi::errors::InvalidArgument(
                        "The Input X dim size should be less than 6."));

  int N, C, H, W, D;
  funcs::ExtractNCWHD(x_dims, layout, &N, &C, &H, &W, &D);
  PADDLE_ENFORCE_EQ(scale.dims()[0],
                    C,
                    phi::errors::InvalidArgument(
                        "Expected first dim for input parameter(scale) of "
                        "OP(sync_batch_norm) be (%d), but given (%d).",
                        C,
                        scale.dims()[0]));

  ctx.template Alloc<T>(d_x);
  if (d_scale && d_bias) {
    ctx.template Alloc<BatchNormParamType<T>>(d_scale);
    ctx.template Alloc<BatchNormParamType<T>>(d_bias);
  }
  PADDLE_ENFORCE_EQ(scale.dims().size(),
                    1UL,
                    phi::errors::InvalidArgument(
                        "Expected rank for input parameter(scale) of "
                        "OP(sync_batch_norm) be (1), but given (%d).",
                        scale.dims().size()));

  std::vector<int> dims;
  std::vector<int> strides;
  if (layout == DataLayout::kNCHW) {
    dims = {N, C, H, W, D};
    strides = {C * H * W * D, H * W * D, W * D, D, 1};
  } else {
    dims = {N, C, H, W, D};
    strides = {H * W * C * D, 1, W * D * C, D * C, C};
  }
  const T *x_d = x->data<T>();
  auto px = *x;
  const T *dy_d = d_y->data<T>();

  auto stream = ctx.stream();

  const auto *saved_mean_ptr =
      saved_mean.template data<BatchNormParamType<T>>();
  const auto *saved_inv_var =
      saved_variance.template data<BatchNormParamType<T>>();
  const int bytes = (C * 2 + 1) * sizeof(BatchNormParamType<T>);
367 368 369 370
  auto alloc_ptr = paddle::memory::Alloc(
      ctx.GetPlace(),
      bytes,
      phi::Stream(reinterpret_cast<phi::StreamId>(ctx.stream())));
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
  auto *stats = reinterpret_cast<BatchNormParamType<T> *>(alloc_ptr->ptr());

  const int block = 512;
  const int threads = 256;
  int x_numel = x->numel();
  int fsize = H * W * D;
  int max_threads = ctx.GetMaxPhysicalThreadCount();
  int grid = std::min(C, (max_threads + threads - 1) / threads);
  int grid2 = (std::min(x_numel, max_threads) + block - 1) / block;

  if (is_inplace) {
    if (layout == DataLayout::kNCHW) {
      KeBNRestoreData<T, DataLayout::kNCHW><<<grid2, block, 0, stream>>>(
          ctx.template Alloc<T>(&px),
          scale.template data<BatchNormParamType<T>>(),
          bias.template data<BatchNormParamType<T>>(),
          saved_mean_ptr,
          saved_inv_var,
          epsilon,
          C,
          H * W * D,
          x_numel,
          x->data<T>());
    } else {
      KeBNRestoreData<T, DataLayout::kNHWC><<<grid2, block, 0, stream>>>(
          ctx.template Alloc<T>(&px),
          scale.template data<BatchNormParamType<T>>(),
          bias.template data<BatchNormParamType<T>>(),
          saved_mean_ptr,
          saved_inv_var,
          epsilon,
          C,
          H * W * D,
          x_numel,
          x->data<T>());
    }
  }

  if (layout == DataLayout::kNCHW) {
    KeBackwardLocalStats<T, threads, DataLayout::kNCHW>
        <<<grid, threads, 0, stream>>>(
            dy_d, x_d, saved_mean_ptr, N, fsize, C, stats);
  } else {
    KeBackwardLocalStats<T, threads, DataLayout::kNHWC>
        <<<grid, threads, 0, stream>>>(
            dy_d, x_d, saved_mean_ptr, N, fsize, C, stats);
  }

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
L
LiYuRio 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432
  int global_gid = 0;
  ncclComm_t comm = nullptr;

  if (paddle::distributed::ProcessGroupMapFromGid::getInstance()->has(
          global_gid)) {
    auto *nccl_pg = static_cast<paddle::distributed::ProcessGroupNCCL *>(
        paddle::distributed::ProcessGroupMapFromGid::getInstance()->get(
            global_gid));
    comm = nccl_pg->NCCLComm(x->place());
  } else {
    comm = ctx.nccl_comm();
  }

433 434 435 436
  if (comm) {
    int dtype = paddle::platform::ToNCCLDataType(
        paddle::framework::TransToProtoVarType(scale.dtype()));
    // In-place operation
437 438 439 440 441 442 443 444
    PADDLE_ENFORCE_GPU_SUCCESS(
        phi::dynload::ncclAllReduce(stats,
                                    stats,
                                    2 * C + 1,
                                    static_cast<ncclDataType_t>(dtype),
                                    ncclSum,
                                    comm,
                                    stream));
L
LiYuRio 已提交
445
    VLOG(3) << "Sync result using all reduce";
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
  }
#endif

  if (layout == DataLayout::kNCHW) {
    if (d_scale && d_bias) {
      KeBNBackwardScaleBias<T, threads, DataLayout::kNCHW>
          <<<grid, threads, 0, stream>>>(dy_d,
                                         x_d,
                                         saved_mean_ptr,
                                         saved_inv_var,
                                         epsilon,
                                         N,
                                         C,
                                         fsize,
                                         d_scale->data<BatchNormParamType<T>>(),
                                         d_bias->data<BatchNormParamType<T>>());
    }
    if (d_x) {
      KeBNBackwardData<T, DataLayout::kNCHW><<<grid2, block, 0, stream>>>(
          dy_d,
          x_d,
          scale.template data<BatchNormParamType<T>>(),
          saved_mean_ptr,
          saved_inv_var,
          stats,
          stats + C,
          stats + 2 * C,
          epsilon,
          C,
          fsize,
          x->numel(),
          d_x->data<T>());
    }
  } else {
    if (d_scale && d_bias) {
      KeBNBackwardScaleBias<T, threads, DataLayout::kNHWC>
          <<<grid, threads, 0, stream>>>(dy_d,
                                         x_d,
                                         saved_mean_ptr,
                                         saved_inv_var,
                                         epsilon,
                                         N,
                                         C,
                                         fsize,
                                         d_scale->data<BatchNormParamType<T>>(),
                                         d_bias->data<BatchNormParamType<T>>());
    }
    if (d_x) {
      KeBNBackwardData<T, DataLayout::kNHWC><<<grid2, block, 0, stream>>>(
          dy_d,
          x_d,
          scale.template data<BatchNormParamType<T>>(),
          saved_mean_ptr,
          saved_inv_var,
          stats,
          stats + C,
          stats + 2 * C,
          epsilon,
          C,
          fsize,
          x->numel(),
          d_x->data<T>());
    }
  }
}

}  // namespace phi