提交 f517b9a6 编写于 作者: D dingbo8128

add database name to sql

上级 ea6a21c4
......@@ -10,7 +10,7 @@ import TabItem from '@theme/TabItem';
## SQL Examples
Here are some brief examples for `INSET` statement. You can execute these statements manually by TDengine CLI or TDengine Cloud Explorer or programmatically by TDengine connectors.
Here are some brief examples for `INSERT` statement. You can execute these statements manually by TDengine CLI or TDengine Cloud Explorer or programmatically by TDengine connectors.
### Insert Single Row
......@@ -30,10 +30,10 @@ INSERT INTO test.d101 VALUES (1538548684000, 10.2, 220, 0.23) (1538548696650, 10
### Insert into Multiple Tables
Data can be inserted into multiple tables in the same SQL statement. The example below inserts 2 rows into table "d101" and 1 row into table "d1002".
Data can be inserted into multiple tables in the same SQL statement. The example below inserts 2 rows into table "d101" and 1 row into table "d102".
```sql
INSERT INTO test.d101 VALUES (1538548685000, 10.3, 219, 0.31) (1538548695000, 12.6, 218, 0.33) d1002 VALUES (1538548696800, 12.3, 221, 0.31);
INSERT INTO test.d101 VALUES (1538548685000, 10.3, 219, 0.31) (1538548695000, 12.6, 218, 0.33) d102 VALUES (1538548696800, 12.3, 221, 0.31);
```
For more details about `INSERT` please refer to [INSERT](https://docs.tdengine.com/cloud/taos-sql/insert).
......
......@@ -49,22 +49,22 @@ In summary, records across subtables can be aggregated by a simple query on thei
In [TDengine CLI](../tool/cli) `taos`, use the SQL below to get the average voltage of all the meters in California grouped by location.
```sql title="SQL"
SELECT AVG(voltage) FROM test.meters GROUP BY location;
SELECT location, AVG(voltage) FROM test.meters GROUP BY location;
```
```txt title="output"
avg(voltage) |
============================
109.507000000 |
109.507000000 |
109.507000000 |
109.507000000 |
109.507000000 |
109.507000000 |
109.507000000 |
109.507000000 |
109.507000000 |
109.507000000 |
location | avg(voltage) |
=======================================================
California.PaloAlto | 109.507000000 |
California.Sunnyvale | 109.507000000 |
California.MountainView | 109.507000000 |
California.SanFrancisco | 109.507000000 |
California.SanJose | 109.507000000 |
California.SanDiego | 109.507000000 |
California.SantaClara | 109.507000000 |
California.Cupertino | 109.507000000 |
California.Campbell | 109.507000000 |
California.LosAngles | 109.507000000 |
Query OK, 10 row(s) in set
```
......
......@@ -40,28 +40,28 @@ Then create four subtables as follows:
```sql
CREATE STABLE power.meters (ts timestamp, current float, voltage int, phase float) TAGS (location binary(64), groupId int);
CREATE TABLE power.d101 USING meters TAGS ("California.SanFrancisco", 2);
CREATE TABLE power.d102 USING meters TAGS ("California.SanFrancisco", 3);
CREATE TABLE power.d103 USING meters TAGS ("California.LosAngeles", 2);
CREATE TABLE power.d104 USING meters TAGS ("California.LosAngeles", 3);
CREATE TABLE power.d101 USING power.meters TAGS ("California.SanFrancisco", 2);
CREATE TABLE power.d102 USING power.meters TAGS ("California.SanFrancisco", 3);
CREATE TABLE power.d103 USING power.meters TAGS ("California.LosAngeles", 2);
CREATE TABLE power.d104 USING power.meters TAGS ("California.LosAngeles", 3);
```
### Create a Stream
```sql
create stream current_stream into current_stream_output_stb as select _wstart as start, _wend as end, max(current) as max_current from meters where voltage <= 220 interval (5s);
create stream current_stream into current_stream_output_stb as select _wstart as start, _wend as end, max(current) as max_current from power.meters where voltage <= 220 interval (5s);
```
### Write Data
```sql
insert into d101 values("2018-10-03 14:38:05.000", 10.30000, 219, 0.31000);
insert into d101 values("2018-10-03 14:38:15.000", 12.60000, 218, 0.33000);
insert into d101 values("2018-10-03 14:38:16.800", 12.30000, 221, 0.31000);
insert into d102 values("2018-10-03 14:38:16.650", 10.30000, 218, 0.25000);
insert into d103 values("2018-10-03 14:38:05.500", 11.80000, 221, 0.28000);
insert into d103 values("2018-10-03 14:38:16.600", 13.40000, 223, 0.29000);
insert into d104 values("2018-10-03 14:38:05.000", 10.80000, 223, 0.29000);
insert into d104 values("2018-10-03 14:38:06.500", 11.50000, 221, 0.35000);
insert into power.d101 values("2018-10-03 14:38:05.000", 10.30000, 219, 0.31000);
insert into power.d101 values("2018-10-03 14:38:15.000", 12.60000, 218, 0.33000);
insert into power.d101 values("2018-10-03 14:38:16.800", 12.30000, 221, 0.31000);
insert into power.d102 values("2018-10-03 14:38:16.650", 10.30000, 218, 0.25000);
insert into power.d103 values("2018-10-03 14:38:05.500", 11.80000, 221, 0.28000);
insert into power.d103 values("2018-10-03 14:38:16.600", 13.40000, 223, 0.29000);
insert into power.d104 values("2018-10-03 14:38:05.000", 10.80000, 223, 0.29000);
insert into power.d104 values("2018-10-03 14:38:06.500", 11.50000, 221, 0.35000);
```
### Query the Results
......@@ -90,7 +90,7 @@ The procedure from the previous scenario is used to create the database.
### Create a Stream
```sql
create stream power_stream into power_stream_output_stb as select ts, concat_ws(".", location, tbname) as meter_location, current*voltage*cos(phase) as active_power, current*voltage*sin(phase) as reactive_power from meters partition by tbname;
create stream power_stream into power_stream_output_stb as select ts, concat_ws(".", location, tbname) as meter_location, current*voltage*cos(phase) as active_power, current*voltage*sin(phase) as reactive_power from power.meters partition by tbname;
```
### Write data
......@@ -99,7 +99,7 @@ The procedure from the previous scenario is used to write the data.
### Query the Results
```sql title="SQL"
taos> select ts, meter_location, active_power, reactive_power from power_stream_output_stb;
select ts, meter_location, active_power, reactive_power from power_stream_output_stb;
```
```txt title="output"
ts | meter_location | active_power | reactive_power |
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册