未验证 提交 f639851e 编写于 作者: dengyihao's avatar dengyihao 提交者: GitHub

Merge pull request #9795 from taosdata/feature/rpc

Feature/rpc
......@@ -27,4 +27,11 @@ if (${BUILD_WITH_UV})
add_definitions(-DUSE_UV)
endif(${BUILD_WITH_UV})
if (${BUILD_TEST})
add_subdirectory(test)
endif(${BUILD_TEST})
......@@ -22,6 +22,27 @@ extern "C" {
#endif
#ifdef USE_UV
typedef struct {
char version : 4; // RPC version
char comp : 4; // compression algorithm, 0:no compression 1:lz4
char resflag : 2; // reserved bits
char spi : 3; // security parameter index
char encrypt : 3; // encrypt algorithm, 0: no encryption
uint16_t tranId; // transcation ID
uint32_t linkUid; // for unique connection ID assigned by client
uint64_t ahandle; // ahandle assigned by client
uint32_t sourceId; // source ID, an index for connection list
uint32_t destId; // destination ID, an index for connection list
uint32_t destIp; // destination IP address, for NAT scenario
char user[TSDB_UNI_LEN]; // user ID
uint16_t port; // for UDP only, port may be changed
char empty[1]; // reserved
uint16_t msgType; // message type
int32_t msgLen; // message length including the header iteslf
uint32_t msgVer;
int32_t code; // code in response message
uint8_t content[0]; // message body starts from here
} SRpcHead;
#else
......
......@@ -22,9 +22,58 @@ extern "C" {
#ifdef USE_UV
#else
#include <stddef.h>
typedef void *queue[2];
/* Private macros. */
#define QUEUE_NEXT(q) (*(queue **)&((*(q))[0]))
#define QUEUE_PREV(q) (*(queue **)&((*(q))[1]))
#define QUEUE_PREV_NEXT(q) (QUEUE_NEXT(QUEUE_PREV(q)))
#define QUEUE_NEXT_PREV(q) (QUEUE_PREV(QUEUE_NEXT(q)))
/* Initialize an empty queue. */
#define QUEUE_INIT(q) \
{ \
QUEUE_NEXT(q) = (q); \
QUEUE_PREV(q) = (q); \
}
/* Return true if the queue has no element. */
#define QUEUE_IS_EMPTY(q) ((const queue *)(q) == (const queue *)QUEUE_NEXT(q))
/* Insert an element at the back of a queue. */
#define QUEUE_PUSH(q, e) \
{ \
QUEUE_NEXT(e) = (q); \
QUEUE_PREV(e) = QUEUE_PREV(q); \
QUEUE_PREV_NEXT(e) = (e); \
QUEUE_PREV(q) = (e); \
}
/* Remove the given element from the queue. Any element can be removed at any *
* time. */
#define QUEUE_REMOVE(e) \
{ \
QUEUE_PREV_NEXT(e) = QUEUE_NEXT(e); \
QUEUE_NEXT_PREV(e) = QUEUE_PREV(e); \
}
/* Return the element at the front of the queue. */
#define QUEUE_HEAD(q) (QUEUE_NEXT(q))
/* Return the element at the back of the queue. */
#define QUEUE_TAIL(q) (QUEUE_PREV(q))
/* Iterate over the element of a queue. * Mutating the queue while iterating
* results in undefined behavior. */
#define QUEUE_FOREACH(q, e) for ((q) = QUEUE_NEXT(e); (q) != (e); (q) = QUEUE_NEXT(q))
/* Return the structure holding the given element. */
#define QUEUE_DATA(e, type, field) ((type *)((void *)((char *)(e)-offsetof(type, field))))
#endif // USE_LIBUV
#endif
#ifdef __cplusplus
}
#endif
......
......@@ -30,6 +30,7 @@
#include "tmd5.h"
#include "tmempool.h"
#include "tmsg.h"
#include "transportInt.h"
#include "tref.h"
#include "trpc.h"
#include "ttimer.h"
......@@ -69,61 +70,87 @@ typedef struct {
#define container_of(ptr, type, member) ((type*)((char*)(ptr)-offsetof(type, member)))
static const char* notify = "a";
typedef struct SThreadObj {
pthread_t thread;
uv_pipe_t* pipe;
uv_loop_t* loop;
uv_async_t* workerAsync; //
int fd;
pthread_t thread;
uv_pipe_t* pipe;
uv_loop_t* loop;
uv_async_t* workerAsync; //
int fd;
queue conn;
pthread_mutex_t connMtx;
} SThreadObj;
typedef struct SServerObj {
pthread_t thread;
uv_tcp_t server;
uv_loop_t* loop;
int workerIdx;
int numOfThread;
SThreadObj** pThreadObj;
uv_pipe_t** pipe;
uint32_t ip;
uint32_t port;
} SServerObj;
typedef struct SContent {
char* buf;
int len;
int cap;
int toRead;
} SContent;
typedef struct SConnCtx {
uv_tcp_t* pClient;
uv_tcp_t* pTcp;
uv_write_t* pWriter;
uv_timer_t* pTimer;
uv_async_t* pWorkerAsync;
queue queue;
int ref;
int persist; // persist connection or not
SContent pCont;
int count;
} SConnCtx;
static void allocBuffer(uv_handle_t* handle, size_t suggested_size, uv_buf_t* buf);
static void onTimeout(uv_timer_t* handle);
static void onRead(uv_stream_t* cli, ssize_t nread, const uv_buf_t* buf);
static void onWrite(uv_write_t* req, int status);
static void onAccept(uv_stream_t* stream, int status);
void onConnection(uv_stream_t* q, ssize_t nread, const uv_buf_t* buf);
static void workerAsyncCB(uv_async_t* handle);
static void allocReadBuffer(uv_handle_t* handle, size_t suggested_size, uv_buf_t* buf);
static void onRead(uv_stream_t* cli, ssize_t nread, const uv_buf_t* buf);
static void allocConnBuffer(uv_handle_t* handle, size_t suggested_size, uv_buf_t* buf);
static void onTimeout(uv_timer_t* handle);
static void onWrite(uv_write_t* req, int status);
static void onAccept(uv_stream_t* stream, int status);
static void onConnection(uv_stream_t* q, ssize_t nread, const uv_buf_t* buf);
static void workerAsyncCB(uv_async_t* handle);
static SConnCtx* connCtxCreate();
static void connCtxDestroy(SConnCtx* ctx);
static void uvConnCtxDestroy(uv_handle_t* handle);
static void* workerThread(void* arg);
static void* acceptThread(void* arg);
void* taosInitServer(uint32_t ip, uint32_t port, char* label, int numOfThreads, void* fp, void* shandle);
int32_t rpcInit() { return -1; }
void rpcCleanup() { return; };
void* rpcOpen(const SRpcInit* pInit) {
SRpcInfo* pRpc = calloc(1, sizeof(SRpcInfo));
if (pRpc == NULL) {
return NULL;
}
if (pInit->label) {
tstrncpy(pRpc->label, pInit->label, sizeof(pRpc->label));
}
pRpc->numOfThreads = pInit->numOfThreads > TSDB_MAX_RPC_THREADS ? TSDB_MAX_RPC_THREADS : pInit->numOfThreads;
void* taosInitClient(uint32_t ip, uint32_t port, char* label, int numOfThreads, void* fp, void* shandle) {
// opte
}
void* taosInitServer(uint32_t ip, uint32_t port, char* label, int numOfThreads, void* fp, void* shandle) {
SServerObj* srv = calloc(1, sizeof(SServerObj));
srv->loop = (uv_loop_t*)malloc(sizeof(uv_loop_t));
srv->numOfThread = pRpc->numOfThreads;
srv->numOfThread = numOfThreads;
srv->workerIdx = 0;
srv->pThreadObj = (SThreadObj**)calloc(srv->numOfThread, sizeof(SThreadObj*));
srv->pipe = (uv_pipe_t**)calloc(srv->numOfThread, sizeof(uv_pipe_t*));
srv->ip = ip;
srv->port = port;
uv_loop_init(srv->loop);
for (int i = 0; i < srv->numOfThread; i++) {
srv->pThreadObj[i] = (SThreadObj*)calloc(1, sizeof(SThreadObj));
SThreadObj* thrd = (SThreadObj*)calloc(1, sizeof(SThreadObj));
srv->pipe[i] = (uv_pipe_t*)calloc(2, sizeof(uv_pipe_t));
int fds[2];
if (uv_socketpair(AF_UNIX, SOCK_STREAM, fds, UV_NONBLOCK_PIPE, UV_NONBLOCK_PIPE) != 0) {
......@@ -132,28 +159,38 @@ void* rpcOpen(const SRpcInit* pInit) {
uv_pipe_init(srv->loop, &(srv->pipe[i][0]), 1);
uv_pipe_open(&(srv->pipe[i][0]), fds[1]); // init write
srv->pThreadObj[i]->fd = fds[0];
srv->pThreadObj[i]->pipe = &(srv->pipe[i][1]); // init read
int err = pthread_create(&(srv->pThreadObj[i]->thread), NULL, workerThread, (void*)(srv->pThreadObj[i]));
thrd->fd = fds[0];
thrd->pipe = &(srv->pipe[i][1]); // init read
int err = pthread_create(&(thrd->thread), NULL, workerThread, (void*)(thrd));
if (err == 0) {
tError("sucess to create worker thread %d", i);
tDebug("sucess to create worker-thread %d", i);
// printf("thread %d create\n", i);
} else {
tError("failed to create worker thread %d", i);
return NULL;
// TODO: clear all other resource later
tError("failed to create worker-thread %d", i);
}
srv->pThreadObj[i] = thrd;
}
uv_tcp_init(srv->loop, &srv->server);
struct sockaddr_in bind_addr;
uv_ip4_addr("0.0.0.0", pInit->localPort, &bind_addr);
uv_tcp_bind(&srv->server, (const struct sockaddr*)&bind_addr, 0);
int err = 0;
if ((err = uv_listen((uv_stream_t*)&srv->server, 128, onAccept)) != 0) {
tError("Listen error %s\n", uv_err_name(err));
return NULL;
int err = pthread_create(&srv->thread, NULL, acceptThread, (void*)srv);
if (err == 0) {
tDebug("success to create accept-thread");
} else {
// clear all resource later
}
uv_run(srv->loop, UV_RUN_DEFAULT);
return srv;
}
void* rpcOpen(const SRpcInit* pInit) {
SRpcInfo* pRpc = calloc(1, sizeof(SRpcInfo));
if (pRpc == NULL) {
return NULL;
}
if (pInit->label) {
tstrncpy(pRpc->label, pInit->label, strlen(pInit->label));
}
pRpc->numOfThreads = pInit->numOfThreads > TSDB_MAX_RPC_THREADS ? TSDB_MAX_RPC_THREADS : pInit->numOfThreads;
pRpc->tcphandle = taosInitServer(0, pInit->localPort, pRpc->label, pRpc->numOfThreads, NULL, pRpc);
return pRpc;
}
void rpcClose(void* arg) { return; }
......@@ -171,50 +208,150 @@ void rpcSendRecv(void* shandle, SEpSet* pEpSet, SRpcMsg* pReq, SRpcMsg* pRsp) {
int rpcReportProgress(void* pConn, char* pCont, int contLen) { return -1; }
void rpcCancelRequest(int64_t rid) { return; }
void allocBuffer(uv_handle_t* handle, size_t suggested_size, uv_buf_t* buf) {
buf->base = malloc(suggested_size);
buf->len = suggested_size;
void allocReadBuffer(uv_handle_t* handle, size_t suggested_size, uv_buf_t* buf) {
static const int CAPACITY = 1024;
tDebug("pre alloc buffer for read ");
SConnCtx* ctx = handle->data;
SContent* pCont = &ctx->pCont;
if (pCont->cap == 0) {
pCont->buf = (char*)calloc(CAPACITY, sizeof(char));
pCont->len = 0;
pCont->cap = CAPACITY;
pCont->toRead = -1;
buf->base = pCont->buf;
buf->len = CAPACITY;
} else {
if (pCont->len >= pCont->cap) {
if (pCont->toRead == -1) {
pCont->cap *= 2;
pCont->buf = realloc(pCont->buf, pCont->cap);
} else if (pCont->len + pCont->toRead > pCont->cap) {
pCont->cap = pCont->len + pCont->toRead;
pCont->buf = realloc(pCont->buf, pCont->len + pCont->toRead);
}
}
buf->base = pCont->buf + pCont->len;
buf->len = pCont->cap - pCont->len;
}
// if (ctx->pCont.cap == 0) {
// ctx->pCont.buf = (char*)calloc(64, sizeof(char));
// ctx->pCont.len = 0;
// ctx->pCont.cap = 64;
// //
// buf->base = ctx->pCont.buf;
// buf->len = sz;
//} else {
// if (ctx->pCont.len + sz > ctx->pCont.cap) {
// ctx->pCont.cap *= 2;
// ctx->pCont.buf = realloc(ctx->pCont.buf, ctx->pCont.cap);
// }
// buf->base = ctx->pCont.buf + ctx->pCont.len;
// buf->len = sz;
//}
}
// change later
static bool handleUserData(SContent* data) {
SRpcHead rpcHead;
bool finish = false;
int32_t msgLen, leftLen, retLen;
int32_t headLen = sizeof(rpcHead);
if (data->len >= headLen) {
memcpy((char*)&rpcHead, data->buf, headLen);
msgLen = (int32_t)htonl((uint32_t)rpcHead.msgLen);
if (msgLen + headLen <= data->len) {
return true;
} else {
return false;
}
} else {
return false;
}
}
void onTimeout(uv_timer_t* handle) {
void onRead(uv_stream_t* cli, ssize_t nread, const uv_buf_t* buf) {
// opt
tDebug("time out");
SConnCtx* ctx = cli->data;
SContent* pCont = &ctx->pCont;
if (nread > 0) {
pCont->len += nread;
bool finish = handleUserData(pCont);
if (finish == false) {
tDebug("continue read");
} else {
tDebug("read completely");
}
return;
}
if (nread != UV_EOF) {
tDebug("Read error %s\n", uv_err_name(nread));
}
uv_close((uv_handle_t*)cli, uvConnCtxDestroy);
}
void onRead(uv_stream_t* cli, ssize_t nread, const uv_buf_t* buf) {
void allocConnBuffer(uv_handle_t* handle, size_t suggested_size, uv_buf_t* buf) {
buf->base = malloc(sizeof(char));
buf->len = 2;
}
void onTimeout(uv_timer_t* handle) {
// opt
tDebug("data already was read on a stream");
tDebug("time out");
}
void onWrite(uv_write_t* req, int status) {
SConnCtx* ctx = req->data;
if (status == 0) {
tDebug("data already was written on stream");
} else {
connCtxDestroy(ctx);
}
// opt
if (req) tDebug("data already was written on stream");
}
void workerAsyncCB(uv_async_t* handle) {
// opt
SThreadObj* pObj = container_of(handle, SThreadObj, workerAsync);
SConnCtx* conn = NULL;
// opt later
pthread_mutex_lock(&pObj->connMtx);
if (!QUEUE_IS_EMPTY(&pObj->conn)) {
queue* head = QUEUE_HEAD(&pObj->conn);
conn = QUEUE_DATA(head, SConnCtx, queue);
QUEUE_REMOVE(&conn->queue);
}
pthread_mutex_unlock(&pObj->connMtx);
if (conn == NULL) {
tError("except occurred, do nothing");
return;
}
}
void onAccept(uv_stream_t* stream, int status) {
if (status == -1) {
return;
}
SServerObj* pObj = container_of(stream, SServerObj, server);
tDebug("new conntion accepted by main server, dispatch to one worker thread");
uv_tcp_t* cli = (uv_tcp_t*)malloc(sizeof(uv_tcp_t));
uv_tcp_init(pObj->loop, cli);
if (uv_accept(stream, (uv_stream_t*)cli) == 0) {
uv_write_t* wr = (uv_write_t*)malloc(sizeof(uv_write_t));
uv_buf_t buf = uv_buf_init("a", 1);
// despatch to worker thread
uv_buf_t buf = uv_buf_init((char*)notify, strlen(notify));
pObj->workerIdx = (pObj->workerIdx + 1) % pObj->numOfThread;
tDebug("new conntion accepted by main server, dispatch to %dth worker-thread", pObj->workerIdx);
uv_write2(wr, (uv_stream_t*)&(pObj->pipe[pObj->workerIdx][0]), &buf, 1, (uv_stream_t*)cli, onWrite);
} else {
uv_close((uv_handle_t*)cli, NULL);
}
}
void onConnection(uv_stream_t* q, ssize_t nread, const uv_buf_t* buf) {
tDebug("connection coming");
if (nread < 0) {
if (nread != UV_EOF) {
tError("read error %s", uv_err_name(nread));
......@@ -223,6 +360,11 @@ void onConnection(uv_stream_t* q, ssize_t nread, const uv_buf_t* buf) {
uv_close((uv_handle_t*)q, NULL);
return;
}
// free memory allocated by
assert(nread == strlen(notify));
assert(buf->base[0] == notify[0]);
free(buf->base);
SThreadObj* pObj = (SThreadObj*)container_of(q, struct SThreadObj, pipe);
uv_pipe_t* pipe = (uv_pipe_t*)q;
......@@ -230,46 +372,90 @@ void onConnection(uv_stream_t* q, ssize_t nread, const uv_buf_t* buf) {
tError("No pending count");
return;
}
uv_handle_type pending = uv_pipe_pending_type(pipe);
assert(pending == UV_TCP);
SConnCtx* pConn = malloc(sizeof(SConnCtx));
SConnCtx* pConn = connCtxCreate();
/* init conn timer*/
pConn->pTimer = malloc(sizeof(uv_timer_t));
uv_timer_init(pObj->loop, pConn->pTimer);
pConn->pClient = (uv_tcp_t*)malloc(sizeof(uv_tcp_t));
pConn->pWorkerAsync = pObj->workerAsync; // thread safty
uv_tcp_init(pObj->loop, pConn->pClient);
if (uv_accept(q, (uv_stream_t*)(pConn->pClient)) == 0) {
// init client handle
pConn->pTcp = (uv_tcp_t*)malloc(sizeof(uv_tcp_t));
uv_tcp_init(pObj->loop, pConn->pTcp);
pConn->pTcp->data = pConn;
// init write request, just
pConn->pWriter = calloc(1, sizeof(uv_write_t));
pConn->pWriter->data = pConn;
if (uv_accept(q, (uv_stream_t*)(pConn->pTcp)) == 0) {
uv_os_fd_t fd;
uv_fileno((const uv_handle_t*)pConn->pClient, &fd);
uv_fileno((const uv_handle_t*)pConn->pTcp, &fd);
tDebug("new connection created: %d", fd);
uv_timer_start(pConn->pTimer, onTimeout, 10, 0);
uv_read_start((uv_stream_t*)(pConn->pClient), allocBuffer, onRead);
uv_read_start((uv_stream_t*)(pConn->pTcp), allocReadBuffer, onRead);
} else {
uv_timer_stop(pConn->pTimer);
free(pConn->pTimer);
uv_close((uv_handle_t*)pConn->pClient, NULL);
free(pConn->pClient);
free(pConn);
connCtxDestroy(pConn);
}
}
void* acceptThread(void* arg) {
// opt
SServerObj* srv = (SServerObj*)arg;
uv_tcp_init(srv->loop, &srv->server);
struct sockaddr_in bind_addr;
uv_ip4_addr("0.0.0.0", srv->port, &bind_addr);
uv_tcp_bind(&srv->server, (const struct sockaddr*)&bind_addr, 0);
int err = 0;
if ((err = uv_listen((uv_stream_t*)&srv->server, 128, onAccept)) != 0) {
tError("Listen error %s\n", uv_err_name(err));
return NULL;
}
uv_run(srv->loop, UV_RUN_DEFAULT);
}
void* workerThread(void* arg) {
SThreadObj* pObj = (SThreadObj*)arg;
int fd = pObj->fd;
pObj->loop = (uv_loop_t*)malloc(sizeof(uv_loop_t));
uv_loop_init(pObj->loop);
uv_pipe_init(pObj->loop, pObj->pipe, 1);
uv_pipe_open(pObj->pipe, fd);
uv_pipe_open(pObj->pipe, pObj->fd);
QUEUE_INIT(&pObj->conn);
pObj->workerAsync = malloc(sizeof(uv_async_t));
uv_async_init(pObj->loop, pObj->workerAsync, workerAsyncCB);
uv_read_start((uv_stream_t*)pObj->pipe, allocBuffer, onConnection);
uv_read_start((uv_stream_t*)pObj->pipe, allocConnBuffer, onConnection);
uv_run(pObj->loop, UV_RUN_DEFAULT);
}
static SConnCtx* connCtxCreate() {
SConnCtx* pConn = (SConnCtx*)calloc(1, sizeof(SConnCtx));
return pConn;
}
static void connCtxDestroy(SConnCtx* ctx) {
if (ctx == NULL) {
return;
}
uv_timer_stop(ctx->pTimer);
free(ctx->pTimer);
uv_close((uv_handle_t*)ctx->pTcp, NULL);
free(ctx->pTcp);
free(ctx->pWriter);
free(ctx);
// handle
}
static void uvConnCtxDestroy(uv_handle_t* handle) {
SConnCtx* ctx = handle->data;
connCtxDestroy(ctx);
}
#else
#define RPC_MSG_OVERHEAD (sizeof(SRpcReqContext) + sizeof(SRpcHead) + sizeof(SRpcDigest))
......@@ -442,7 +628,8 @@ void *rpcOpen(const SRpcInit *pInit) {
pRpc = (SRpcInfo *)calloc(1, sizeof(SRpcInfo));
if (pRpc == NULL) return NULL;
if (pInit->label) tstrncpy(pRpc->label, pInit->label, sizeof(pRpc->label));
if (pInit->label) tstrncpy(pRpc->label, pInit->label, strlen(pInit->label));
pRpc->connType = pInit->connType;
if (pRpc->connType == TAOS_CONN_CLIENT) {
pRpc->numOfThreads = pInit->numOfThreads;
......
add_executable(transportTest "")
target_sources(transportTest
PRIVATE
"transportTests.cc"
)
target_include_directories(transportTest
PUBLIC
"${CMAKE_SOURCE_DIR}/include/libs/transport"
"${CMAKE_CURRENT_SOURCE_DIR}/../inc"
)
target_link_libraries (transportTest
os
util
common
gtest_main
transport
)
/*
* Copyright (c) 2019 TAOS Data, Inc. <jhtao@taosdata.com>
*
* This program is free software: you can use, redistribute, and/or modify
* it under the terms of the GNU Affero General Public License, version 3 * or later ("AGPL"), as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <gtest/gtest.h>
#include <chrono>
#include <iostream>
#include <string>
#include <thread>
#include "transportInt.h"
#include "trpc.h"
using namespace std;
int main() {
SRpcInit init = {.localPort = 6030, .label = "rpc", .numOfThreads = 5};
void* p = rpcOpen(&init);
while (1) {
std::cout << "cron task" << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds(10 * 1000));
}
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册