stm32u5xx_hal_tim_ex.c 121.8 KB
Newer Older
L
liukangcc 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
/**
  ******************************************************************************
  * @file    stm32u5xx_hal_tim_ex.c
  * @author  MCD Application Team
  * @brief   TIM HAL module driver.
  *          This file provides firmware functions to manage the following
  *          functionalities of the Timer Extended peripheral:
  *           + Time Hall Sensor Interface Initialization
  *           + Time Hall Sensor Interface Start
  *           + Time Complementary signal break and dead time configuration
  *           + Time Master and Slave synchronization configuration
  *           + Time Output Compare/PWM Channel Configuration (for channels 5 and 6)
  *           + Time OCRef clear configuration
  *           + Timer remapping capabilities configuration
  *           + Timer encoder index configuration
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2021 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  @verbatim
  ==============================================================================
                      ##### TIMER Extended features #####
  ==============================================================================
  [..]
    The Timer Extended features include:
    (#) Complementary outputs with programmable dead-time for :
        (++) Output Compare
        (++) PWM generation (Edge and Center-aligned Mode)
        (++) One-pulse mode output
    (#) Synchronization circuit to control the timer with external signals and to
        interconnect several timers together.
    (#) Break input to put the timer output signals in reset state or in a known state.
    (#) Supports incremental (quadrature) encoder and hall-sensor circuitry for
        positioning purposes
    (#) In case of Pulse on compare, configure pulse length and delay
    (#) Encoder index configuration

            ##### How to use this driver #####
  ==============================================================================
    [..]
     (#) Initialize the TIM low level resources by implementing the following functions
         depending on the selected feature:
           (++) Hall Sensor output : HAL_TIMEx_HallSensor_MspInit()

     (#) Initialize the TIM low level resources :
        (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE();
        (##) TIM pins configuration
            (+++) Enable the clock for the TIM GPIOs using the following function:
              __HAL_RCC_GPIOx_CLK_ENABLE();
            (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();

     (#) The external Clock can be configured, if needed (the default clock is the
         internal clock from the APBx), using the following function:
         HAL_TIM_ConfigClockSource, the clock configuration should be done before
         any start function.

     (#) Configure the TIM in the desired functioning mode using one of the
         initialization function of this driver:
          (++) HAL_TIMEx_HallSensor_Init() and HAL_TIMEx_ConfigCommutEvent(): to use the
               Timer Hall Sensor Interface and the commutation event with the corresponding
               Interrupt and DMA request if needed (Note that One Timer is used to interface
               with the Hall sensor Interface and another Timer should be used to use
               the commutation event).
     (#) In case of Pulse On Compare:
           (++) HAL_TIMEx_OC_ConfigPulseOnCompare(): to configure pulse width and prescaler


     (#) Activate the TIM peripheral using one of the start functions:
           (++) Complementary Output Compare : HAL_TIMEx_OCN_Start(), HAL_TIMEx_OCN_Start_DMA(),
                HAL_TIMEx_OCN_Start_IT()
           (++) Complementary PWM generation : HAL_TIMEx_PWMN_Start(), HAL_TIMEx_PWMN_Start_DMA(),
                HAL_TIMEx_PWMN_Start_IT()
           (++) Complementary One-pulse mode output : HAL_TIMEx_OnePulseN_Start(), HAL_TIMEx_OnePulseN_Start_IT()
           (++) Hall Sensor output : HAL_TIMEx_HallSensor_Start(), HAL_TIMEx_HallSensor_Start_DMA(),
                HAL_TIMEx_HallSensor_Start_IT().

  @endverbatim
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32u5xx_hal.h"

/** @addtogroup STM32U5xx_HAL_Driver
  * @{
  */

/** @defgroup TIMEx TIMEx
  * @brief TIM Extended HAL module driver
  * @{
  */

#ifdef HAL_TIM_MODULE_ENABLED

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup TIMEx_Private_Constants TIM Extended Private Constants
  * @{
  */
/* Timeout for break input rearm */
#define TIM_BREAKINPUT_REARM_TIMEOUT    5UL /* 5 milliseconds */
/**
  * @}
  */
/* End of private constants --------------------------------------------------*/

/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
static void TIM_DMADelayPulseNCplt(DMA_HandleTypeDef *hdma);
static void TIM_DMAErrorCCxN(DMA_HandleTypeDef *hdma);
static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState);

/* Exported functions --------------------------------------------------------*/
/** @defgroup TIMEx_Exported_Functions TIM Extended Exported Functions
  * @{
  */

/** @defgroup TIMEx_Exported_Functions_Group1 Extended Timer Hall Sensor functions
  * @brief    Timer Hall Sensor functions
  *
@verbatim
  ==============================================================================
                      ##### Timer Hall Sensor functions #####
  ==============================================================================
  [..]
    This section provides functions allowing to:
    (+) Initialize and configure TIM HAL Sensor.
    (+) De-initialize TIM HAL Sensor.
    (+) Start the Hall Sensor Interface.
    (+) Stop the Hall Sensor Interface.
    (+) Start the Hall Sensor Interface and enable interrupts.
    (+) Stop the Hall Sensor Interface and disable interrupts.
    (+) Start the Hall Sensor Interface and enable DMA transfers.
    (+) Stop the Hall Sensor Interface and disable DMA transfers.

@endverbatim
  * @{
  */
/**
  * @brief  Initializes the TIM Hall Sensor Interface and initialize the associated handle.
  * @note   When the timer instance is initialized in Hall Sensor Interface mode,
  *         timer channels 1 and channel 2 are reserved and cannot be used for
  *         other purpose.
  * @param  htim TIM Hall Sensor Interface handle
  * @param  sConfig TIM Hall Sensor configuration structure
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSensor_InitTypeDef *sConfig)
{
  TIM_OC_InitTypeDef OC_Config;

  /* Check the TIM handle allocation */
  if (htim == NULL)
  {
    return HAL_ERROR;
  }

  /* Check the parameters */
  assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
  assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
  assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
  assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
  assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity));
  assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
  assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));

  if (htim->State == HAL_TIM_STATE_RESET)
  {
    /* Allocate lock resource and initialize it */
    htim->Lock = HAL_UNLOCKED;

#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
    /* Reset interrupt callbacks to legacy week callbacks */
    TIM_ResetCallback(htim);

    if (htim->HallSensor_MspInitCallback == NULL)
    {
      htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit;
    }
    /* Init the low level hardware : GPIO, CLOCK, NVIC */
    htim->HallSensor_MspInitCallback(htim);
#else
    /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
    HAL_TIMEx_HallSensor_MspInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
  }

  /* Set the TIM state */
  htim->State = HAL_TIM_STATE_BUSY;

  /* Configure the Time base in the Encoder Mode */
  TIM_Base_SetConfig(htim->Instance, &htim->Init);

  /* Configure the Channel 1 as Input Channel to interface with the three Outputs of the  Hall sensor */
  TIM_TI1_SetConfig(htim->Instance, sConfig->IC1Polarity, TIM_ICSELECTION_TRC, sConfig->IC1Filter);

  /* Reset the IC1PSC Bits */
  htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
  /* Set the IC1PSC value */
  htim->Instance->CCMR1 |= sConfig->IC1Prescaler;

  /* Enable the Hall sensor interface (XOR function of the three inputs) */
  htim->Instance->CR2 |= TIM_CR2_TI1S;

  /* Select the TIM_TS_TI1F_ED signal as Input trigger for the TIM */
  htim->Instance->SMCR &= ~TIM_SMCR_TS;
  htim->Instance->SMCR |= TIM_TS_TI1F_ED;

  /* Use the TIM_TS_TI1F_ED signal to reset the TIM counter each edge detection */
  htim->Instance->SMCR &= ~TIM_SMCR_SMS;
  htim->Instance->SMCR |= TIM_SLAVEMODE_RESET;

  /* Program channel 2 in PWM 2 mode with the desired Commutation_Delay*/
  OC_Config.OCFastMode = TIM_OCFAST_DISABLE;
  OC_Config.OCIdleState = TIM_OCIDLESTATE_RESET;
  OC_Config.OCMode = TIM_OCMODE_PWM2;
  OC_Config.OCNIdleState = TIM_OCNIDLESTATE_RESET;
  OC_Config.OCNPolarity = TIM_OCNPOLARITY_HIGH;
  OC_Config.OCPolarity = TIM_OCPOLARITY_HIGH;
  OC_Config.Pulse = sConfig->Commutation_Delay;

  TIM_OC2_SetConfig(htim->Instance, &OC_Config);

  /* Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2
    register to 101 */
  htim->Instance->CR2 &= ~TIM_CR2_MMS;
  htim->Instance->CR2 |= TIM_TRGO_OC2REF;

  /* Initialize the DMA burst operation state */
  htim->DMABurstState = HAL_DMA_BURST_STATE_READY;

  /* Initialize the TIM channels state */
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);

  /* Initialize the TIM state*/
  htim->State = HAL_TIM_STATE_READY;

  return HAL_OK;
}

/**
  * @brief  DeInitializes the TIM Hall Sensor interface
  * @param  htim TIM Hall Sensor Interface handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_INSTANCE(htim->Instance));

  htim->State = HAL_TIM_STATE_BUSY;

  /* Disable the TIM Peripheral Clock */
  __HAL_TIM_DISABLE(htim);

#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
  if (htim->HallSensor_MspDeInitCallback == NULL)
  {
    htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit;
  }
  /* DeInit the low level hardware */
  htim->HallSensor_MspDeInitCallback(htim);
#else
  /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
  HAL_TIMEx_HallSensor_MspDeInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */

  /* Change the DMA burst operation state */
  htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;

  /* Change the TIM channels state */
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);

  /* Change TIM state */
  htim->State = HAL_TIM_STATE_RESET;

  /* Release Lock */
  __HAL_UNLOCK(htim);

  return HAL_OK;
}

/**
  * @brief  Initializes the TIM Hall Sensor MSP.
  * @param  htim TIM Hall Sensor Interface handle
  * @retval None
  */
__weak void HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef *htim)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(htim);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_TIMEx_HallSensor_MspInit could be implemented in the user file
   */
}

/**
  * @brief  DeInitializes TIM Hall Sensor MSP.
  * @param  htim TIM Hall Sensor Interface handle
  * @retval None
  */
__weak void HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef *htim)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(htim);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_TIMEx_HallSensor_MspDeInit could be implemented in the user file
   */
}

/**
  * @brief  Starts the TIM Hall Sensor Interface.
  * @param  htim TIM Hall Sensor Interface handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim)
{
  uint32_t tmpsmcr;
  HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
  HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
  HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
  HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);

  /* Check the parameters */
  assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));

  /* Check the TIM channels state */
  if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
      || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
      || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
      || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
  {
    return HAL_ERROR;
  }

  /* Set the TIM channels state */
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);

  /* Enable the Input Capture channel 1
  (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1,
  TIM_CHANNEL_2 and TIM_CHANNEL_3) */
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);

  /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
  if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
  {
    tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
    if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
    {
      __HAL_TIM_ENABLE(htim);
    }
  }
  else
  {
    __HAL_TIM_ENABLE(htim);
  }

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Stops the TIM Hall sensor Interface.
  * @param  htim TIM Hall Sensor Interface handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));

  /* Disable the Input Capture channels 1, 2 and 3
  (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1,
  TIM_CHANNEL_2 and TIM_CHANNEL_3) */
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);

  /* Disable the Peripheral */
  __HAL_TIM_DISABLE(htim);

  /* Set the TIM channels state */
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Starts the TIM Hall Sensor Interface in interrupt mode.
  * @param  htim TIM Hall Sensor Interface handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim)
{
  uint32_t tmpsmcr;
  HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
  HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
  HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
  HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);

  /* Check the parameters */
  assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));

  /* Check the TIM channels state */
  if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
      || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
      || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
      || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
  {
    return HAL_ERROR;
  }

  /* Set the TIM channels state */
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);

  /* Enable the capture compare Interrupts 1 event */
  __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);

  /* Enable the Input Capture channel 1
  (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1,
  TIM_CHANNEL_2 and TIM_CHANNEL_3) */
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);

  /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
  if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
  {
    tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
    if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
    {
      __HAL_TIM_ENABLE(htim);
    }
  }
  else
  {
    __HAL_TIM_ENABLE(htim);
  }

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Stops the TIM Hall Sensor Interface in interrupt mode.
  * @param  htim TIM Hall Sensor Interface handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));

  /* Disable the Input Capture channel 1
  (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1,
  TIM_CHANNEL_2 and TIM_CHANNEL_3) */
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);

  /* Disable the capture compare Interrupts event */
  __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);

  /* Disable the Peripheral */
  __HAL_TIM_DISABLE(htim);

  /* Set the TIM channels state */
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Starts the TIM Hall Sensor Interface in DMA mode.
  * @param  htim TIM Hall Sensor Interface handle
  * @param  pData The destination Buffer address.
  * @param  Length The length of data to be transferred from TIM peripheral to memory.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length)
{
  uint32_t tmpsmcr;
  HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
  HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);

  /* Check the parameters */
  assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));

  /* Set the TIM channel state */
  if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
      || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY))
  {
    return HAL_BUSY;
  }
  else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
           && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY))
  {
    if ((pData == NULL) && (Length > 0U))
    {
      return HAL_ERROR;
    }
    else
    {
      TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
      TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
    }
  }
  else
  {
    return HAL_ERROR;
  }

  /* Enable the Input Capture channel 1
  (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1,
  TIM_CHANNEL_2 and TIM_CHANNEL_3) */
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);

  /* Set the DMA Input Capture 1 Callbacks */
  htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
  htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
  /* Set the DMA error callback */
  htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;

  /* Enable the DMA channel for Capture 1*/
  if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length) != HAL_OK)
  {
    /* Return error status */
    return HAL_ERROR;
  }
  /* Enable the capture compare 1 Interrupt */
  __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);

  /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
  if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
  {
    tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
    if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
    {
      __HAL_TIM_ENABLE(htim);
    }
  }
  else
  {
    __HAL_TIM_ENABLE(htim);
  }

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Stops the TIM Hall Sensor Interface in DMA mode.
  * @param  htim TIM Hall Sensor Interface handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));

  /* Disable the Input Capture channel 1
  (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1,
  TIM_CHANNEL_2 and TIM_CHANNEL_3) */
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);


  /* Disable the capture compare Interrupts 1 event */
  __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);

  (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);

  /* Disable the Peripheral */
  __HAL_TIM_DISABLE(htim);

  /* Set the TIM channel state */
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);

  /* Return function status */
  return HAL_OK;
}

/**
  * @}
  */

/** @defgroup TIMEx_Exported_Functions_Group2 Extended Timer Complementary Output Compare functions
  *  @brief   Timer Complementary Output Compare functions
  *
@verbatim
  ==============================================================================
              ##### Timer Complementary Output Compare functions #####
  ==============================================================================
  [..]
    This section provides functions allowing to:
    (+) Start the Complementary Output Compare/PWM.
    (+) Stop the Complementary Output Compare/PWM.
    (+) Start the Complementary Output Compare/PWM and enable interrupts.
    (+) Stop the Complementary Output Compare/PWM and disable interrupts.
    (+) Start the Complementary Output Compare/PWM and enable DMA transfers.
    (+) Stop the Complementary Output Compare/PWM and disable DMA transfers.

@endverbatim
  * @{
  */

/**
  * @brief  Starts the TIM Output Compare signal generation on the complementary
  *         output.
  * @param  htim TIM Output Compare handle
  * @param  Channel TIM Channel to be enabled
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
{
  uint32_t tmpsmcr;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));

  /* Check the TIM complementary channel state */
  if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
  {
    return HAL_ERROR;
  }

  /* Set the TIM complementary channel state */
  TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);

  /* Enable the Capture compare channel N */
  TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);

  /* Enable the Main Output */
  __HAL_TIM_MOE_ENABLE(htim);

  /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
  if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
  {
    tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
    if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
    {
      __HAL_TIM_ENABLE(htim);
    }
  }
  else
  {
    __HAL_TIM_ENABLE(htim);
  }

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Stops the TIM Output Compare signal generation on the complementary
  *         output.
  * @param  htim TIM handle
  * @param  Channel TIM Channel to be disabled
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
{
  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));

  /* Disable the Capture compare channel N */
  TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);

  /* Disable the Main Output */
  __HAL_TIM_MOE_DISABLE(htim);

  /* Disable the Peripheral */
  __HAL_TIM_DISABLE(htim);

  /* Set the TIM complementary channel state */
  TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Starts the TIM Output Compare signal generation in interrupt mode
  *         on the complementary output.
  * @param  htim TIM OC handle
  * @param  Channel TIM Channel to be enabled
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t tmpsmcr;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));

  /* Check the TIM complementary channel state */
  if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
  {
    return HAL_ERROR;
  }

  /* Set the TIM complementary channel state */
  TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);

  switch (Channel)
  {
    case TIM_CHANNEL_1:
    {
      /* Enable the TIM Output Compare interrupt */
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
      break;
    }

    case TIM_CHANNEL_2:
    {
      /* Enable the TIM Output Compare interrupt */
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
      break;
    }

    case TIM_CHANNEL_3:
    {
      /* Enable the TIM Output Compare interrupt */
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
      break;
    }


    case TIM_CHANNEL_4:
    {
      /* Enable the TIM Output Compare interrupt */
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
      break;
    }

    default:
      status = HAL_ERROR;
      break;
  }

  if (status == HAL_OK)
  {
    /* Enable the TIM Break interrupt */
    __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK);

    /* Enable the Capture compare channel N */
    TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);

    /* Enable the Main Output */
    __HAL_TIM_MOE_ENABLE(htim);

    /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
    if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
    {
      tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
      if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
      {
        __HAL_TIM_ENABLE(htim);
      }
    }
    else
    {
      __HAL_TIM_ENABLE(htim);
    }
  }

  /* Return function status */
  return status;
}

/**
  * @brief  Stops the TIM Output Compare signal generation in interrupt mode
  *         on the complementary output.
  * @param  htim TIM Output Compare handle
  * @param  Channel TIM Channel to be disabled
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t tmpccer;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));

  switch (Channel)
  {
    case TIM_CHANNEL_1:
    {
      /* Disable the TIM Output Compare interrupt */
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
      break;
    }

    case TIM_CHANNEL_2:
    {
      /* Disable the TIM Output Compare interrupt */
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
      break;
    }

    case TIM_CHANNEL_3:
    {
      /* Disable the TIM Output Compare interrupt */
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
      break;
    }

    case TIM_CHANNEL_4:
    {
      /* Disable the TIM Output Compare interrupt */
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
      break;
    }

    default:
      status = HAL_ERROR;
      break;
  }

  if (status == HAL_OK)
  {
    /* Disable the Capture compare channel N */
    TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);

    /* Disable the TIM Break interrupt (only if no more channel is active) */
    tmpccer = htim->Instance->CCER;
    if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE  | TIM_CCER_CC4NE)) == (uint32_t)RESET)
    {
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK);
    }

    /* Disable the Main Output */
    __HAL_TIM_MOE_DISABLE(htim);

    /* Disable the Peripheral */
    __HAL_TIM_DISABLE(htim);

    /* Set the TIM complementary channel state */
    TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
  }

  /* Return function status */
  return status;
}

/**
  * @brief  Starts the TIM Output Compare signal generation in DMA mode
  *         on the complementary output.
  * @param  htim TIM Output Compare handle
  * @param  Channel TIM Channel to be enabled
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
  * @param  pData The source Buffer address.
  * @param  Length The length of data to be transferred from memory to TIM peripheral
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t tmpsmcr;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));

  /* Set the TIM complementary channel state */
  if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
  {
    return HAL_BUSY;
  }
  else if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
  {
    if ((pData == NULL) && (Length > 0U))
    {
      return HAL_ERROR;
    }
    else
    {
      TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
    }
  }
  else
  {
    return HAL_ERROR;
  }

  switch (Channel)
  {
    case TIM_CHANNEL_1:
    {
      /* Set the DMA compare callbacks */
      htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseNCplt;
      htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;

      /* Set the DMA error callback */
      htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAErrorCCxN ;

      /* Enable the DMA channel */
      if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
                           Length) != HAL_OK)
      {
        /* Return error status */
        return HAL_ERROR;
      }
      /* Enable the TIM Output Compare DMA request */
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
      break;
    }

    case TIM_CHANNEL_2:
    {
      /* Set the DMA compare callbacks */
      htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseNCplt;
      htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;

      /* Set the DMA error callback */
      htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAErrorCCxN ;

      /* Enable the DMA channel */
      if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
                           Length) != HAL_OK)
      {
        /* Return error status */
        return HAL_ERROR;
      }
      /* Enable the TIM Output Compare DMA request */
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
      break;
    }

    case TIM_CHANNEL_3:
    {
      /* Set the DMA compare callbacks */
      htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseNCplt;
      htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;

      /* Set the DMA error callback */
      htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAErrorCCxN ;

      /* Enable the DMA channel */
      if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
                           Length) != HAL_OK)
      {
        /* Return error status */
        return HAL_ERROR;
      }
      /* Enable the TIM Output Compare DMA request */
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
      break;
    }

    case TIM_CHANNEL_4:
    {
      /* Set the DMA compare callbacks */
      htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseNCplt;
      htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;

      /* Set the DMA error callback */
      htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAErrorCCxN ;

      /* Enable the DMA channel */
      if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
                           Length) != HAL_OK)
      {
        /* Return error status */
        return HAL_ERROR;
      }
      /* Enable the TIM Output Compare DMA request */
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
      break;
    }

    default:
      status = HAL_ERROR;
      break;
  }

  if (status == HAL_OK)
  {
    /* Enable the Capture compare channel N */
    TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);

    /* Enable the Main Output */
    __HAL_TIM_MOE_ENABLE(htim);

    /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
    if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
    {
      tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
      if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
      {
        __HAL_TIM_ENABLE(htim);
      }
    }
    else
    {
      __HAL_TIM_ENABLE(htim);
    }
  }

  /* Return function status */
  return status;
}

/**
  * @brief  Stops the TIM Output Compare signal generation in DMA mode
  *         on the complementary output.
  * @param  htim TIM Output Compare handle
  * @param  Channel TIM Channel to be disabled
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));

  switch (Channel)
  {
    case TIM_CHANNEL_1:
    {
      /* Disable the TIM Output Compare DMA request */
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
      (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
      break;
    }

    case TIM_CHANNEL_2:
    {
      /* Disable the TIM Output Compare DMA request */
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
      (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
      break;
    }

    case TIM_CHANNEL_3:
    {
      /* Disable the TIM Output Compare DMA request */
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
      (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
      break;
    }

    case TIM_CHANNEL_4:
    {
      /* Disable the TIM Output Compare interrupt */
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
      (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
      break;
    }

    default:
      status = HAL_ERROR;
      break;
  }

  if (status == HAL_OK)
  {
    /* Disable the Capture compare channel N */
    TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);

    /* Disable the Main Output */
    __HAL_TIM_MOE_DISABLE(htim);

    /* Disable the Peripheral */
    __HAL_TIM_DISABLE(htim);

    /* Set the TIM complementary channel state */
    TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
  }

  /* Return function status */
  return status;
}

/**
  * @}
  */

/** @defgroup TIMEx_Exported_Functions_Group3 Extended Timer Complementary PWM functions
  * @brief    Timer Complementary PWM functions
  *
@verbatim
  ==============================================================================
                 ##### Timer Complementary PWM functions #####
  ==============================================================================
  [..]
    This section provides functions allowing to:
    (+) Start the Complementary PWM.
    (+) Stop the Complementary PWM.
    (+) Start the Complementary PWM and enable interrupts.
    (+) Stop the Complementary PWM and disable interrupts.
    (+) Start the Complementary PWM and enable DMA transfers.
    (+) Stop the Complementary PWM and disable DMA transfers.
    (+) Start the Complementary Input Capture measurement.
    (+) Stop the Complementary Input Capture.
    (+) Start the Complementary Input Capture and enable interrupts.
    (+) Stop the Complementary Input Capture and disable interrupts.
    (+) Start the Complementary Input Capture and enable DMA transfers.
    (+) Stop the Complementary Input Capture and disable DMA transfers.
    (+) Start the Complementary One Pulse generation.
    (+) Stop the Complementary One Pulse.
    (+) Start the Complementary One Pulse and enable interrupts.
    (+) Stop the Complementary One Pulse and disable interrupts.

@endverbatim
  * @{
  */

/**
  * @brief  Starts the PWM signal generation on the complementary output.
  * @param  htim TIM handle
  * @param  Channel TIM Channel to be enabled
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
{
  uint32_t tmpsmcr;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));

  /* Check the TIM complementary channel state */
  if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
  {
    return HAL_ERROR;
  }

  /* Set the TIM complementary channel state */
  TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);

  /* Enable the complementary PWM output  */
  TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);

  /* Enable the Main Output */
  __HAL_TIM_MOE_ENABLE(htim);

  /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
  if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
  {
    tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
    if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
    {
      __HAL_TIM_ENABLE(htim);
    }
  }
  else
  {
    __HAL_TIM_ENABLE(htim);
  }

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Stops the PWM signal generation on the complementary output.
  * @param  htim TIM handle
  * @param  Channel TIM Channel to be disabled
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
{
  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));

  /* Disable the complementary PWM output  */
  TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);

  /* Disable the Main Output */
  __HAL_TIM_MOE_DISABLE(htim);

  /* Disable the Peripheral */
  __HAL_TIM_DISABLE(htim);

  /* Set the TIM complementary channel state */
  TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Starts the PWM signal generation in interrupt mode on the
  *         complementary output.
  * @param  htim TIM handle
  * @param  Channel TIM Channel to be disabled
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t tmpsmcr;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));

  /* Check the TIM complementary channel state */
  if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
  {
    return HAL_ERROR;
  }

  /* Set the TIM complementary channel state */
  TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);

  switch (Channel)
  {
    case TIM_CHANNEL_1:
    {
      /* Enable the TIM Capture/Compare 1 interrupt */
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
      break;
    }

    case TIM_CHANNEL_2:
    {
      /* Enable the TIM Capture/Compare 2 interrupt */
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
      break;
    }

    case TIM_CHANNEL_3:
    {
      /* Enable the TIM Capture/Compare 3 interrupt */
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
      break;
    }

    case TIM_CHANNEL_4:
    {
      /* Enable the TIM Capture/Compare 4 interrupt */
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
      break;
    }

    default:
      status = HAL_ERROR;
      break;
  }

  if (status == HAL_OK)
  {
    /* Enable the TIM Break interrupt */
    __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK);

    /* Enable the complementary PWM output  */
    TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);

    /* Enable the Main Output */
    __HAL_TIM_MOE_ENABLE(htim);

    /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
    if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
    {
      tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
      if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
      {
        __HAL_TIM_ENABLE(htim);
      }
    }
    else
    {
      __HAL_TIM_ENABLE(htim);
    }
  }

  /* Return function status */
  return status;
}

/**
  * @brief  Stops the PWM signal generation in interrupt mode on the
  *         complementary output.
  * @param  htim TIM handle
  * @param  Channel TIM Channel to be disabled
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t tmpccer;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));

  switch (Channel)
  {
    case TIM_CHANNEL_1:
    {
      /* Disable the TIM Capture/Compare 1 interrupt */
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
      break;
    }

    case TIM_CHANNEL_2:
    {
      /* Disable the TIM Capture/Compare 2 interrupt */
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
      break;
    }

    case TIM_CHANNEL_3:
    {
      /* Disable the TIM Capture/Compare 3 interrupt */
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
      break;
    }

    case TIM_CHANNEL_4:
    {
      /* Disable the TIM Capture/Compare 4 interrupt */
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
      break;
    }

    default:
      status = HAL_ERROR;
      break;
  }

  if (status == HAL_OK)
  {
    /* Disable the complementary PWM output  */
    TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);

    /* Disable the TIM Break interrupt (only if no more channel is active) */
    tmpccer = htim->Instance->CCER;
    if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE  | TIM_CCER_CC4NE)) == (uint32_t)RESET)
    {
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK);
    }

    /* Disable the Main Output */
    __HAL_TIM_MOE_DISABLE(htim);

    /* Disable the Peripheral */
    __HAL_TIM_DISABLE(htim);

    /* Set the TIM complementary channel state */
    TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
  }

  /* Return function status */
  return status;
}

/**
  * @brief  Starts the TIM PWM signal generation in DMA mode on the
  *         complementary output
  * @param  htim TIM handle
  * @param  Channel TIM Channel to be enabled
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
  * @param  pData The source Buffer address.
  * @param  Length The length of data to be transferred from memory to TIM peripheral
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t tmpsmcr;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));

  /* Set the TIM complementary channel state */
  if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
  {
    return HAL_BUSY;
  }
  else if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
  {
    if ((pData == NULL) && (Length > 0U))
    {
      return HAL_ERROR;
    }
    else
    {
      TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
    }
  }
  else
  {
    return HAL_ERROR;
  }

  switch (Channel)
  {
    case TIM_CHANNEL_1:
    {
      /* Set the DMA compare callbacks */
      htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseNCplt;
      htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;

      /* Set the DMA error callback */
      htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAErrorCCxN ;

      /* Enable the DMA channel */
      if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
                           Length) != HAL_OK)
      {
        /* Return error status */
        return HAL_ERROR;
      }
      /* Enable the TIM Capture/Compare 1 DMA request */
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
      break;
    }

    case TIM_CHANNEL_2:
    {
      /* Set the DMA compare callbacks */
      htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseNCplt;
      htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;

      /* Set the DMA error callback */
      htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAErrorCCxN ;

      /* Enable the DMA channel */
      if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
                           Length) != HAL_OK)
      {
        /* Return error status */
        return HAL_ERROR;
      }
      /* Enable the TIM Capture/Compare 2 DMA request */
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
      break;
    }

    case TIM_CHANNEL_3:
    {
      /* Set the DMA compare callbacks */
      htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseNCplt;
      htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;

      /* Set the DMA error callback */
      htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAErrorCCxN ;

      /* Enable the DMA channel */
      if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
                           Length) != HAL_OK)
      {
        /* Return error status */
        return HAL_ERROR;
      }
      /* Enable the TIM Capture/Compare 3 DMA request */
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
      break;
    }

    case TIM_CHANNEL_4:
    {
      /* Set the DMA compare callbacks */
      htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseNCplt;
      htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;

      /* Set the DMA error callback */
      htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAErrorCCxN ;

      /* Enable the DMA channel */
      if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
                           Length) != HAL_OK)
      {
        /* Return error status */
        return HAL_ERROR;
      }
      /* Enable the TIM Capture/Compare 4 DMA request */
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
      break;
    }

    default:
      status = HAL_ERROR;
      break;
  }

  if (status == HAL_OK)
  {
    /* Enable the complementary PWM output  */
    TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);

    /* Enable the Main Output */
    __HAL_TIM_MOE_ENABLE(htim);

    /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
    if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
    {
      tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
      if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
      {
        __HAL_TIM_ENABLE(htim);
      }
    }
    else
    {
      __HAL_TIM_ENABLE(htim);
    }
  }

  /* Return function status */
  return status;
}

/**
  * @brief  Stops the TIM PWM signal generation in DMA mode on the complementary
  *         output
  * @param  htim TIM handle
  * @param  Channel TIM Channel to be disabled
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));

  switch (Channel)
  {
    case TIM_CHANNEL_1:
    {
      /* Disable the TIM Capture/Compare 1 DMA request */
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
      (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
      break;
    }

    case TIM_CHANNEL_2:
    {
      /* Disable the TIM Capture/Compare 2 DMA request */
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
      (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
      break;
    }

    case TIM_CHANNEL_3:
    {
      /* Disable the TIM Capture/Compare 3 DMA request */
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
      (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
      break;
    }

    case TIM_CHANNEL_4:
    {
      /* Disable the TIM Capture/Compare 4 DMA request */
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
      (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
      break;
    }

    default:
      status = HAL_ERROR;
      break;
  }

  if (status == HAL_OK)
  {
    /* Disable the complementary PWM output */
    TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);

    /* Disable the Main Output */
    __HAL_TIM_MOE_DISABLE(htim);

    /* Disable the Peripheral */
    __HAL_TIM_DISABLE(htim);

    /* Set the TIM complementary channel state */
    TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
  }

  /* Return function status */
  return status;
}

/**
  * @}
  */

/** @defgroup TIMEx_Exported_Functions_Group4 Extended Timer Complementary One Pulse functions
  * @brief    Timer Complementary One Pulse functions
  *
@verbatim
  ==============================================================================
                ##### Timer Complementary One Pulse functions #####
  ==============================================================================
  [..]
    This section provides functions allowing to:
    (+) Start the Complementary One Pulse generation.
    (+) Stop the Complementary One Pulse.
    (+) Start the Complementary One Pulse and enable interrupts.
    (+) Stop the Complementary One Pulse and disable interrupts.

@endverbatim
  * @{
  */

/**
  * @brief  Starts the TIM One Pulse signal generation on the complementary
  *         output.
  * @note OutputChannel must match the pulse output channel chosen when calling
  *       @ref HAL_TIM_OnePulse_ConfigChannel().
  * @param  htim TIM One Pulse handle
  * @param  OutputChannel pulse output channel to enable
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
{
  uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1;
  HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
  HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
  HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
  HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));

  /* Check the TIM channels state */
  if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
      || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
      || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
      || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
  {
    return HAL_ERROR;
  }

  /* Set the TIM channels state */
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);

  /* Enable the complementary One Pulse output channel and the Input Capture channel */
  TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE);
  TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_ENABLE);

  /* Enable the Main Output */
  __HAL_TIM_MOE_ENABLE(htim);

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Stops the TIM One Pulse signal generation on the complementary
  *         output.
  * @note OutputChannel must match the pulse output channel chosen when calling
  *       @ref HAL_TIM_OnePulse_ConfigChannel().
  * @param  htim TIM One Pulse handle
  * @param  OutputChannel pulse output channel to disable
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
{
  uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));

  /* Disable the complementary One Pulse output channel and the Input Capture channel */
  TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE);
  TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_DISABLE);

  /* Disable the Main Output */
  __HAL_TIM_MOE_DISABLE(htim);

  /* Disable the Peripheral */
  __HAL_TIM_DISABLE(htim);

  /* Set the TIM  channels state */
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Starts the TIM One Pulse signal generation in interrupt mode on the
  *         complementary channel.
  * @note OutputChannel must match the pulse output channel chosen when calling
  *       @ref HAL_TIM_OnePulse_ConfigChannel().
  * @param  htim TIM One Pulse handle
  * @param  OutputChannel pulse output channel to enable
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
{
  uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1;
  HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
  HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
  HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
  HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));

  /* Check the TIM channels state */
  if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
      || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
      || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
      || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
  {
    return HAL_ERROR;
  }

  /* Set the TIM channels state */
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);

  /* Enable the TIM Capture/Compare 1 interrupt */
  __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);

  /* Enable the TIM Capture/Compare 2 interrupt */
  __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);

  /* Enable the complementary One Pulse output channel and the Input Capture channel */
  TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE);
  TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_ENABLE);

  /* Enable the Main Output */
  __HAL_TIM_MOE_ENABLE(htim);

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Stops the TIM One Pulse signal generation in interrupt mode on the
  *         complementary channel.
  * @note OutputChannel must match the pulse output channel chosen when calling
  *       @ref HAL_TIM_OnePulse_ConfigChannel().
  * @param  htim TIM One Pulse handle
  * @param  OutputChannel pulse output channel to disable
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
{
  uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));

  /* Disable the TIM Capture/Compare 1 interrupt */
  __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);

  /* Disable the TIM Capture/Compare 2 interrupt */
  __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);

  /* Disable the complementary One Pulse output channel and the Input Capture channel */
  TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE);
  TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_DISABLE);

  /* Disable the Main Output */
  __HAL_TIM_MOE_DISABLE(htim);

  /* Disable the Peripheral */
  __HAL_TIM_DISABLE(htim);

  /* Set the TIM  channels state */
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);

  /* Return function status */
  return HAL_OK;
}

/**
  * @}
  */

/** @defgroup TIMEx_Exported_Functions_Group5 Extended Peripheral Control functions
  * @brief    Peripheral Control functions
  *
@verbatim
  ==============================================================================
                    ##### Peripheral Control functions #####
  ==============================================================================
  [..]
    This section provides functions allowing to:
      (+) Configure the commutation event in case of use of the Hall sensor interface.
      (+) Configure Output channels for OC and PWM mode.

      (+) Configure Complementary channels, break features and dead time.
      (+) Configure Master synchronization.
      (+) Configure timer remapping capabilities.
      (+) Select timer input source.
      (+) Enable or disable channel grouping.
      (+) Configure Pulse on compare.
      (+) Configure Encoder index.

@endverbatim
  * @{
  */

/**
  * @brief  Configure the TIM commutation event sequence.
  * @note  This function is mandatory to use the commutation event in order to
  *        update the configuration at each commutation detection on the TRGI input of the Timer,
  *        the typical use of this feature is with the use of another Timer(interface Timer)
  *        configured in Hall sensor interface, this interface Timer will generate the
  *        commutation at its TRGO output (connected to Timer used in this function) each time
  *        the TI1 of the Interface Timer detect a commutation at its input TI1.
  * @param  htim TIM handle
  * @param  InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
  *          This parameter can be one of the following values:
  *            @arg TIM_TS_ITR0: Internal trigger 0 selected
  *            @arg TIM_TS_ITR1: Internal trigger 1 selected
  *            @arg TIM_TS_ITR2: Internal trigger 2 selected
  *            @arg TIM_TS_ITR3: Internal trigger 3 selected
  *            @arg TIM_TS_ITR4: Internal trigger 4 selected
  *            @arg TIM_TS_ITR5: Internal trigger 5 selected
  *            @arg TIM_TS_ITR6: Internal trigger 6 selected
  *            @arg TIM_TS_ITR7: Internal trigger 7 selected
  *            @arg TIM_TS_ITR8: Internal trigger 8 selected
  *            @arg TIM_TS_ITR11: Internal trigger 11 selected
  *            @arg TIM_TS_NONE: No trigger is needed
  * @param  CommutationSource the Commutation Event source
  *          This parameter can be one of the following values:
  *            @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
  *            @arg TIM_COMMUTATION_SOFTWARE:  Commutation source is set by software using the COMG bit
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent(TIM_HandleTypeDef *htim, uint32_t  InputTrigger,
                                              uint32_t  CommutationSource)
{
  /* Check the parameters */
  assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
  assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_INSTANCE(htim->Instance, InputTrigger));

  __HAL_LOCK(htim);

  if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
      (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3) ||
      (InputTrigger == TIM_TS_ITR4) || (InputTrigger == TIM_TS_ITR5) ||
      (InputTrigger == TIM_TS_ITR6) || (InputTrigger == TIM_TS_ITR7) ||
      (InputTrigger == TIM_TS_ITR8) || (InputTrigger == TIM_TS_ITR11))
  {
    /* Select the Input trigger */
    htim->Instance->SMCR &= ~TIM_SMCR_TS;
    htim->Instance->SMCR |= InputTrigger;
  }

  /* Select the Capture Compare preload feature */
  htim->Instance->CR2 |= TIM_CR2_CCPC;
  /* Select the Commutation event source */
  htim->Instance->CR2 &= ~TIM_CR2_CCUS;
  htim->Instance->CR2 |= CommutationSource;

  /* Disable Commutation Interrupt */
  __HAL_TIM_DISABLE_IT(htim, TIM_IT_COM);

  /* Disable Commutation DMA request */
  __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM);

  __HAL_UNLOCK(htim);

  return HAL_OK;
}

/**
  * @brief  Configure the TIM commutation event sequence with interrupt.
  * @note  This function is mandatory to use the commutation event in order to
  *        update the configuration at each commutation detection on the TRGI input of the Timer,
  *        the typical use of this feature is with the use of another Timer(interface Timer)
  *        configured in Hall sensor interface, this interface Timer will generate the
  *        commutation at its TRGO output (connected to Timer used in this function) each time
  *        the TI1 of the Interface Timer detect a commutation at its input TI1.
  * @param  htim TIM handle
  * @param  InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
  *          This parameter can be one of the following values:
  *            @arg TIM_TS_ITR0: Internal trigger 0 selected
  *            @arg TIM_TS_ITR1: Internal trigger 1 selected
  *            @arg TIM_TS_ITR2: Internal trigger 2 selected
  *            @arg TIM_TS_ITR3: Internal trigger 3 selected
  *            @arg TIM_TS_ITR4: Internal trigger 4 selected
  *            @arg TIM_TS_ITR5: Internal trigger 5 selected
  *            @arg TIM_TS_ITR6: Internal trigger 6 selected
  *            @arg TIM_TS_ITR7: Internal trigger 7 selected
  *            @arg TIM_TS_ITR8: Internal trigger 8 selected
  *            @arg TIM_TS_ITR11: Internal trigger 11 selected
  *            @arg TIM_TS_NONE: No trigger is needed
  * @param  CommutationSource the Commutation Event source
  *          This parameter can be one of the following values:
  *            @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
  *            @arg TIM_COMMUTATION_SOFTWARE:  Commutation source is set by software using the COMG bit
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_IT(TIM_HandleTypeDef *htim, uint32_t  InputTrigger,
                                                 uint32_t  CommutationSource)
{
  /* Check the parameters */
  assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
  assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_INSTANCE(htim->Instance, InputTrigger));

  __HAL_LOCK(htim);

  if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
      (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3) ||
      (InputTrigger == TIM_TS_ITR4) || (InputTrigger == TIM_TS_ITR5) ||
      (InputTrigger == TIM_TS_ITR6) || (InputTrigger == TIM_TS_ITR7) ||
      (InputTrigger == TIM_TS_ITR8) || (InputTrigger == TIM_TS_ITR11))
  {
    /* Select the Input trigger */
    htim->Instance->SMCR &= ~TIM_SMCR_TS;
    htim->Instance->SMCR |= InputTrigger;
  }

  /* Select the Capture Compare preload feature */
  htim->Instance->CR2 |= TIM_CR2_CCPC;
  /* Select the Commutation event source */
  htim->Instance->CR2 &= ~TIM_CR2_CCUS;
  htim->Instance->CR2 |= CommutationSource;

  /* Disable Commutation DMA request */
  __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM);

  /* Enable the Commutation Interrupt */
  __HAL_TIM_ENABLE_IT(htim, TIM_IT_COM);

  __HAL_UNLOCK(htim);

  return HAL_OK;
}

/**
  * @brief  Configure the TIM commutation event sequence with DMA.
  * @note  This function is mandatory to use the commutation event in order to
  *        update the configuration at each commutation detection on the TRGI input of the Timer,
  *        the typical use of this feature is with the use of another Timer(interface Timer)
  *        configured in Hall sensor interface, this interface Timer will generate the
  *        commutation at its TRGO output (connected to Timer used in this function) each time
  *        the TI1 of the Interface Timer detect a commutation at its input TI1.
  * @note  The user should configure the DMA in his own software, in This function only the COMDE bit is set
  * @param  htim TIM handle
  * @param  InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
  *          This parameter can be one of the following values:
  *            @arg TIM_TS_ITR0: Internal trigger 0 selected
  *            @arg TIM_TS_ITR1: Internal trigger 1 selected
  *            @arg TIM_TS_ITR2: Internal trigger 2 selected
  *            @arg TIM_TS_ITR3: Internal trigger 3 selected
  *            @arg TIM_TS_ITR4: Internal trigger 4 selected
  *            @arg TIM_TS_ITR5: Internal trigger 5 selected
  *            @arg TIM_TS_ITR6: Internal trigger 6 selected
  *            @arg TIM_TS_ITR7: Internal trigger 7 selected
  *            @arg TIM_TS_ITR8: Internal trigger 8 selected
  *            @arg TIM_TS_ITR11: Internal trigger 11 selected
  *            @arg TIM_TS_NONE: No trigger is needed
  * @param  CommutationSource the Commutation Event source
  *          This parameter can be one of the following values:
  *            @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
  *            @arg TIM_COMMUTATION_SOFTWARE:  Commutation source is set by software using the COMG bit
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_DMA(TIM_HandleTypeDef *htim, uint32_t  InputTrigger,
                                                  uint32_t  CommutationSource)
{
  /* Check the parameters */
  assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
  assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_INSTANCE(htim->Instance, InputTrigger));

  __HAL_LOCK(htim);

  if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
      (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3) ||
      (InputTrigger == TIM_TS_ITR4) || (InputTrigger == TIM_TS_ITR5) ||
      (InputTrigger == TIM_TS_ITR6) || (InputTrigger == TIM_TS_ITR7) ||
      (InputTrigger == TIM_TS_ITR8) || (InputTrigger == TIM_TS_ITR11))
  {
    /* Select the Input trigger */
    htim->Instance->SMCR &= ~TIM_SMCR_TS;
    htim->Instance->SMCR |= InputTrigger;
  }

  /* Select the Capture Compare preload feature */
  htim->Instance->CR2 |= TIM_CR2_CCPC;
  /* Select the Commutation event source */
  htim->Instance->CR2 &= ~TIM_CR2_CCUS;
  htim->Instance->CR2 |= CommutationSource;

  /* Enable the Commutation DMA Request */
  /* Set the DMA Commutation Callback */
  htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
  htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt;
  /* Set the DMA error callback */
  htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError;

  /* Disable Commutation Interrupt */
  __HAL_TIM_DISABLE_IT(htim, TIM_IT_COM);

  /* Enable the Commutation DMA Request */
  __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_COM);

  __HAL_UNLOCK(htim);

  return HAL_OK;
}

/**
  * @brief  Configures the TIM in master mode.
  * @param  htim TIM handle.
  * @param  sMasterConfig pointer to a TIM_MasterConfigTypeDef structure that
  *         contains the selected trigger output (TRGO) and the Master/Slave
  *         mode.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim,
                                                        TIM_MasterConfigTypeDef *sMasterConfig)
{
  uint32_t tmpcr2;
  uint32_t tmpsmcr;

  /* Check the parameters */
  assert_param(IS_TIM_MASTER_INSTANCE(htim->Instance));
  assert_param(IS_TIM_TRGO_SOURCE(sMasterConfig->MasterOutputTrigger));
  assert_param(IS_TIM_MSM_STATE(sMasterConfig->MasterSlaveMode));

  /* Check input state */
  __HAL_LOCK(htim);

  /* Change the handler state */
  htim->State = HAL_TIM_STATE_BUSY;

  /* Get the TIMx CR2 register value */
  tmpcr2 = htim->Instance->CR2;

  /* Get the TIMx SMCR register value */
  tmpsmcr = htim->Instance->SMCR;

  /* If the timer supports ADC synchronization through TRGO2, set the master mode selection 2 */
  if (IS_TIM_TRGO2_INSTANCE(htim->Instance))
  {
    /* Check the parameters */
    assert_param(IS_TIM_TRGO2_SOURCE(sMasterConfig->MasterOutputTrigger2));

    /* Clear the MMS2 bits */
    tmpcr2 &= ~TIM_CR2_MMS2;
    /* Select the TRGO2 source*/
    tmpcr2 |= sMasterConfig->MasterOutputTrigger2;
  }

  /* Reset the MMS Bits */
  tmpcr2 &= ~TIM_CR2_MMS;
  /* Select the TRGO source */
  tmpcr2 |=  sMasterConfig->MasterOutputTrigger;

  /* Update TIMx CR2 */
  htim->Instance->CR2 = tmpcr2;

  if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
  {
    /* Reset the MSM Bit */
    tmpsmcr &= ~TIM_SMCR_MSM;
    /* Set master mode */
    tmpsmcr |= sMasterConfig->MasterSlaveMode;

    /* Update TIMx SMCR */
    htim->Instance->SMCR = tmpsmcr;
  }

  /* Change the htim state */
  htim->State = HAL_TIM_STATE_READY;

  __HAL_UNLOCK(htim);

  return HAL_OK;
}

/**
  * @brief  Configures the Break feature, dead time, Lock level, OSSI/OSSR State
  *         and the AOE(automatic output enable).
  * @param  htim TIM handle
  * @param  sBreakDeadTimeConfig pointer to a TIM_ConfigBreakDeadConfigTypeDef structure that
  *         contains the BDTR Register configuration  information for the TIM peripheral.
  * @note   Interrupts can be generated when an active level is detected on the
  *         break input, the break 2 input or the system break input. Break
  *         interrupt can be enabled by calling the @ref __HAL_TIM_ENABLE_IT macro.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim,
                                                TIM_BreakDeadTimeConfigTypeDef *sBreakDeadTimeConfig)
{
  /* Keep this variable initialized to 0 as it is used to configure BDTR register */
  uint32_t tmpbdtr = 0U;

  /* Check the parameters */
  assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
  assert_param(IS_TIM_OSSR_STATE(sBreakDeadTimeConfig->OffStateRunMode));
  assert_param(IS_TIM_OSSI_STATE(sBreakDeadTimeConfig->OffStateIDLEMode));
  assert_param(IS_TIM_LOCK_LEVEL(sBreakDeadTimeConfig->LockLevel));
  assert_param(IS_TIM_DEADTIME(sBreakDeadTimeConfig->DeadTime));
  assert_param(IS_TIM_BREAK_STATE(sBreakDeadTimeConfig->BreakState));
  assert_param(IS_TIM_BREAK_POLARITY(sBreakDeadTimeConfig->BreakPolarity));
  assert_param(IS_TIM_BREAK_FILTER(sBreakDeadTimeConfig->BreakFilter));
  assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(sBreakDeadTimeConfig->AutomaticOutput));

  /* Check input state */
  __HAL_LOCK(htim);

  /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
     the OSSI State, the dead time value and the Automatic Output Enable Bit */

  /* Set the BDTR bits */
  MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, sBreakDeadTimeConfig->DeadTime);
  MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, sBreakDeadTimeConfig->LockLevel);
  MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, sBreakDeadTimeConfig->OffStateIDLEMode);
  MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, sBreakDeadTimeConfig->OffStateRunMode);
  MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, sBreakDeadTimeConfig->BreakState);
  MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, sBreakDeadTimeConfig->BreakPolarity);
  MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, sBreakDeadTimeConfig->AutomaticOutput);
  MODIFY_REG(tmpbdtr, TIM_BDTR_BKF, (sBreakDeadTimeConfig->BreakFilter << TIM_BDTR_BKF_Pos));

  if (IS_TIM_ADVANCED_INSTANCE(htim->Instance))
  {
    /* Check the parameters */
    assert_param(IS_TIM_BREAK_AFMODE(sBreakDeadTimeConfig->BreakAFMode));

    /* Set BREAK AF mode */
    MODIFY_REG(tmpbdtr, TIM_BDTR_BKBID, sBreakDeadTimeConfig->BreakAFMode);
  }

  if (IS_TIM_BKIN2_INSTANCE(htim->Instance))
  {
    /* Check the parameters */
    assert_param(IS_TIM_BREAK2_STATE(sBreakDeadTimeConfig->Break2State));
    assert_param(IS_TIM_BREAK2_POLARITY(sBreakDeadTimeConfig->Break2Polarity));
    assert_param(IS_TIM_BREAK_FILTER(sBreakDeadTimeConfig->Break2Filter));

    /* Set the BREAK2 input related BDTR bits */
    MODIFY_REG(tmpbdtr, TIM_BDTR_BK2F, (sBreakDeadTimeConfig->Break2Filter << TIM_BDTR_BK2F_Pos));
    MODIFY_REG(tmpbdtr, TIM_BDTR_BK2E, sBreakDeadTimeConfig->Break2State);
    MODIFY_REG(tmpbdtr, TIM_BDTR_BK2P, sBreakDeadTimeConfig->Break2Polarity);

    if (IS_TIM_ADVANCED_INSTANCE(htim->Instance))
    {
      /* Check the parameters */
      assert_param(IS_TIM_BREAK2_AFMODE(sBreakDeadTimeConfig->Break2AFMode));

      /* Set BREAK2 AF mode */
      MODIFY_REG(tmpbdtr, TIM_BDTR_BK2BID, sBreakDeadTimeConfig->Break2AFMode);
    }
  }

  /* Set TIMx_BDTR */
  htim->Instance->BDTR = tmpbdtr;

  __HAL_UNLOCK(htim);

  return HAL_OK;
}

/**
  * @brief  Configures the break input source.
  * @param  htim TIM handle.
  * @param  BreakInput Break input to configure
  *          This parameter can be one of the following values:
  *            @arg TIM_BREAKINPUT_BRK: Timer break input
  *            @arg TIM_BREAKINPUT_BRK2: Timer break 2 input
  * @param  sBreakInputConfig Break input source configuration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_ConfigBreakInput(TIM_HandleTypeDef *htim,
                                             uint32_t BreakInput,
                                             TIMEx_BreakInputConfigTypeDef *sBreakInputConfig)

{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t tmporx;
  uint32_t bkin_enable_mask;
  uint32_t bkin_polarity_mask;
  uint32_t bkin_enable_bitpos;
  uint32_t bkin_polarity_bitpos;

  /* Check the parameters */
  assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
  assert_param(IS_TIM_BREAKINPUT(BreakInput));
  assert_param(IS_TIM_BREAKINPUTSOURCE(sBreakInputConfig->Source));
  assert_param(IS_TIM_BREAKINPUTSOURCE_STATE(sBreakInputConfig->Enable));
  if (sBreakInputConfig->Source != TIM_BREAKINPUTSOURCE_MDF1)
  {
    assert_param(IS_TIM_BREAKINPUTSOURCE_POLARITY(sBreakInputConfig->Polarity));
  }

  /* Check input state */
  __HAL_LOCK(htim);

  switch (sBreakInputConfig->Source)
  {
    case TIM_BREAKINPUTSOURCE_BKIN:
    {
      bkin_enable_mask = TIM1_AF1_BKINE;
      bkin_enable_bitpos = TIM1_AF1_BKINE_Pos;
      bkin_polarity_mask = TIM1_AF1_BKINP;
      bkin_polarity_bitpos = TIM1_AF1_BKINP_Pos;
      break;
    }
    case TIM_BREAKINPUTSOURCE_COMP1:
    {
      bkin_enable_mask = TIM1_AF1_BKCMP1E;
      bkin_enable_bitpos = TIM1_AF1_BKCMP1E_Pos;
      bkin_polarity_mask = TIM1_AF1_BKCMP1P;
      bkin_polarity_bitpos = TIM1_AF1_BKCMP1P_Pos;
      break;
    }
    case TIM_BREAKINPUTSOURCE_COMP2:
    {
      bkin_enable_mask = TIM1_AF1_BKCMP2E;
      bkin_enable_bitpos = TIM1_AF1_BKCMP2E_Pos;
      bkin_polarity_mask = TIM1_AF1_BKCMP2P;
      bkin_polarity_bitpos = TIM1_AF1_BKCMP2P_Pos;
      break;
    }
    case TIM_BREAKINPUTSOURCE_MDF1:
    {
      bkin_enable_mask = TIM1_AF1_BKDF1BK0E;
      bkin_enable_bitpos = 8U;
      bkin_polarity_mask = 0U;
      bkin_polarity_bitpos = 0U;
      break;
    }

    default:
    {
      bkin_enable_mask = 0U;
      bkin_polarity_mask = 0U;
      bkin_enable_bitpos = 0U;
      bkin_polarity_bitpos = 0U;
      break;
    }
  }

  switch (BreakInput)
  {
    case TIM_BREAKINPUT_BRK:
    {
      /* Get the TIMx_AF1 register value */
      tmporx = htim->Instance->AF1;

      /* Enable the break input */
      tmporx &= ~bkin_enable_mask;
      tmporx |= (sBreakInputConfig->Enable << bkin_enable_bitpos) & bkin_enable_mask;

      /* Set the break input polarity */
      tmporx &= ~bkin_polarity_mask;
      tmporx |= (sBreakInputConfig->Polarity << bkin_polarity_bitpos) & bkin_polarity_mask;

      /* Set TIMx_AF1 */
      htim->Instance->AF1 = tmporx;
      break;
    }
    case TIM_BREAKINPUT_BRK2:
    {
      /* Get the TIMx_AF2 register value */
      tmporx = htim->Instance->AF2;

      /* Enable the break input */
      tmporx &= ~bkin_enable_mask;
      tmporx |= (sBreakInputConfig->Enable << bkin_enable_bitpos) & bkin_enable_mask;

      /* Set the break input polarity */
      tmporx &= ~bkin_polarity_mask;
      tmporx |= (sBreakInputConfig->Polarity << bkin_polarity_bitpos) & bkin_polarity_mask;

      /* Set TIMx_AF2 */
      htim->Instance->AF2 = tmporx;
      break;
    }
    default:
      status = HAL_ERROR;
      break;
  }

  __HAL_UNLOCK(htim);

  return status;
}

/**
  * @brief  Configures the TIMx Remapping input capabilities.
  * @param  htim TIM handle.
  * @param  Remap specifies the TIM remapping source.
  *         For TIM1, the parameter can take one of the following values:
  *            @arg TIM_TIM1_ETR_GPIO           TIM1 ETR is connected to GPIO
  *            @arg TIM_TIM1_ETR_COMP1          TIM1 ETR is connected to COMP1 output
  *            @arg TIM_TIM1_ETR_COMP2          TIM1 ETR is connected to COMP2 output
  *            @arg TIM_TIM1_ETR_HSI            TIM1 ETR is connected to HSI
  *            @arg TIM_TIM1_ETR_MSIS           TIM1_ETR is connected to MSIS
  *            @arg TIM_TIM1_ETR_ADC1_AWD1      TIM1 ETR is connected to ADC1 AWD1
  *            @arg TIM_TIM1_ETR_ADC1_AWD2      TIM1 ETR is connected to ADC1 AWD2
  *            @arg TIM_TIM1_ETR_ADC1_AWD3      TIM1 ETR is connected to ADC1 AWD3
  *            @arg TIM_TIM1_ETR_ADC4_AWD1      TIM1 ETR is connected to ADC4 AWD1
  *            @arg TIM_TIM1_ETR_ADC4_AWD2      TIM1 ETR is connected to ADC4 AWD2
  *            @arg TIM_TIM1_ETR_ADC4_AWD3      TIM1 ETR is connected to ADC4 AWD3
  *
  *         For TIM2, the parameter can take one of the following values:
  *            @arg TIM_TIM2_ETR_GPIO            TIM2 ETR is connected to GPIO
  *            @arg TIM_TIM2_ETR_COMP1           TIM2 ETR is connected to COMP1 output
  *            @arg TIM_TIM2_ETR_COMP2           TIM2 ETR is connected to COMP2 output
  *            @arg TIM_TIM2_ETR_MSIK            TIM2 ETR is connected to MSIK
  *            @arg TIM_TIM2_ETR_HSI             TIM2 ETR is connected to HSI
  *            @arg TIM_TIM2_ETR_MSIS            TIM2_ETR is connected to MSIS
  *            @arg TIM_TIM2_ETR_TIM3_ETR        TIM2 ETR is connected to TIM3 ETR pin
  *            @arg TIM_TIM2_ETR_TIM4_ETR        TIM2 ETR is connected to TIM4 ETR pin
  *            @arg TIM_TIM2_ETR_TIM5_ETR        TIM2 ETR is connected to TIM5 ETR pin
  *            @arg TIM_TIM2_ETR_LSE             TIM2 ETR is connected to LSE
  *
  *         For TIM3, the parameter can take one of the following values:
  *            @arg TIM_TIM3_ETR_GPIO            TIM3 ETR is connected to GPIO
  *            @arg TIM_TIM3_ETR_COMP1           TIM3 ETR is connected to COMP1 output
  *            @arg TIM_TIM3_ETR_COMP2           TIM3 ETR is connected to COMP2 output
  *            @arg TIM_TIM3_ETR_MSIK            TIM3 ETR is connected to MSIK
  *            @arg TIM_TIM3_ETR_HSI             TIM3 ETR is connected to HSI
  *            @arg TIM_TIM3_ETR_MSIS            TIM3_ETR is connected to MSIS
  *            @arg TIM_TIM3_ETR_TIM2_ETR        TIM3 ETR is connected to TIM2 ETR pin
  *            @arg TIM_TIM3_ETR_TIM4_ETR        TIM3 ETR is connected to TIM4 ETR pin
  *            @arg TIM_TIM3_ETR_ADC1_AWD1       TIM3 ETR is connected to ADC1 AWD1
  *            @arg TIM_TIM3_ETR_ADC1_AWD2       TIM3 ETR is connected to ADC1 AWD2
  *            @arg TIM_TIM3_ETR_ADC1_AWD3       TIM3 ETR is connected to ADC1 AWD3
  *
  *         For TIM4, the parameter can take one of the following values:
  *            @arg TIM_TIM4_ETR_GPIO              TIM4 ETR is connected to GPIO
  *            @arg TIM_TIM4_ETR_COMP1             TIM4 ETR is connected to COMP1 output
  *            @arg TIM_TIM4_ETR_COMP2             TIM4 ETR is connected to COMP2 output
  *            @arg TIM_TIM4_ETR_MSIK              TIM4 ETR is connected to MSIK
  *            @arg TIM_TIM4_ETR_HSI               TIM4 ETR is connected to HSI
  *            @arg TIM_TIM4_ETR_MSIS              TIM4_ETR is connected to MSIS
  *            @arg TIM_TIM4_ETR_TIM3_ETR          TIM4 ETR is connected to TIM3 ETR pin
  *            @arg TIM_TIM4_ETR_TIM5_ETR          TIM4 ETR is connected to TIM5 ETR pin
  *
  *         For TIM5, the parameter can take one of the following values:
  *            @arg TIM_TIM5_ETR_GPIO              TIM5 ETR is connected to GPIO
  *            @arg TIM_TIM5_ETR_COMP1             TIM5 ETR is connected to COMP1 output
  *            @arg TIM_TIM5_ETR_COMP2             TIM5 ETR is connected to COMP2 output
  *            @arg TIM_TIM5_ETR_MSIK              TIM5 ETR is connected to MSIK
  *            @arg TIM_TIM5_ETR_HSI               TIM5 ETR is connected to HSI
  *            @arg TIM_TIM5_ETR_MSIS              TIM5_ETR is connected to MSIS
  *            @arg TIM_TIM5_ETR_TIM2_ETR          TIM5 ETR is connected to TIM2 ETR pin
  *            @arg TIM_TIM5_ETR_TIM3_ETR          TIM5 ETR is connected to TIM3 ETR pin
  *
  *         For TIM8, the parameter can take one of the following values:
  *            @arg TIM_TIM8_ETR_GPIO            TIM8 ETR is connected to GPIO
  *            @arg TIM_TIM8_ETR_COMP1           TIM8 ETR is connected to COMP1 output
  *            @arg TIM_TIM8_ETR_COMP2           TIM8 ETR is connected to COMP2 output
  *            @arg TIM_TIM8_ETR_MSIK            TIM8 ETR is connected to MSIK
  *            @arg TIM_TIM8_ETR_HSI             TIM8 ETR is connected to HSI
  *            @arg TIM_TIM8_ETR_MSIS            TIM8_ETR is connected to MSIS
  *            @arg TIM_TIM8_ETR_ADC1_AWD1       TIM8 ETR is connected to ADC1 AWD1
  *            @arg TIM_TIM8_ETR_ADC1_AWD2       TIM8 ETR is connected to ADC1 AWD2
  *            @arg TIM_TIM8_ETR_ADC1_AWD3       TIM8 ETR is connected to ADC1 AWD3
  *            @arg TIM_TIM8_ETR_ADC4_AWD1       TIM8 ETR is connected to ADC4 AWD1
  *            @arg TIM_TIM8_ETR_ADC4_AWD2       TIM8 ETR is connected to ADC4 AWD2
  *            @arg TIM_TIM8_ETR_ADC4_AWD3       TIM8 ETR is connected to ADC4 AWD3
  *
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap)
{
  /* Check parameters */
  assert_param(IS_TIM_REMAP_INSTANCE(htim->Instance));
  assert_param(IS_TIM_REMAP(Remap));

  __HAL_LOCK(htim);

  MODIFY_REG(htim->Instance->AF1, TIM1_AF1_ETRSEL_Msk, Remap);

  __HAL_UNLOCK(htim);

  return HAL_OK;
}

/**
  * @brief  Select the timer input source
  * @param  htim TIM handle.
  * @param  Channel specifies the TIM Channel
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TI1 input channel
  *            @arg TIM_CHANNEL_2: TI2 input channel
  *            @arg TIM_CHANNEL_4: TIM Channel 4
  * @param  TISelection parameter of the TIM_TISelectionStruct structure is detailed as follows:
  *         For TIM1, the parameter is one of the following values:
  *            @arg TIM_TIM1_TI1_GPIO:                TIM1 TI1 is connected to GPIO
  *            @arg TIM_TIM1_TI1_COMP1:               TIM1 TI1 is connected to COMP1 output
  *            @arg TIM_TIM1_TI1_COMP2:               TIM1 TI1 is connected to COMP2 output
  *
  *         For TIM2, the parameter is one of the following values:
  *            @arg TIM_TIM2_TI1_GPIO:                TIM2 TI1 is connected to GPIO
  *            @arg TIM_TIM2_TI1_COMP1:               TIM2 TI1 is connected to COMP1 output
  *            @arg TIM_TIM2_TI1_COMP2:               TIM2 TI1 is connected to COMP1 output
  *            @arg TIM_TIM2_TI2_GPIO:                TIM2 TI2 is connected to GPIO
  *            @arg TIM_TIM2_TI2_COMP1:               TIM2 TI2 is connected to COMP1 output
  *            @arg TIM_TIM2_TI2_COMP2:               TIM2 TI2 is connected to COMP1 output
  *            @arg TIM_TIM2_TI4_GPIO:                TIM2 TI4 is connected to GPIO
  *            @arg TIM_TIM2_TI4_COMP1:               TIM2 TI4 is connected to COMP1 output
  *            @arg TIM_TIM2_TI4_COMP2:               TIM2 TI4 is connected to COMP2 output
  *
  *         For TIM3, the parameter is one of the following values:
  *            @arg TIM_TIM3_TI1_GPIO:                TIM3 TI1 is connected to GPIO
  *            @arg TIM_TIM3_TI1_COMP1:               TIM3 TI1 is connected to COMP1 output
  *            @arg TIM_TIM3_TI1_COMP2:               TIM3 TI1 is connected to COMP2 output
  *            @arg TIM_TIM3_TI2_GPIO:                TIM3 TI2 is connected to GPIO
  *            @arg TIM_TIM3_TI2_COMP1:               TIM3 TI2 is connected to COMP1 output
  *            @arg TIM_TIM3_TI2_COMP2:               TIM3 TI2 is connected to COMP1 output
  *
  *         For TIM4, the parameter is one of the following values:
  *            @arg TIM_TIM4_TI1_GPIO:                TIM4 TI1 is connected to GPIO
  *            @arg TIM_TIM4_TI1_COMP1:               TIM4 TI1 is connected to COMP1 output
  *            @arg TIM_TIM4_TI1_COMP2:               TIM4 TI1 is connected to COMP2 output
  *            @arg TIM_TIM4_TI2_GPIO:                TIM4 TI2 is connected to GPIO
  *            @arg TIM_TIM4_TI2_COMP1:               TIM4 TI2 is connected to COMP1 output
  *            @arg TIM_TIM4_TI2_COMP2:               TIM4 TI2 is connected to COMP2 output
  *
  *         For TIM5, the parameter is one of the following values:
  *            @arg TIM_TIM5_TI1_GPIO:                TIM5 TI1 is connected to GPIO
  *            @arg TIM_TIM5_TI1_LSI:                 TIM5 TI1 is connected to LSI
  *            @arg TIM_TIM5_TI1_LSE:                 TIM5 TI1 is connected to LSE
  *            @arg TIM_TIM5_TI1_RTC_WKUP:            TIM5 TI1 is connected to RTC wakeup interrupt
  *            @arg TIM_TIM5_TI1_COMP1:               TIM5 TI1 is connected to COMP1 output
  *            @arg TIM_TIM5_TI1_COMP2:               TIM5 TI1 is connected to COMP2 output
  *            @arg TIM_TIM5_TI2_GPIO:                TIM5 TI2 is connected to GPIO
  *            @arg TIM_TIM5_TI2_COMP1:               TIM5 TI2 is connected to COMP1 output
  *            @arg TIM_TIM5_TI2_COMP2:               TIM5 TI2 is connected to COMP2 output
  *
  *         For TIM8, the parameter is one of the following values:
  *            @arg TIM_TIM8_TI1_GPIO:                TIM8 TI1 is connected to GPIO
  *            @arg TIM_TIM8_TI1_COMP1:               TIM8 TI1 is connected to COMP1 output
  *            @arg TIM_TIM8_TI1_COMP2:               TIM8 TI1 is connected to COMP2 output
  *
  *         For TIM15, the parameter is one of the following values:
  *            @arg TIM_TIM15_TI1_GPIO:              TIM15 TI1 is connected to GPIO
  *            @arg TIM_TIM15_TI1_LSE:               TIM15 TI1 is connected to LSE
  *            @arg TIM_TIM15_TI1_COMP1:             TIM8 TI1 is connected to COMP1 output
  *            @arg TIM_TIM15_TI1_COMP2:             TIM8 TI1 is connected to COMP2 output
  *            @arg TIM_TIM15_TI2_GPIO:              TIM15 TI2 is connected to GPIO
  *            @arg TIM_TIM15_TI2_TIM2:              TIM15 TI2 is connected to TIM2 CH2
  *            @arg TIM_TIM15_TI2_TIM3:              TIM15 TI2 is connected to TIM3 CH2
  *            @arg TIM_TIM15_TI2_COMP2:             TIM8 TI1 is connected to COMP2 output
  *
  *         For TIM16, the parameter can have the following values:
  *            @arg TIM_TIM16_TI1_GPIO:              TIM16 TI1 is connected to GPIO
  *            @arg TIM_TIM16_TI1_MCO:               TIM16 TI1 is connected to MCO
  *            @arg TIM_TIM16_TI1_LSI:               TIM16 TI1 is connected to LSI
  *            @arg TIM_TIM16_TI1_LSE:               TIM16 TI1 is connected to LSE
  *            @arg TIM_TIM16_TI1_RTC_WKUP:          TIM16 TI1 is connected to RTC wakeup interrupt
  *            @arg TIM_TIM16_TI1_HSE_DIV32:         TIM16 TI1 is connected to HSE/32
  *            @arg TIM_TIM16_TI1_MSIS_1024:         TIM16 TI1 is connected to MSIS/1024
  *            @arg TIM_TIM16_TI1_MSIS_4:            TIM16 TI1 is connected to MSIS/4
  *            @arg TIM_TIM16_TI1_HSI_256:           TIM16 TI1 is connected to HSI/256
  *
  *         For TIM17, the parameter can have the following values:
  *            @arg TIM_TIM17_TI1_GPIO:              TIM17 TI1 is connected to GPIO
  *            @arg TIM_TIM17_TI1_MCO:               TIM17 TI1 is connected to MCO
  *            @arg TIM_TIM17_TI1_LSI:               TIM17 TI1 is connected to LSI
  *            @arg TIM_TIM17_TI1_LSE:               TIM17 TI1 is connected to LSE
  *            @arg TIM_TIM17_TI1_RTC_WKUP:          TIM17 TI1 is connected to RTC wakeup interrupt
  *            @arg TIM_TIM17_TI1_HSE_DIV32:         TIM17 TI1 is connected to HSE/32
  *            @arg TIM_TIM17_TI1_MSIS_1024:         TIM17 TI1 is connected to MSIS/024
  *            @arg TIM_TIM17_TI1_MSIS_4:            TIM17 TI1 is connected to MSIS/4
  *            @arg TIM_TIM17_TI1_HSI_256:           TIM17 TI1 is connected to HSI/256
  *
  *         (*)  Value not defined in all devices. \n
  * @retval HAL status
  */
HAL_StatusTypeDef  HAL_TIMEx_TISelection(TIM_HandleTypeDef *htim, uint32_t TISelection, uint32_t Channel)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check parameters */
  assert_param(IS_TIM_TISEL_INSTANCE(htim->Instance));
  assert_param(IS_TIM_TISEL(TISelection));

  __HAL_LOCK(htim);

  switch (Channel)
  {
    case TIM_CHANNEL_1:
      MODIFY_REG(htim->Instance->TISEL, TIM_TISEL_TI1SEL, TISelection);
      break;
    case TIM_CHANNEL_2:
      MODIFY_REG(htim->Instance->TISEL, TIM_TISEL_TI2SEL, TISelection);
      break;
    case TIM_CHANNEL_4:
      MODIFY_REG(htim->Instance->TISEL, TIM_TISEL_TI4SEL, TISelection);
      break;
    default:
      status = HAL_ERROR;
      break;
  }

  __HAL_UNLOCK(htim);

  return status;
}

/**
  * @brief  Group channel 5 and channel 1, 2 or 3
  * @param  htim TIM handle.
  * @param  Channels specifies the reference signal(s) the OC5REF is combined with.
  *         This parameter can be any combination of the following values:
  *         TIM_GROUPCH5_NONE: No effect of OC5REF on OC1REFC, OC2REFC and OC3REFC
  *         TIM_GROUPCH5_OC1REFC: OC1REFC is the logical AND of OC1REFC and OC5REF
  *         TIM_GROUPCH5_OC2REFC: OC2REFC is the logical AND of OC2REFC and OC5REF
  *         TIM_GROUPCH5_OC3REFC: OC3REFC is the logical AND of OC3REFC and OC5REF
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_GroupChannel5(TIM_HandleTypeDef *htim, uint32_t Channels)
{
  /* Check parameters */
  assert_param(IS_TIM_COMBINED3PHASEPWM_INSTANCE(htim->Instance));
  assert_param(IS_TIM_GROUPCH5(Channels));

  /* Process Locked */
  __HAL_LOCK(htim);

  htim->State = HAL_TIM_STATE_BUSY;

  /* Clear GC5Cx bit fields */
  htim->Instance->CCR5 &= ~(TIM_CCR5_GC5C3 | TIM_CCR5_GC5C2 | TIM_CCR5_GC5C1);

  /* Set GC5Cx bit fields */
  htim->Instance->CCR5 |= Channels;

  /* Change the htim state */
  htim->State = HAL_TIM_STATE_READY;

  __HAL_UNLOCK(htim);

  return HAL_OK;
}

/**
  * @brief  Disarm the designated break input (when it operates in bidirectional mode).
  * @param  htim TIM handle.
  * @param  BreakInput Break input to disarm
  *          This parameter can be one of the following values:
  *            @arg TIM_BREAKINPUT_BRK: Timer break input
  *            @arg TIM_BREAKINPUT_BRK2: Timer break 2 input
  * @note  The break input can be disarmed only when it is configured in
  *        bidirectional mode and when when MOE is reset.
  * @note  Purpose is to be able to have the input voltage back to high-state,
  *        whatever the time constant on the output .
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_DisarmBreakInput(TIM_HandleTypeDef *htim, uint32_t BreakInput)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t tmpbdtr;

  /* Check the parameters */
  assert_param(IS_TIM_ADVANCED_INSTANCE(htim->Instance));
  assert_param(IS_TIM_BREAKINPUT(BreakInput));

  switch (BreakInput)
  {
    case TIM_BREAKINPUT_BRK:
    {
      /* Check initial conditions */
      tmpbdtr = READ_REG(htim->Instance->BDTR);
      if ((READ_BIT(tmpbdtr, TIM_BDTR_BKBID) == TIM_BDTR_BKBID) &&
          (READ_BIT(tmpbdtr, TIM_BDTR_MOE) == 0U))
      {
        /* Break input BRK is disarmed */
        SET_BIT(htim->Instance->BDTR, TIM_BDTR_BKDSRM);
      }
      break;
    }

    case TIM_BREAKINPUT_BRK2:
    {
      /* Check initial conditions */
      tmpbdtr = READ_REG(htim->Instance->BDTR);
      if ((READ_BIT(tmpbdtr, TIM_BDTR_BK2BID) == TIM_BDTR_BK2BID) &&
          (READ_BIT(tmpbdtr, TIM_BDTR_MOE) == 0U))
      {
        /* Break input BRK is disarmed */
        SET_BIT(htim->Instance->BDTR, TIM_BDTR_BK2DSRM);
      }
      break;
    }
    default:
      status = HAL_ERROR;
      break;
  }

  return status;
}

/**
  * @brief  Arm the designated break input (when it operates in bidirectional mode).
  * @param  htim TIM handle.
  * @param  BreakInput Break input to arm
  *          This parameter can be one of the following values:
  *            @arg TIM_BREAKINPUT_BRK: Timer break input
  *            @arg TIM_BREAKINPUT_BRK2: Timer break 2 input
  * @note  Arming is possible at anytime, even if fault is present.
  * @note  Break input is automatically armed as soon as MOE bit is set.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_ReArmBreakInput(TIM_HandleTypeDef *htim, uint32_t BreakInput)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t tickstart;

  /* Check the parameters */
  assert_param(IS_TIM_ADVANCED_INSTANCE(htim->Instance));
  assert_param(IS_TIM_BREAKINPUT(BreakInput));

  switch (BreakInput)
  {
    case TIM_BREAKINPUT_BRK:
    {
      /* Check initial conditions */
      if (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BKBID) == TIM_BDTR_BKBID)
      {
        /* Break input BRK is re-armed automatically by hardware. Poll to check whether fault condition disappeared */
        /* Init tickstart for timeout management */
        tickstart = HAL_GetTick();
        while (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BKDSRM) != 0UL)
        {
          if ((HAL_GetTick() - tickstart) > TIM_BREAKINPUT_REARM_TIMEOUT)
          {
            /* New check to avoid false timeout detection in case of preemption */
            if (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BKDSRM) != 0UL)
            {
              return HAL_TIMEOUT;
            }
          }
        }
      }
      break;
    }

    case TIM_BREAKINPUT_BRK2:
    {
      /* Check initial conditions */
      if (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BK2BID) == TIM_BDTR_BK2BID)
      {
        /* Break input BRK2 is re-armed automatically by hardware. Poll to check whether fault condition disappeared */
        /* Init tickstart for timeout management */
        tickstart = HAL_GetTick();
        while (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BK2DSRM) != 0UL)
        {
          if ((HAL_GetTick() - tickstart) > TIM_BREAKINPUT_REARM_TIMEOUT)
          {
            /* New check to avoid false timeout detection in case of preemption */
            if (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BK2DSRM) != 0UL)
            {
              return HAL_TIMEOUT;
            }
          }
        }
      }
      break;
    }
    default:
      status = HAL_ERROR;
      break;
  }

  return status;
}

/**
  * @brief  Enable dithering
  * @param  htim TIM handle
  * @note   Main usage is PWM mode
  * @note   This function must be called when timer is stopped or disabled (CEN =0)
  * @note   If dithering is activated, pay attention to ARR, CCRx, CNT interpretation:
  *           - CNT: only CNT[11:0] holds the non-dithered part for 16b timers (or CNT[26:0] for 32b timers)
  *           - ARR: ARR[15:4] holds the non-dithered part, and ARR[3:0] the dither part for 16b timers
  *           - CCRx: CCRx[15:4] holds the non-dithered part, and CCRx[3:0] the dither part for 16b timers
  *           - ARR and CCRx values are limited to 0xFFEF in dithering mode for 16b timers
  *             (corresponds to 4094 for the integer part and 15 for the dithered part).
  * @note   Macros @ref __HAL_TIM_CALC_PERIOD_DITHER() __HAL_TIM_CALC_DELAY_DITHER()  __HAL_TIM_CALC_PULSE_DITHER()
  *         can be used to calculate period (ARR) and delay (CCRx) value.
  * @note   Enabling dithering, modifies automatically values of registers ARR/CCRx to keep the same integer part.
  * @note   Enabling dithering, modifies automatically values of registers ARR/CCRx to keep the same integer part.
  *         So it may be necessary to read ARR value or CCRx value with macros @ref __HAL_TIM_GET_AUTORELOAD()
  *         __HAL_TIM_GET_COMPARE() and if necessary update Init structure field htim->Init.Period .
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_DitheringEnable(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_INSTANCE(htim->Instance));

  SET_BIT(htim->Instance->CR1, TIM_CR1_DITHEN);
  return HAL_OK;
}

/**
  * @brief  Disable dithering
  * @param  htim TIM handle
  * @note   This function must be called when timer is stopped or disabled (CEN =0)
  * @note   If dithering is activated, pay attention to ARR, CCRx, CNT interpretation:
  *           - CNT: only CNT[11:0] holds the non-dithered part for 16b timers (or CNT[26:0] for 32b timers)
  *           - ARR: ARR[15:4] holds the non-dithered part, and ARR[3:0] the dither part for 16b timers
  *           - CCRx: CCRx[15:4] holds the non-dithered part, and CCRx[3:0] the dither part for 16b timers
  *           - ARR and CCRx values are limited to 0xFFEF in dithering mode
  *             (corresponds to 4094 for the integer part and 15 for the dithered part).
  * @note   Disabling dithering, modifies automatically values of registers ARR/CCRx to keep the same integer part.
  *         So it may be necessary to read ARR value or CCRx value with macros @ref __HAL_TIM_GET_AUTORELOAD()
  *         __HAL_TIM_GET_COMPARE() and if necessary update Init structure field htim->Init.Period .
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_DitheringDisable(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_INSTANCE(htim->Instance));

  CLEAR_BIT(htim->Instance->CR1, TIM_CR1_DITHEN);
  return HAL_OK;
}

/**
  * @brief  Initializes the pulse on compare pulse width and pulse prescaler
  * @param  htim TIM Output Compare handle
  * @param  PulseWidthPrescaler  Pulse width prescaler
  *         This parameter can be a number between Min_Data = 0x0 and Max_Data = 0x7
  * @param  PulseWidth  Pulse width
  *         This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_OC_ConfigPulseOnCompare(TIM_HandleTypeDef *htim,
                                                    uint32_t PulseWidthPrescaler,
                                                    uint32_t PulseWidth)
{
  uint32_t tmpecr;

  /* Check the parameters */
  assert_param(IS_TIM_PULSEONCOMPARE_INSTANCE(htim->Instance));
  assert_param(IS_TIM_PULSEONCOMPARE_WIDTH(PulseWidth));
  assert_param(IS_TIM_PULSEONCOMPARE_WIDTHPRESCALER(PulseWidthPrescaler));

  /* Process Locked */
  __HAL_LOCK(htim);

  /* Set the TIM state */
  htim->State = HAL_TIM_STATE_BUSY;

  /* Get the TIMx ECR register value */
  tmpecr = htim->Instance->ECR;
  /* Reset the Pulse width prescaler and the Pulse width */
  tmpecr &= ~(TIM_ECR_PWPRSC | TIM_ECR_PW);
  /* Set the Pulse width prescaler and Pulse width*/
  tmpecr |= PulseWidthPrescaler << TIM_ECR_PWPRSC_Pos;
  tmpecr |= PulseWidth << TIM_ECR_PW_Pos;
  /* Write to TIMx ECR */
  htim->Instance->ECR = tmpecr;

  /* Change the TIM state */
  htim->State = HAL_TIM_STATE_READY;

  /* Release Lock */
  __HAL_UNLOCK(htim);

  return HAL_OK;
}

/**
  * @brief  Configure preload source of Slave Mode Selection bitfield (SMS in SMCR register)
  * @param  htim TIM handle
  * @param  Source Source of slave mode selection preload
  *         This parameter can be one of the following values:
  *            @arg TIM_SMS_PRELOAD_SOURCE_UPDATE: Timer update event is used as source of Slave Mode Selection preload
  *            @arg TIM_SMS_PRELOAD_SOURCE_INDEX: Timer index event is used as source of Slave Mode Selection preload
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_ConfigSlaveModePreload(TIM_HandleTypeDef *htim, uint32_t Source)
{
  /* Check the parameters */
  assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
  assert_param(IS_TIM_SLAVE_PRELOAD_SOURCE(Source));

  MODIFY_REG(htim->Instance->SMCR, TIM_SMCR_SMSPS, Source);
  return HAL_OK;
}

/**
  * @brief  Enable preload of Slave Mode Selection bitfield (SMS in SMCR register)
  * @param  htim TIM handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_EnableSlaveModePreload(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));

  SET_BIT(htim->Instance->SMCR, TIM_SMCR_SMSPE);
  return HAL_OK;
}

/**
  * @brief  Disable preload of Slave Mode Selection bitfield (SMS in SMCR register)
  * @param  htim TIM handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_DisableSlaveModePreload(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));

  CLEAR_BIT(htim->Instance->SMCR, TIM_SMCR_SMSPE);
  return HAL_OK;
}

/**
  * @brief  Enable deadtime preload
  * @param  htim TIM handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_EnableDeadTimePreload(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));

  SET_BIT(htim->Instance->DTR2, TIM_DTR2_DTPE);
  return HAL_OK;
}

/**
  * @brief  Disable deadtime preload
  * @param  htim TIM handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_DisableDeadTimePreload(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));

  CLEAR_BIT(htim->Instance->DTR2, TIM_DTR2_DTPE);
  return HAL_OK;
}

/**
  * @brief  Configure deadtime
  * @param  htim TIM handle
  * @param  Deadtime Deadtime value
  * @note   This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_ConfigDeadTime(TIM_HandleTypeDef *htim, uint32_t Deadtime)
{
  /* Check the parameters */
  assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
  assert_param(IS_TIM_DEADTIME(Deadtime));

  MODIFY_REG(htim->Instance->BDTR, TIM_BDTR_DTG, Deadtime);
  return HAL_OK;
}

/**
  * @brief  Configure asymmetrical deadtime
  * @param  htim TIM handle
  * @param  FallingDeadtime Falling edge deadtime value
  * @note   This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_ConfigAsymmetricalDeadTime(TIM_HandleTypeDef *htim, uint32_t FallingDeadtime)
{
  /* Check the parameters */
  assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
  assert_param(IS_TIM_DEADTIME(FallingDeadtime));

  MODIFY_REG(htim->Instance->DTR2, TIM_DTR2_DTGF, FallingDeadtime);
  return HAL_OK;
}

/**
  * @brief  Enable asymmetrical deadtime
  * @param  htim TIM handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_EnableAsymmetricalDeadTime(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));

  SET_BIT(htim->Instance->DTR2, TIM_DTR2_DTAE);
  return HAL_OK;
}

/**
  * @brief  Disable asymmetrical deadtime
  * @param  htim TIM handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_DisableAsymmetricalDeadTime(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));

  CLEAR_BIT(htim->Instance->DTR2, TIM_DTR2_DTAE);
  return HAL_OK;
}

/**
  * @brief  Configures the encoder index.
  * @note   warning in case of encoder mode clock plus direction
  *                    @ref TIM_ENCODERMODE_CLOCKPLUSDIRECTION_X1 or @ref TIM_ENCODERMODE_CLOCKPLUSDIRECTION_X2
  *         Direction must be set to @ref TIM_ENCODERINDEX_DIRECTION_UP_DOWN
  * @param  htim TIM handle.
  * @param  sEncoderIndexConfig Encoder index configuration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_ConfigEncoderIndex(TIM_HandleTypeDef *htim,
                                               TIMEx_EncoderIndexConfigTypeDef *sEncoderIndexConfig)
{
  /* Check the parameters */
  assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
  assert_param(IS_TIM_ENCODERINDEX_POLARITY(sEncoderIndexConfig->Polarity));
  assert_param(IS_TIM_ENCODERINDEX_PRESCALER(sEncoderIndexConfig->Prescaler));
  assert_param(IS_TIM_ENCODERINDEX_FILTER(sEncoderIndexConfig->Filter));
  assert_param(IS_TIM_ENCODERINDEX_BLANKING(sEncoderIndexConfig->Blanking));
  assert_param(IS_FUNCTIONAL_STATE(sEncoderIndexConfig->FirstIndexEnable));
  assert_param(IS_TIM_ENCODERINDEX_POSITION(sEncoderIndexConfig->Position));
  assert_param(IS_TIM_ENCODERINDEX_DIRECTION(sEncoderIndexConfig->Direction));

  /* Process Locked */
  __HAL_LOCK(htim);

  /* Configures the TIMx External Trigger (ETR) which is used as Index input */
  TIM_ETR_SetConfig(htim->Instance,
                    sEncoderIndexConfig->Prescaler,
                    sEncoderIndexConfig->Polarity,
                    sEncoderIndexConfig->Filter);

  /* Configures the encoder index */
  if (HAL_GetREVID() >= REV_ID_B)  /* supported in cut2 */
  {
    MODIFY_REG(htim->Instance->ECR,
               TIM_ECR_IDIR_Msk | TIM_ECR_IBLK_Msk | TIM_ECR_FIDX_Msk | TIM_ECR_IPOS_Msk,
               (sEncoderIndexConfig->Direction |
                (sEncoderIndexConfig->Blanking) |
                ((sEncoderIndexConfig->FirstIndexEnable == ENABLE) ? (0x1U << TIM_ECR_FIDX_Pos) : 0U) |
                sEncoderIndexConfig->Position |
                TIM_ECR_IE));
  }
  else
  {
    MODIFY_REG(htim->Instance->ECR,
               TIM_ECR_IDIR_Msk | TIM_ECR_FIDX_Msk | TIM_ECR_IPOS_Msk,
               (sEncoderIndexConfig->Direction |
                ((sEncoderIndexConfig->FirstIndexEnable == ENABLE) ? (0x1U << TIM_ECR_FIDX_Pos) : 0U) |
                sEncoderIndexConfig->Position |
                TIM_ECR_IE));
  }

  __HAL_UNLOCK(htim);

  return HAL_OK;
}

/**
  * @brief  Enable encoder index
  * @param  htim TIM handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_EnableEncoderIndex(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));

  SET_BIT(htim->Instance->ECR, TIM_ECR_IE);
  return HAL_OK;
}

/**
  * @brief  Disable encoder index
  * @param  htim TIM handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_DisableEncoderIndex(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));

  CLEAR_BIT(htim->Instance->ECR, TIM_ECR_IE);
  return HAL_OK;
}

/**
  * @brief  Enable encoder first index
  * @param  htim TIM handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_EnableEncoderFirstIndex(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));

  SET_BIT(htim->Instance->ECR, TIM_ECR_FIDX);
  return HAL_OK;
}

/**
  * @brief  Disable encoder first index
  * @param  htim TIM handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_TIMEx_DisableEncoderFirstIndex(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));

  CLEAR_BIT(htim->Instance->ECR, TIM_ECR_FIDX);
  return HAL_OK;
}

/**
  * @}
  */

/** @defgroup TIMEx_Exported_Functions_Group6 Extended Callbacks functions
  * @brief    Extended Callbacks functions
  *
@verbatim
  ==============================================================================
                    ##### Extended Callbacks functions #####
  ==============================================================================
  [..]
    This section provides Extended TIM callback functions:
    (+) Timer Commutation callback
    (+) Timer Break callback

@endverbatim
  * @{
  */

/**
  * @brief  Hall commutation changed callback in non-blocking mode
  * @param  htim TIM handle
  * @retval None
  */
__weak void HAL_TIMEx_CommutCallback(TIM_HandleTypeDef *htim)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(htim);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_TIMEx_CommutCallback could be implemented in the user file
   */
}
/**
  * @brief  Hall commutation changed half complete callback in non-blocking mode
  * @param  htim TIM handle
  * @retval None
  */
__weak void HAL_TIMEx_CommutHalfCpltCallback(TIM_HandleTypeDef *htim)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(htim);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_TIMEx_CommutHalfCpltCallback could be implemented in the user file
   */
}

/**
  * @brief  Hall Break detection callback in non-blocking mode
  * @param  htim TIM handle
  * @retval None
  */
__weak void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(htim);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_TIMEx_BreakCallback could be implemented in the user file
   */
}

/**
  * @brief  Hall Break2 detection callback in non blocking mode
  * @param  htim: TIM handle
  * @retval None
  */
__weak void HAL_TIMEx_Break2Callback(TIM_HandleTypeDef *htim)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(htim);

  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_TIMEx_Break2Callback could be implemented in the user file
   */
}

/**
  * @brief  Encoder index callback in non-blocking mode
  * @param  htim TIM handle
  * @retval None
  */
__weak void HAL_TIMEx_EncoderIndexCallback(TIM_HandleTypeDef *htim)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(htim);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_TIMEx_EncoderIndexCallback could be implemented in the user file
   */
}

/**
  * @brief  Direction change callback in non-blocking mode
  * @param  htim TIM handle
  * @retval None
  */
__weak void HAL_TIMEx_DirectionChangeCallback(TIM_HandleTypeDef *htim)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(htim);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_TIMEx_DirectionChangeCallback could be implemented in the user file
   */
}

/**
  * @brief  Index error callback in non-blocking mode
  * @param  htim TIM handle
  * @retval None
  */
__weak void HAL_TIMEx_IndexErrorCallback(TIM_HandleTypeDef *htim)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(htim);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_TIMEx_IndexErrorCallback could be implemented in the user file
   */
}

/**
  * @brief  Transition error callback in non-blocking mode
  * @param  htim TIM handle
  * @retval None
  */
__weak void HAL_TIMEx_TransitionErrorCallback(TIM_HandleTypeDef *htim)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(htim);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_TIMEx_TransitionErrorCallback could be implemented in the user file
   */
}

/**
  * @}
  */

/** @defgroup TIMEx_Exported_Functions_Group7 Extended Peripheral State functions
  * @brief    Extended Peripheral State functions
  *
@verbatim
  ==============================================================================
                ##### Extended Peripheral State functions #####
  ==============================================================================
  [..]
    This subsection permits to get in run-time the status of the peripheral
    and the data flow.

@endverbatim
  * @{
  */

/**
  * @brief  Return the TIM Hall Sensor interface handle state.
  * @param  htim TIM Hall Sensor handle
  * @retval HAL state
  */
HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(TIM_HandleTypeDef *htim)
{
  return htim->State;
}

/**
  * @brief  Return actual state of the TIM complementary channel.
  * @param  htim TIM handle
  * @param  ChannelN TIM Complementary channel
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1
  *            @arg TIM_CHANNEL_2: TIM Channel 2
  *            @arg TIM_CHANNEL_3: TIM Channel 3
  *            @arg TIM_CHANNEL_4: TIM Channel 4
  * @retval TIM Complementary channel state
  */
HAL_TIM_ChannelStateTypeDef HAL_TIMEx_GetChannelNState(TIM_HandleTypeDef *htim,  uint32_t ChannelN)
{
  HAL_TIM_ChannelStateTypeDef channel_state;

  /* Check the parameters */
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, ChannelN));

  channel_state = TIM_CHANNEL_N_STATE_GET(htim, ChannelN);

  return channel_state;
}
/**
  * @}
  */

/**
  * @}
  */

/* Private functions ---------------------------------------------------------*/
/** @defgroup TIMEx_Private_Functions TIMEx Private Functions
  * @{
  */

/**
  * @brief  TIM DMA Commutation callback.
  * @param  hdma pointer to DMA handle.
  * @retval None
  */
void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma)
{
  TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;

  /* Change the htim state */
  htim->State = HAL_TIM_STATE_READY;

#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
  htim->CommutationCallback(htim);
#else
  HAL_TIMEx_CommutCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}

/**
  * @brief  TIM DMA Commutation half complete callback.
  * @param  hdma pointer to DMA handle.
  * @retval None
  */
void TIMEx_DMACommutationHalfCplt(DMA_HandleTypeDef *hdma)
{
  TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;

  /* Change the htim state */
  htim->State = HAL_TIM_STATE_READY;

#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
  htim->CommutationHalfCpltCallback(htim);
#else
  HAL_TIMEx_CommutHalfCpltCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}


/**
  * @brief  TIM DMA Delay Pulse complete callback (complementary channel).
  * @param  hdma pointer to DMA handle.
  * @retval None
  */
static void TIM_DMADelayPulseNCplt(DMA_HandleTypeDef *hdma)
{
  TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;

  if (hdma == htim->hdma[TIM_DMA_ID_CC1])
  {
    htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
  }
  else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
  {
    htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
  }
  else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
  {
    htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
  }
  else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
  {
    htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
  }
  else
  {
    /* nothing to do */
  }

#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
  htim->PWM_PulseFinishedCallback(htim);
#else
  HAL_TIM_PWM_PulseFinishedCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */

  htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
}

/**
  * @brief  TIM DMA error callback (complementary channel)
  * @param  hdma pointer to DMA handle.
  * @retval None
  */
static void TIM_DMAErrorCCxN(DMA_HandleTypeDef *hdma)
{
  TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;

  if (hdma == htim->hdma[TIM_DMA_ID_CC1])
  {
    htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
    TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
  }
  else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
  {
    htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
    TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
  }
  else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
  {
    htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
    TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
  }
  else
  {
    /* nothing to do */
  }

#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
  htim->ErrorCallback(htim);
#else
  HAL_TIM_ErrorCallback(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */

  htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
}

/**
  * @brief  Enables or disables the TIM Capture Compare Channel xN.
  * @param  TIMx to select the TIM peripheral
  * @param  Channel specifies the TIM Channel
  *          This parameter can be one of the following values:
  *            @arg TIM_CHANNEL_1: TIM Channel 1
  *            @arg TIM_CHANNEL_2: TIM Channel 2
  *            @arg TIM_CHANNEL_3: TIM Channel 3
  *            @arg TIM_CHANNEL_4: TIM Channel 4
  * @param  ChannelNState specifies the TIM Channel CCxNE bit new state.
  *          This parameter can be: TIM_CCxN_ENABLE or TIM_CCxN_Disable.
  * @retval None
  */
static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState)
{
  uint32_t tmp;

  tmp = TIM_CCER_CC1NE << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */

  /* Reset the CCxNE Bit */
  TIMx->CCER &=  ~tmp;

  /* Set or reset the CCxNE Bit */
  TIMx->CCER |= (uint32_t)(ChannelNState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */
}

/**
  * @brief  Enable HSE/32 .
  * @note  This function should be called to enable the HSE/32 when it is selected as TIM17_TI1 or TIM16_TI1 input
  *        source.
  * @param htim TIM handle.
  * @retval  HAL status.
  */
HAL_StatusTypeDef HAL_TIMEx_EnableHSE32(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_HSE32_INSTANCE(htim->Instance));

  /* The Cut1.x contains a limitation when using HSE/32 as input capture for TIM16
     Bug ID 56: On TIM16, the HSE/32 input capture requires the set of HSE32EN bit of TIM17 Option Register */
  if (HAL_GetREVID() < REV_ID_B)  /* Cut1.x */
  {
    __HAL_RCC_TIM17_CLK_ENABLE();
    SET_BIT(TIM17->OR1, TIM_OR1_HSE32EN);
  }
  else
  {
    SET_BIT(htim->Instance->OR1, TIM_OR1_HSE32EN);
  }

  return HAL_OK;
}

/**
  * @brief  Disable HSE/32 .
  * @note  This function should be called to Disable the HSE/32 .
  * @param htim TIM handle.
  * @retval  HAL status.
  */
HAL_StatusTypeDef HAL_TIMEx_DisableHSE32(TIM_HandleTypeDef *htim)
{
  /* Check the parameters */
  assert_param(IS_TIM_HSE32_INSTANCE(htim->Instance));

  if (HAL_GetREVID() < REV_ID_B) /* Cut1.x */
  {
    __HAL_RCC_TIM17_CLK_ENABLE();
    CLEAR_BIT(TIM17->OR1, TIM_OR1_HSE32EN);
  }
  else
  {
    CLEAR_BIT(htim->Instance->OR1, TIM_OR1_HSE32EN);
  }

  return HAL_OK;
}
/**
  * @}
  */

#endif /* HAL_TIM_MODULE_ENABLED */
/**
  * @}
  */

/**
  * @}
  */