提交 d955942a 编写于 作者: D dapan1121

Merge remote-tracking branch 'origin/3.0' into enh/removeConvert

......@@ -2,7 +2,7 @@
# taos-tools
ExternalProject_Add(taos-tools
GIT_REPOSITORY https://github.com/taosdata/taos-tools.git
GIT_TAG 833b721
GIT_TAG e8bfca6
SOURCE_DIR "${TD_SOURCE_DIR}/tools/taos-tools"
BINARY_DIR ""
#BUILD_IN_SOURCE TRUE
......
......@@ -3,7 +3,7 @@ title: Introduction
toc_max_heading_level: 2
---
TDengine is an open source, high-performance, cloud native [time-series database](https://tdengine.com/tsdb/) optimized for Internet of Things (IoT), Connected Cars, and Industrial IoT. Its code, including its cluster feature is open source under GNU AGPL v3.0. Besides the database engine, it provides [caching](../develop/cache), [stream processing](../develop/stream), [data subscription](../develop/tmq) and other functionalities to reduce the system complexity and cost of development and operation.
TDengine is an open source, high-performance, cloud native [time-series database](https://tdengine.com/tsdb/) optimized for Internet of Things (IoT), Connected Cars, and Industrial IoT. Its code, including its cluster feature is open source under GNU AGPL v3.0. Besides the database engine, it provides [caching](/develop/cache), [stream processing](/develop/stream), [data subscription](/develop/tmq) and other functionalities to reduce the system complexity and cost of development and operation.
This section introduces the major features, competitive advantages, typical use-cases and benchmarks to help you get a high level overview of TDengine.
......@@ -11,21 +11,33 @@ This section introduces the major features, competitive advantages, typical use-
The major features are listed below:
1. While TDengine supports [using SQL to insert](/develop/insert-data/sql-writing), it also supports [Schemaless writing](/reference/schemaless/) just like NoSQL databases. TDengine also supports standard protocols like [InfluxDB LINE](/develop/insert-data/influxdb-line)[OpenTSDB Telnet](/develop/insert-data/opentsdb-telnet), [OpenTSDB JSON ](/develop/insert-data/opentsdb-json) among others.
2. TDengine supports seamless integration with third-party data collection agents like [Telegraf](/third-party/telegraf)[Prometheus](/third-party/prometheus)[StatsD](/third-party/statsd)[collectd](/third-party/collectd)[icinga2](/third-party/icinga2), [TCollector](/third-party/tcollector), [EMQX](/third-party/emq-broker), [HiveMQ](/third-party/hive-mq-broker). These agents can write data into TDengine with simple configuration and without a single line of code.
3. Support for [all kinds of queries](/develop/query-data), including aggregation, nested query, downsampling, interpolation and others.
4. Support for [user defined functions](/develop/udf).
5. Support for [caching](/develop/cache). TDengine always saves the last data point in cache, so Redis is not needed in some scenarios.
6. Support for [continuous query](../develop/stream).
7. Support for [data subscription](../develop/tmq) with the capability to specify filter conditions.
8. Support for [cluster](../deployment/), with the capability of increasing processing power by adding more nodes. High availability is supported by replication.
9. Provides an interactive [command-line interface](/reference/taos-shell) for management, maintenance and ad-hoc queries.
10. Provides many ways to [import](/operation/import) and [export](/operation/export) data.
11. Provides [monitoring](/operation/monitor) on running instances of TDengine.
12. Provides [connectors](/reference/connector/) for [C/C++](/reference/connector/cpp), [Java](/reference/connector/java), [Python](/reference/connector/python), [Go](/reference/connector/go), [Rust](/reference/connector/rust), [Node.js](/reference/connector/node) and other programming languages.
13. Provides a [REST API](/reference/rest-api/).
14. Supports seamless integration with [Grafana](/third-party/grafana) for visualization.
15. Supports seamless integration with Google Data Studio.
1. Insert data
* supports [using SQL to insert](/develop/insert-data/sql-writing).
* supports [schemaless writing](/reference/schemaless/) just like NoSQL databases. It also supports standard protocols like [InfluxDB LINE](/develop/insert-data/influxdb-line)[OpenTSDB Telnet](/develop/insert-data/opentsdb-telnet), [OpenTSDB JSON ](/develop/insert-data/opentsdb-json) among others.
* supports seamless integration with third-party tools like [Telegraf](/third-party/telegraf/), [Prometheus](/third-party/prometheus/), [collectd](/third-party/collectd/), [StatsD](/third-party/statsd/), [TCollector](/third-party/tcollector/) and [icinga2/](/third-party/icinga2/), they can write data into TDengine with simple configuration and without a single line of code.
2. Query data
* supports standard [SQL](/taos-sql/), including nested query.
* supports [time series specific functions](/taos-sql/function/#time-series-extensions) and [time series specific queries](/taos-sql/distinguished), like downsampling, interpolation, cumulated sum, time weighted average, state window, session window and many others.
* supports [user defined functions](/taos-sql/udf).
3. [Caching](/develop/cache/): TDengine always saves the last data point in cache, so Redis is not needed for time-series data processing.
4. [Stream Processing](/develop/stream/): not only is the continuous query is supported, but TDengine also supports even driven stream processing, so Flink or spark is not needed for time-series daata processing.
5. [Data Dubscription](/develop/tmq/): application can subscribe a table or a set of tables. API is the same as Kafka, but you can specify filter conditions.
6. Visualization
* supports seamless integration with [Grafana](/third-party/grafana/) for visualization.
* supports seamless integration with Google Data Studio.
7. Cluster
* supports [cluster](/deployment/) with the capability of increasing processing power by adding more nodes.
* supports [deployment on Kubernetes](/deployment/k8s/)
* supports high availability via data replication.
8. Administration
* provides [monitoring](/operation/monitor) on running instances of TDengine.
* provides many ways to [import](/operation/import) and [export](/operation/export) data.
9. Tools
* provides an interactive [command-line interface](/reference/taos-shell) for management, maintenance and ad-hoc queries.
* provides a tool [taosBenchmark](/reference/taosbenchmark/) for testing the performance of TDengine.
10. Programming
* provides [connectors](/reference/connector/) for [C/C++](/reference/connector/cpp), [Java](/reference/connector/java), [Python](/reference/connector/python), [Go](/reference/connector/go), [Rust](/reference/connector/rust), [Node.js](/reference/connector/node) and other programming languages.
* provides a [REST API](/reference/rest-api/).
For more details on features, please read through the entire documentation.
......
此差异已折叠。
......@@ -114,7 +114,9 @@ The above process can be repeated to add more dnodes in the cluster.
Any node that is in the cluster and online can be the firstEp of new nodes.
Nodes use the firstEp parameter only when joining a cluster for the first time. After a node has joined the cluster, it stores the latest mnode in its end point list and no longer makes use of firstEp.
However, firstEp is used by clients that connect to the cluster. For example, if you run `taos shell` without arguments, it connects to the firstEp by default.
However, firstEp is used by clients that connect to the cluster. For example, if you run TDengine CLI `taos` without arguments, it connects to the firstEp by default.
Two dnodes that are launched without a firstEp value operate independently of each other. It is not possible to add one dnode to the other dnode and form a cluster. It is also not possible to form two independent clusters into a new cluster.
:::
......
......@@ -9,6 +9,7 @@ TDengine is a cloud-native time-series database that can be deployed on Kubernet
Before deploying TDengine on Kubernetes, perform the following:
* Current steps are compatible with Kubernetes v1.5 and later version.
* Install and configure minikube, kubectl, and helm.
* Install and deploy Kubernetes and ensure that it can be accessed and used normally. Update any container registries or other services as necessary.
......@@ -100,7 +101,7 @@ spec:
# Must set if you want a cluster.
- name: TAOS_FIRST_EP
value: "$(STS_NAME)-0.$(SERVICE_NAME).$(STS_NAMESPACE).svc.cluster.local:$(TAOS_SERVER_PORT)"
# TAOS_FQND should always be setted in k8s env.
# TAOS_FQDN should always be set in k8s env.
- name: TAOS_FQDN
value: "$(POD_NAME).$(SERVICE_NAME).$(STS_NAMESPACE).svc.cluster.local"
volumeMounts:
......
......@@ -57,7 +57,7 @@ table_option: {
3. MAX_DELAY: specifies the maximum latency for pushing computation results. The default value is 15 minutes or the value of the INTERVAL parameter, whichever is smaller. Enter a value between 0 and 15 minutes in milliseconds, seconds, or minutes. You can enter multiple values separated by commas (,). Note: Retain the default value if possible. Configuring a small MAX_DELAY may cause results to be frequently pushed, affecting storage and query performance. This parameter applies only to supertables and takes effect only when the RETENTIONS parameter has been specified for the database.
4. ROLLUP: specifies aggregate functions to roll up. Rolling up a function provides downsampled results based on multiple axes. This parameter applies only to supertables and takes effect only when the RETENTIONS parameter has been specified for the database. You can specify only one function to roll up. The rollup takes effect on all columns except TS. Enter one of the following values: avg, sum, min, max, last, or first.
5. SMA: specifies functions on which to enable small materialized aggregates (SMA). SMA is user-defined precomputation of aggregates based on data blocks. Enter one of the following values: max, min, or sum This parameter can be used with supertables and standard tables.
6. TTL: specifies the time to live (TTL) for the table. If the period specified by the TTL parameter elapses without any data being written to the table, TDengine will automatically delete the table. Note: The system may not delete the table at the exact moment that the TTL expires. Enter a value in days. The default value is 0. Note: The TTL parameter has a higher priority than the KEEP parameter. If a table is marked for deletion because the TTL has expired, it will be deleted even if the time specified by the KEEP parameter has not elapsed. This parameter can be used with standard tables and subtables.
6. TTL: specifies the time to live (TTL) for the table. If TTL is specified when creatinga table, after the time period for which the table has been existing is over TTL, TDengine will automatically delete the table. Please be noted that the system may not delete the table at the exact moment that the TTL expires but guarantee there is such a system and finally the table will be deleted. The unit of TTL is in days. The default value is 0, i.e. never expire.
## Create Subtables
......
......@@ -1139,7 +1139,7 @@ SELECT STATECOUNT(field_name, oper, val) FROM { tb_name | stb_name } [WHERE clau
**Applicable parameter values**:
- oper : Can be one of `LT` (lower than), `GT` (greater than), `LE` (lower than or equal to), `GE` (greater than or equal to), `NE` (not equal to), `EQ` (equal to), the value is case insensitive
- oper : Can be one of `'LT'` (lower than), `'GT'` (greater than), `'LE'` (lower than or equal to), `'GE'` (greater than or equal to), `'NE'` (not equal to), `'EQ'` (equal to), the value is case insensitive, the value must be in quotes.
- val : Numeric types
**Return value type**: Integer
......@@ -1166,7 +1166,7 @@ SELECT stateDuration(field_name, oper, val, unit) FROM { tb_name | stb_name } [W
**Applicable parameter values**:
- oper : Can be one of `LT` (lower than), `GT` (greater than), `LE` (lower than or equal to), `GE` (greater than or equal to), `NE` (not equal to), `EQ` (equal to), the value is case insensitive
- oper : Can be one of `'LT'` (lower than), `'GT'` (greater than), `'LE'` (lower than or equal to), `'GE'` (greater than or equal to), `'NE'` (not equal to), `'EQ'` (equal to), the value is case insensitive, the value must be in quotes.
- val : Numeric types
- unit: The unit of time interval. Enter one of the following options: 1b (nanoseconds), 1u (microseconds), 1a (milliseconds), 1s (seconds), 1m (minutes), 1h (hours), 1d (days), or 1w (weeks) If you do not enter a unit of time, the precision of the current database is used by default.
......
......@@ -30,7 +30,7 @@ The following characters cannot occur in a password: single quotation marks ('),
- Maximum number of columns is 4096. There must be at least 2 columns, and the first column must be timestamp.
- The maximum length of a tag name is 64 bytes
- Maximum number of tags is 128. There must be at least 1 tag. The total length of tag values cannot exceed 16 KB.
- Maximum length of single SQL statement is 1 MB (1048576 bytes). It can be configured in the parameter `maxSQLLength` in the client side, the applicable range is [65480, 1048576].
- Maximum length of single SQL statement is 1 MB (1048576 bytes).
- At most 4096 columns can be returned by `SELECT`. Functions in the query statement constitute columns. An error is returned if the limit is exceeded.
- Maximum numbers of databases, STables, tables are dependent only on the system resources.
- The number of replicas can only be 1 or 3.
......
......@@ -194,7 +194,7 @@ Shows information about streams in the system.
SHOW SUBSCRIPTIONS;
```
Shows all subscriptions in the current database.
Shows all subscriptions in the system.
## SHOW TABLES
......
......@@ -35,6 +35,22 @@ TDengine is removed successfully!
```
Apt-get package of taosTools can be uninstalled as below:
```
$ sudo apt remove taostools
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages will be REMOVED:
taostools
0 upgraded, 0 newly installed, 1 to remove and 0 not upgraded.
After this operation, 68.3 MB disk space will be freed.
Do you want to continue? [Y/n]
(Reading database ... 147973 files and directories currently installed.)
Removing taostools (2.1.2) ...
```
</TabItem>
<TabItem label="Uninstall Deb" value="debuninst">
......@@ -48,6 +64,14 @@ TDengine is removed successfully!
```
Deb package of taosTools can be uninstalled as below:
```
$ sudo dpkg -r taostools
(Reading database ... 147973 files and directories currently installed.)
Removing taostools (2.1.2) ...
```
</TabItem>
<TabItem label="Uninstall RPM" value="rpmuninst">
......@@ -59,6 +83,13 @@ $ sudo rpm -e tdengine
TDengine is removed successfully!
```
RPM package of taosTools can be uninstalled as below:
```
sudo rpm -e taostools
taosToole is removed successfully!
```
</TabItem>
<TabItem label="Uninstall tar.gz" value="taruninst">
......@@ -67,10 +98,16 @@ tar.gz package of TDengine can be uninstalled as below:
```
$ rmtaos
Nginx for TDengine is running, stopping it...
TDengine is removed successfully!
```
tar.gz package of taosTools can be uninstalled as below:
```
$ rmtaostools
Start to uninstall taos tools ...
taosKeeper is removed successfully!
taos tools is uninstalled successfully!
```
</TabItem>
......
---
sidebar_label: Resource Planning
title: Resource Planning
---
It is important to plan computing and storage resources if using TDengine to build an IoT, time-series or Big Data platform. How to plan the CPU, memory and disk resources required, will be described in this chapter.
## Memory Requirement of Server Side
## Server Memory Requirements
By default, the number of vgroups created for each database is the same as the number of CPU cores. This can be configured by the parameter `maxVgroupsPerDb`. Each vnode in a vgroup stores one replica. Each vnode consumes a fixed amount of memory, i.e. `blocks` \* `cache`. In addition, some memory is required for tag values associated with each table. A fixed amount of memory is required for each cluster. So, the memory required for each DB can be calculated using the formula below:
Each database creates a fixed number of vgroups. This number is 2 by default and can be configured with the `vgroups` parameter. The number of replicas can be controlled with the `replica` parameter. Each replica requires one vnode per vgroup. Altogether, the memory required by each database depends on the following configuration options:
```
Database Memory Size = maxVgroupsPerDb * replica * (blocks * cache + 10MB) + numOfTables * (tagSizePerTable + 0.5KB)
```
- vgroups
- replica
- buffer
- pages
- pagesize
- cachesize
For example, assuming the default value of `maxVgroupPerDB` is 64, the default value of `cache` is 16M, the default value of `blocks` is 6, there are 100,000 tables in a DB, the replica number is 1, total length of tag values is 256 bytes, the total memory required for this DB is: 64 \* 1 \* (16 \* 6 + 10) + 100000 \* (0.25 + 0.5) / 1000 = 6792M.
For more information, see [Database](../../taos-sql/database).
In the real operation of TDengine, we are more concerned about the memory used by each TDengine server process `taosd`.
The memory required by a database is therefore greater than or equal to:
```
taosd_memory = vnode_memory + mnode_memory + query_memory
vgroups * replica * (buffer + pages * pagesize + cachesize)
```
In the above formula:
1. "vnode_memory" of a `taosd` process is the memory used by all vnodes hosted by this `taosd` process. It can be roughly calculated by firstly adding up the total memory of all DBs whose memory usage can be derived according to the formula for Database Memory Size, mentioned above, then dividing by number of dnodes and multiplying the number of replicas.
```
vnode_memory = (sum(Database Memory Size) / number_of_dnodes) * replica
```
2. "mnode_memory" of a `taosd` process is the memory consumed by a mnode. If there is one (and only one) mnode hosted in a `taosd` process, the memory consumed by "mnode" is "0.2KB \* the total number of tables in the cluster".
3. "query_memory" is the memory used when processing query requests. Each ongoing query consumes at least "0.2 KB \* total number of involved tables".
Please note that the above formulas can only be used to estimate the minimum memory requirement, instead of maximum memory usage. In a real production environment, it's better to reserve some redundance beyond the estimated minimum memory requirement. If memory is abundant, it's suggested to increase the value of parameter `blocks` to speed up data insertion and data query.
However, note that this requirement is spread over all dnodes in the cluster, not on a single physical machine. The physical servers that run dnodes meet the requirement together. If a cluster has multiple databases, the memory required increases accordingly. In complex environments where dnodes were added after initial deployment in response to increasing resource requirements, load may not be balanced among the original dnodes and newer dnodes. In this situation, the actual status of your dnodes is more important than theoretical calculations.
## Memory Requirement of Client Side
## Client Memory Requirements
For the client programs using TDengine client driver `taosc` to connect to the server side there is a memory requirement as well.
......@@ -56,10 +48,10 @@ So, at least 3GB needs to be reserved for such a client.
The CPU resources required depend on two aspects:
- **Data Insertion** Each dnode of TDengine can process at least 10,000 insertion requests in one second, while each insertion request can have multiple rows. The difference in computing resource consumed, between inserting 1 row at a time, and inserting 10 rows at a time is very small. So, the more the number of rows that can be inserted one time, the higher the efficiency. Inserting in batch also imposes requirements on the client side which needs to cache rows to insert in batch once the number of cached rows reaches a threshold.
- **Data Insertion** Each dnode of TDengine can process at least 10,000 insertion requests in one second, while each insertion request can have multiple rows. The difference in computing resource consumed, between inserting 1 row at a time, and inserting 10 rows at a time is very small. So, the more the number of rows that can be inserted one time, the higher the efficiency. If each insert request contains more than 200 records, a single core can process more than 1 million records per second. Inserting in batch also imposes requirements on the client side which needs to cache rows to insert in batch once the number of cached rows reaches a threshold.
- **Data Query** High efficiency query is provided in TDengine, but it's hard to estimate the CPU resource required because the queries used in different use cases and the frequency of queries vary significantly. It can only be verified with the query statements, query frequency, data size to be queried, and other requirements provided by users.
In short, the CPU resource required for data insertion can be estimated but it's hard to do so for query use cases. In real operation, it's suggested to control CPU usage below 50%. If this threshold is exceeded, it's a reminder for system operator to add more nodes in the cluster to expand resources.
In short, the CPU resource required for data insertion can be estimated but it's hard to do so for query use cases. If possible, ensure that CPU usage remains below 50%. If this threshold is exceeded, it's a reminder for system operator to add more nodes in the cluster to expand resources.
## Disk Requirement
......@@ -77,6 +69,6 @@ To increase performance, multiple disks can be setup for parallel data reading o
## Number of Hosts
A host can be either physical or virtual. The total memory, total CPU, total disk required can be estimated according to the formulae mentioned previously. Then, according to the system resources that a single host can provide, assuming all hosts have the same resources, the number of hosts can be derived easily.
A host can be either physical or virtual. The total memory, total CPU, total disk required can be estimated according to the formulae mentioned previously. If the number of data replicas is not 1, the required resources are multiplied by the number of replicas.
**Quick Estimation for CPU, Memory and Disk** Please refer to [Resource Estimate](https://www.taosdata.com/config/config.html).
Then, according to the system resources that a single host can provide, assuming all hosts have the same resources, the number of hosts can be derived easily.
---
sidebar_label: Fault Tolerance
title: Fault Tolerance & Disaster Recovery
title: Fault Tolerance and Disaster Recovery
---
## Fault Tolerance
......@@ -11,22 +10,21 @@ When a data block is received by TDengine, the original data block is first writ
There are 2 configuration parameters related to WAL:
- walLevel:
- 0:wal is disabled
- 1:wal is enabled without fsync
- 2:wal is enabled with fsync
- fsync:This parameter is only valid when walLevel is set to 2. It specifies the interval, in milliseconds, of invoking fsync. If set to 0, it means fsync is invoked immediately once WAL is written.
- wal_level: Specifies the WAL level. 1 indicates that WAL is enabled but fsync is disabled. 2 indicates that WAL and fsync are both enabled. The default value is 1.
- wal_fsync_period: This parameter is only valid when wal_level is set to 2. It specifies the interval, in milliseconds, of invoking fsync. If set to 0, it means fsync is invoked immediately once WAL is written.
To achieve absolutely no data loss, walLevel should be set to 2 and fsync should be set to 1. There is a performance penalty to the data ingestion rate. However, if the concurrent data insertion threads on the client side can reach a big enough number, for example 50, the data ingestion performance will be still good enough. Our verification shows that the drop is only 30% when fsync is set to 3,000 milliseconds.
To achieve absolutely no data loss, set wal_level to 2 and wal_fsync_period to 0. There is a performance penalty to the data ingestion rate. However, if the concurrent data insertion threads on the client side can reach a big enough number, for example 50, the data ingestion performance will be still good enough. Our verification shows that the drop is only 30% when wal_fsync_period is set to 3000 milliseconds.
## Disaster Recovery
TDengine uses replication to provide high availability and disaster recovery capability.
TDengine uses replication to provide high availability.
A TDengine cluster is managed by mnode. To ensure the high availability of mnode, multiple replicas can be configured by the system parameter `numOfMnodes`. The data replication between mnode replicas is performed in a synchronous way to guarantee metadata consistency.
A TDengine cluster is managed by mnodes. You can configure up to three mnodes to ensure high availability. The data replication between mnode replicas is performed in a synchronous way to guarantee metadata consistency.
The number of replicas for time series data in TDengine is associated with each database. There can be many databases in a cluster and each database can be configured with a different number of replicas. When creating a database, parameter `replica` is used to configure the number of replications. To achieve high availability, `replica` needs to be higher than 1.
The number of replicas for time series data in TDengine is associated with each database. There can be many databases in a cluster and each database can be configured with a different number of replicas. When creating a database, the parameter `replica` is used to specify the number of replicas. To achieve high availability, set `replica` to 3.
The number of dnodes in a TDengine cluster must NOT be lower than the number of replicas for any database, otherwise it would fail when trying to create a table.
As long as the dnodes of a TDengine cluster are deployed on different physical machines and the replica number is higher than 1, high availability can be achieved without any other assistance. For disaster recovery, dnodes of a TDengine cluster should be deployed in geographically different data centers.
Alternatively, you can use taosX to synchronize the data from one TDengine cluster to another cluster in a remote location. However, taosX is only available in TDengine enterprise version, for more information please contact tdengine.com.
......@@ -13,110 +13,59 @@ Diagnostic steps:
1. If the port range to be diagnosed is being occupied by a `taosd` server process, please first stop `taosd.
2. On the server side, execute command `taos -n server -P <port> -l <pktlen>` to monitor the port range starting from the port specified by `-P` parameter with the role of "server".
3. On the client side, execute command `taos -n client -h <fqdn of server> -P <port> -l <pktlen>` to send a testing package to the specified server and port.
-l <pktlen\>: The size of the testing package, in bytes. The value range is [11, 64,000] and default value is 1,000. Please note that the package length must be same in the above 2 commands executed on server side and client side respectively.
-l <pktlen\>: The size of the testing package, in bytes. The value range is [11, 64,000] and default value is 1,000.
Please note that the package length must be same in the above 2 commands executed on server side and client side respectively.
Output of the server side for the example is below:
```bash
# taos -n server -P 6000
12/21 14:50:13.522509 0x7f536f455200 UTL work as server, host:172.27.0.7 startPort:6000 endPort:6011 pkgLen:1000
12/21 14:50:13.522659 0x7f5352242700 UTL TCP server at port:6000 is listening
12/21 14:50:13.522727 0x7f5351240700 UTL TCP server at port:6001 is listening
...
...
# taos -n server -P 6030 -l 1000
network test server is initialized, port:6030
request is received, size:1000
request is received, size:1000
...
12/21 14:50:13.523954 0x7f5342fed700 UTL TCP server at port:6011 is listening
12/21 14:50:13.523989 0x7f53437ee700 UTL UDP server at port:6010 is listening
12/21 14:50:13.524019 0x7f53427ec700 UTL UDP server at port:6011 is listening
12/21 14:50:22.192849 0x7f5352242700 UTL TCP: read:1000 bytes from 172.27.0.8 at 6000
12/21 14:50:22.192993 0x7f5352242700 UTL TCP: write:1000 bytes to 172.27.0.8 at 6000
12/21 14:50:22.237082 0x7f5351a41700 UTL UDP: recv:1000 bytes from 172.27.0.8 at 6000
12/21 14:50:22.237203 0x7f5351a41700 UTL UDP: send:1000 bytes to 172.27.0.8 at 6000
12/21 14:50:22.237450 0x7f5351240700 UTL TCP: read:1000 bytes from 172.27.0.8 at 6001
12/21 14:50:22.237576 0x7f5351240700 UTL TCP: write:1000 bytes to 172.27.0.8 at 6001
12/21 14:50:22.281038 0x7f5350a3f700 UTL UDP: recv:1000 bytes from 172.27.0.8 at 6001
12/21 14:50:22.281141 0x7f5350a3f700 UTL UDP: send:1000 bytes to 172.27.0.8 at 6001
...
...
...
12/21 14:50:22.677443 0x7f5342fed700 UTL TCP: read:1000 bytes from 172.27.0.8 at 6011
12/21 14:50:22.677576 0x7f5342fed700 UTL TCP: write:1000 bytes to 172.27.0.8 at 6011
12/21 14:50:22.721144 0x7f53427ec700 UTL UDP: recv:1000 bytes from 172.27.0.8 at 6011
12/21 14:50:22.721261 0x7f53427ec700 UTL UDP: send:1000 bytes to 172.27.0.8 at 6011
request is received, size:1000
request is received, size:1000
```
Output of the client side for the example is below:
```bash
# taos -n client -h 172.27.0.7 -P 6000
12/21 14:50:22.192434 0x7fc95d859200 UTL work as client, host:172.27.0.7 startPort:6000 endPort:6011 pkgLen:1000
12/21 14:50:22.192472 0x7fc95d859200 UTL server ip:172.27.0.7 is resolved from host:172.27.0.7
12/21 14:50:22.236869 0x7fc95d859200 UTL successed to test TCP port:6000
12/21 14:50:22.237215 0x7fc95d859200 UTL successed to test UDP port:6000
taos -n client -h v3s2 -P 6030 -l 1000
network test client is initialized, the server is v3s2:6030
request is sent, size:1000
response is received, size:1000
request is sent, size:1000
response is received, size:1000
...
...
...
12/21 14:50:22.676891 0x7fc95d859200 UTL successed to test TCP port:6010
12/21 14:50:22.677240 0x7fc95d859200 UTL successed to test UDP port:6010
12/21 14:50:22.720893 0x7fc95d859200 UTL successed to test TCP port:6011
12/21 14:50:22.721274 0x7fc95d859200 UTL successed to test UDP port:6011
```
The output needs to be checked carefully for the system operator to find the root cause and resolve the problem.
## Startup Status and RPC Diagnostic
`taos -n startup -h <fqdn of server>` can be used to check the startup status of a `taosd` process. This is a common task which should be performed by a system operator, especially in the case of a cluster, to determine whether `taosd` has been started successfully.
`taos -n rpc -h <fqdn of server>` can be used to check whether the port of a started `taosd` can be accessed or not. If `taosd` process doesn't respond or is working abnormally, this command can be used to initiate a rpc communication with the specified fqdn to determine whether it's a network problem or whether `taosd` is abnormal.
## Sync and Arbitrator Diagnostic
request is sent, size:1000
response is received, size:1000
request is sent, size:1000
response is received, size:1000
```bash
taos -n sync -P 6040 -h <fqdn of server>
taos -n sync -P 6042 -h <fqdn of server>
total succ: 100/100 cost: 16.23 ms speed: 5.87 MB/s
```
The above commands can be executed in a Linux shell to check whether the port for sync is working well and whether the sync module on the server side is working well. Additionally, `-P 6042` is used to check whether the arbitrator is configured properly and is working well.
## Network Speed Diagnostic
`taos -n speed -h <fqdn of server> -P 6030 -N 10 -l 10000000 -S TCP`
From version 2.2.0.0 onwards, the above command can be executed in a Linux shell to test network speed. The command sends uncompressed packages to a running `taosd` server process or a simulated server process started by `taos -n server` to test the network speed. Parameters can be used when testing network speed are as below:
-n:When set to "speed", it means testing network speed.
-h:The FQDN or IP of the server process to be connected to; if not set, the FQDN configured in `taos.cfg` is used.
-P:The port of the server process to connect to, the default value is 6030.
-N:The number of packages that will be sent in the test, range is [1,10000], default value is 100.
-l:The size of each package in bytes, range is [1024, 1024 \* 1024 \* 1024], default value is 1024.
-S:The type of network packages to send, can be either TCP or UDP, default value is TCP.
## FQDN Resolution Diagnostic
`taos -n fqdn -h <fqdn of server>`
From version 2.2.0.0 onward, the above command can be executed in a Linux shell to test the resolution speed of FQDN. It can be used to try to resolve a FQDN to an IP address and record the time spent in this process. The parameters that can be used for this purpose are as below:
-n:When set to "fqdn", it means testing the speed of resolving FQDN.
-h:The FQDN to be resolved. If not set, the `FQDN` parameter in `taos.cfg` is used by default.
The output needs to be checked carefully for the system operator to find the root cause and resolve the problem.
## Server Log
The parameter `debugFlag` is used to control the log level of the `taosd` server process. The default value is 131. For debugging and tracing, it needs to be set to either 135 or 143 respectively.
Once this parameter is set to 135 or 143, the log file grows very quickly especially when there is a huge volume of data insertion and data query requests. If all the logs are stored together, some important information may be missed very easily and so on the server side, important information is stored in a different place from other logs.
The parameter `debugFlag` is used to control the log level of the `taosd` server process. The default value is 131. For debugging and tracing, it needs to be set to either 135 or 143 respectively.
- The log at level of INFO, WARNING and ERROR is stored in `taosinfo` so that it is easy to find important information
- The log at level of DEBUG (135) and TRACE (143) and other information not handled by `taosinfo` are stored in `taosdlog`
Once this parameter is set to 135 or 143, the log file grows very quickly especially when there is a huge volume of data insertion and data query requests. Ensure that the disk drive on which logs are stored has sufficient space.
## Client Log
An independent log file, named as "taoslog+<seq num\>" is generated for each client program, i.e. a client process. The default value of `debugFlag` is also 131 and only logs at level of INFO/ERROR/WARNING are recorded. As stated above, for debugging and tracing, it needs to be changed to 135 or 143 respectively, so that logs at DEBUG or TRACE level can be recorded.
An independent log file, named as "taoslog+<seq num\>" is generated for each client program, i.e. a client process. The parameter `debugFlag` is used to control the log level. The default value is 131. For debugging and tracing, it needs to be set to either 135 or 143 respectively.
The default value of `debugFlag` is also 131 and only logs at level of INFO/ERROR/WARNING are recorded. As stated above, for debugging and tracing, it needs to be changed to 135 or 143 respectively, so that logs at DEBUG or TRACE level can be recorded.
The maximum length of a single log file is controlled by parameter `numOfLogLines` and only 2 log files are kept for each `taosd` server process.
Log files are written in an async way to minimize the workload on disk, but the trade off for performance is that a few log lines may be lost in some extreme conditions.
Log files are written in an async way to minimize the workload on disk, but the trade off for performance is that a few log lines may be lost in some extreme conditions. You can configure asynclog to 0 when needed for troubleshooting purposes to ensure that no log information is lost.
......@@ -72,7 +72,7 @@ Next, ensure the hostname "tdengine" is resolvable in `/etc/hosts`.
echo 127.0.0.1 tdengine |sudo tee -a /etc/hosts
```
Finally, the TDengine service can be accessed from the taos shell or any connector with "tdengine" as the server address.
Finally, the TDengine service can be accessed from the TDengine CLI or any connector with "tdengine" as the server address.
```shell
taos -h tdengine -P 6030
......
......@@ -3,7 +3,8 @@ title: Schemaless Writing
description: "The Schemaless write method eliminates the need to create super tables/sub tables in advance and automatically creates the storage structure corresponding to the data, as it is written to the interface."
---
In IoT applications, data is collected for many purposes such as intelligent control, business analysis, device monitoring and so on. Due to changes in business or functional requirements or changes in device hardware, the application logic and even the data collected may change. To provide the flexibility needed in such cases and in a rapidly changing IoT landscape, TDengine provides a series of interfaces for the schemaless writing method. These interfaces eliminate the need to create super tables and subtables in advance by automatically creating the storage structure corresponding to the data as the data is written to the interface. When necessary, schemaless writing will automatically add the required columns to ensure that the data written by the user is stored correctly.
In IoT applications, data is collected for many purposes such as intelligent control, business analysis, device monitoring and so on. Due to changes in business or functional requirements or changes in device hardware, the application logic and even the data collected may change. Schemaless writing automatically creates storage structures for your data as it is being written to TDengine, so that you do not need to create supertables in advance. When necessary, schemaless writing
will automatically add the required columns to ensure that the data written by the user is stored correctly.
The schemaless writing method creates super tables and their corresponding subtables. These are completely indistinguishable from the super tables and subtables created directly via SQL. You can write data directly to them via SQL statements. Note that the names of tables created by schemaless writing are based on fixed mapping rules for tag values, so they are not explicitly ideographic and they lack readability.
......@@ -19,12 +20,12 @@ With the following formatting conventions, schemaless writing uses a single stri
measurement,tag_set field_set timestamp
```
where :
where:
- measurement will be used as the data table name. It will be separated from tag_set by a comma.
- tag_set will be used as tag data in the format `<tag_key>=<tag_value>,<tag_key>=<tag_value>`, i.e. multiple tags' data can be separated by a comma. It is separated from field_set by space.
- field_set will be used as normal column data in the format of `<field_key>=<field_value>,<field_key>=<field_value>`, again using a comma to separate multiple normal columns of data. It is separated from the timestamp by a space.
- The timestamp is the primary key corresponding to the data in this row.
- `tag_set` will be used as tags, with format like `<tag_key>=<tag_value>,<tag_key>=<tag_value>` Enter a space between `tag_set` and `field_set`.
- `field_set`will be used as data columns, with format like `<field_key>=<field_value>,<field_key>=<field_value>` Enter a space between `field_set` and `timestamp`.
- `timestamp` is the primary key timestamp corresponding to this row of data
All data in tag_set is automatically converted to the NCHAR data type and does not require double quotes (").
......@@ -37,16 +38,18 @@ In the schemaless writing data line protocol, each data item in the field_set ne
| **Serial number** | **Postfix** | **Mapping type** | **Size (bytes)** |
| -------- | -------- | ------------ | -------------- |
| 1 | none or f64 | double | 8 |
| 2 | f32 | float | 4 |
| 3 | i8/u8 | TinyInt/UTinyInt | 1 |
| 4 | i16/u16 | SmallInt/USmallInt | 2 |
| 5 | i32/u32 | Int/UInt | 4 |
| 6 | i64/i/u64/u | Bigint/Bigint/UBigint/UBigint | 8 |
| 1 | None or f64 | double | 8 |
| 2 | f32 | float | 4 |
| 3 | i8/u8 | TinyInt/UTinyInt | 1 |
| 4 | i16/u16 | SmallInt/USmallInt | 2 |
| 5 | i32/u32 | Int/UInt | 4 |
| 6 | i64/i/u64/u | BigInt/BigInt/UBigInt/UBigInt | 8 |
- `t`, `T`, `true`, `True`, `TRUE`, `f`, `F`, `false`, and `False` will be handled directly as BOOL types.
For example, the following data rows indicate that the t1 label is "3" (NCHAR), the t2 label is "4" (NCHAR), and the t3 label is "t3" to the super table named `st` labeled "t3" (NCHAR), write c1 column as 3 (BIGINT), c2 column as false (BOOL), c3 column is "passit" (BINARY), c4 column is 4 (DOUBLE), and the primary key timestamp is 1626006833639000000 in one row.
For example, the following data rows indicate that the t1 label is "3" (NCHAR), the t2 label is "4" (NCHAR), and the t3 label
is "t3" to the super table named `st` labeled "t3" (NCHAR), write c1 column as 3 (BIGINT), c2 column as false (BOOL), c3 column
is "passit" (BINARY), c4 column is 4 (DOUBLE), and the primary key timestamp is 1626006833639000000 in one row.
```json
st,t1=3,t2=4,t3=t3 c1=3i64,c3="passit",c2=false,c4=4f64 1626006833639000000
......@@ -65,18 +68,22 @@ Schemaless writes process row data according to the following principles.
```
Note that tag_key1, tag_key2 are not the original order of the tags entered by the user but the result of using the tag names in ascending order of the strings. Therefore, tag_key1 is not the first tag entered in the line protocol.
The string's MD5 hash value "md5_val" is calculated after the ranking is completed. The calculation result is then combined with the string to generate the table name: "t_md5_val". "t*" is a fixed prefix that every table generated by this mapping relationship has.
The string's MD5 hash value "md5_val" is calculated after the ranking is completed. The calculation result is then combined with the string to generate the table name: "t_md5_val". "t_" is a fixed prefix that every table generated by this mapping relationship has.
You can configure smlChildTableName to specify table names, for example, `smlChildTableName=tname`. You can insert `st,tname=cpul,t1=4 c1=3 1626006833639000000` and the cpu1 table will be automatically created. Note that if multiple rows have the same tname but different tag_set values, the tag_set of the first row is used to create the table and the others are ignored.
2. If the super table obtained by parsing the line protocol does not exist, this super table is created.
If the subtable obtained by the parse line protocol does not exist, Schemaless creates the sub-table according to the subtable name determined in steps 1 or 2.
3. If the subtable obtained by the parse line protocol does not exist, Schemaless creates the sub-table according to the subtable name determined in steps 1 or 2.
4. If the specified tag or regular column in the data row does not exist, the corresponding tag or regular column is added to the super table (only incremental).
5. If there are some tag columns or regular columns in the super table that are not specified to take values in a data row, then the values of these columns are set to NULL.
5. If there are some tag columns or regular columns in the super table that are not specified to take values in a data row, then the values of these columns are set to
NULL.
6. For BINARY or NCHAR columns, if the length of the value provided in a data row exceeds the column type limit, the maximum length of characters allowed to be stored in the column is automatically increased (only incremented and not decremented) to ensure complete preservation of the data.
7. Errors encountered throughout the processing will interrupt the writing process and return an error code.
8. In order to improve the efficiency of writing, it is assumed by default that the order of the fields in the same Super is the same (the first data contains all fields, and the following data is in this order). If the order is different, the parameter smlDataFormat needs to be configured to be false. Otherwise, the data is written in the same order, and the data in the library will be abnormal.
8. It is assumed that the order of field_set in a supertable is consistent, meaning that the first record contains all fields and subsequent records store fields in the same order. If the order is not consistent, set smlDataFormat to false. Otherwise, data will be written out of order and a database error will occur.
:::tip
All processing logic of schemaless will still follow TDengine's underlying restrictions on data structures, such as the total length of each row of data cannot exceed 16k bytes. See [TAOS SQL Boundary Limits](/taos-sql/limit) for specific constraints in this area.
All processing logic of schemaless will still follow TDengine's underlying restrictions on data structures, such as the total length of each row of data cannot exceed
16KB. See [TAOS SQL Boundary Limits](/taos-sql/limit) for specific constraints in this area.
:::
## Time resolution recognition
......@@ -85,75 +92,74 @@ Three specified modes are supported in the schemaless writing process, as follow
| **Serial** | **Value** | **Description** |
| -------- | ------------------- | ------------------------------- |
| 1 | SML_LINE_PROTOCOL | InfluxDB Line Protocol |
| 2 | SML_TELNET_PROTOCOL | OpenTSDB Text Line Protocol |
| 3 | SML_JSON_PROTOCOL | JSON protocol format |
| 1 | SML_LINE_PROTOCOL | InfluxDB Line Protocol |
| 2 | SML_TELNET_PROTOCOL | OpenTSDB file protocol |
| 3 | SML_JSON_PROTOCOL | OpenTSDB JSON protocol |
In the SML_LINE_PROTOCOL parsing mode, the user is required to specify the time resolution of the input timestamp. The available time resolutions are shown in the following table.
In InfluxDB line protocol mode, you must specify the precision of the input timestamp. Valid precisions are described in the following table.
| **Serial Number** | **Time Resolution Definition** | **Meaning** |
| **No.** | **Precision** | **Description** |
| -------- | --------------------------------- | -------------- |
| 1 | TSDB_SML_TIMESTAMP_NOT_CONFIGURED | Not defined (invalid) |
| 2 | TSDB_SML_TIMESTAMP_HOURS | hour |
| 3 | TSDB_SML_TIMESTAMP_MINUTES | MINUTES
| 4 | TSDB_SML_TIMESTAMP_SECONDS | SECONDS
| 5 | TSDB_SML_TIMESTAMP_MILLI_SECONDS | milliseconds
| 6 | TSDB_SML_TIMESTAMP_MICRO_SECONDS | microseconds
| 7 | TSDB_SML_TIMESTAMP_NANO_SECONDS | nanoseconds |
In SML_TELNET_PROTOCOL and SML_JSON_PROTOCOL modes, the time precision is determined based on the length of the timestamp (in the same way as the OpenTSDB standard operation), and the user-specified time resolution is ignored at this point.
| 1 | TSDB_SML_TIMESTAMP_NOT_CONFIGURED | Not defined (invalid) |
| 2 | TSDB_SML_TIMESTAMP_HOURS | Hours |
| 3 | TSDB_SML_TIMESTAMP_MINUTES | Minutes |
| 4 | TSDB_SML_TIMESTAMP_SECONDS | Seconds |
| 5 | TSDB_SML_TIMESTAMP_MILLI_SECONDS | Milliseconds |
| 6 | TSDB_SML_TIMESTAMP_MICRO_SECONDS | Microseconds |
| 7 | TSDB_SML_TIMESTAMP_NANO_SECONDS | Nanoseconds |
## Data schema mapping rules
In OpenTSDB file and JSON protocol modes, the precision of the timestamp is determined from its length in the standard OpenTSDB manner. User input is ignored.
This section describes how data for line protocols are mapped to data with a schema. The data measurement in each line protocol is mapped as follows:
- The tag name in tag_set is the name of the tag in the data schema
- The name in field_set is the column's name.
## Data Model Mapping
The following data is used as an example to illustrate the mapping rules.
This section describes how data in line protocol is mapped to a schema. The data measurement in each line is mapped to a
supertable name. The tag name in tag_set is the tag name in the schema, and the name in field_set is the column name in the schema. The following example shows how data is mapped:
```json
st,t1=3,t2=4,t3=t3 c1=3i64,c3="passit",c2=false,c4=4f64 1626006833639000000
```
The row data mapping generates a super table: `st`, which contains three labels of type NCHAR: t1, t2, t3. Five data columns are ts (timestamp), c1 (bigint), c3 (binary), c2 (bool), c4 (bigint). The mapping becomes the following SQL statement.
This row is mapped to a supertable: `st` contains three NCHAR tags: t1, t2, and t3. Five columns are created: ts (timestamp), c1 (bigint), c3 (binary), c2 (bool), and c4 (bigint). The following SQL statement is generated:
```json
create stable st (_ts timestamp, c1 bigint, c2 bool, c3 binary(6), c4 bigint) tags(t1 nchar(1), t2 nchar(1), t3 nchar(2))
```
## Data schema change handling
## Processing Schema Changes
This section describes the impact on the data schema for different line protocol data writing cases.
This section describes the impact on the schema caused by different data being written.
When writing to an explicitly identified field type using the line protocol, subsequent changes to the field's type definition will result in an explicit data schema error, i.e., will trigger a write API report error. As shown below, the
If you use line protocol to write to a specific tag field and then later change the field type, a schema error will ocur. This triggers an error on the write API. This is shown as follows:
```json
st,t1=3,t2=4,t3=t3 c1=3i64,c3="passit",c2=false,c4=4 1626006833639000000
st,t1=3,t2=4,t3=t3 c1=3i64,c3="passit",c2=false,c4=4i 1626006833640000000
st,t1=3,t2=4,t3=t3 c1=3i64,c3="passit",c2=false,c4=4 1626006833639000000
st,t1=3,t2=4,t3=t3 c1=3i64,c3="passit",c2=false,c4=4i 1626006833640000000
```
The data type mapping in the first row defines column c4 as DOUBLE, but the data in the second row is declared as BIGINT by the numeric suffix, which triggers a parsing error with schemaless writing.
The first row defines c4 as a double. However, in the second row, the suffix indicates that the value of c4 is a bigint. This causes schemaless writing to throw an error.
If the line protocol before the column declares the data column as BINARY, the subsequent one requires a longer binary length, which triggers a super table schema change.
An error also occurs if data input into a binary column exceeds the defined length of the column.
```json
st,t1=3,t2=4,t3=t3 c1=3i64,c5="pass" 1626006833639000000
st,t1=3,t2=4,t3=t3 c1=3i64,c5="passit" 1626006833640000000
st,t1=3,t2=4,t3=t3 c1=3i64,c5="pass" 1626006833639000000
st,t1=3,t2=4,t3=t3 c1=3i64,c5="passit" 1626006833640000000
```
The first line of the line protocol parsing will declare column c5 is a BINARY(4) field. The second line data write will parse column c5 as a BINARY column. But in the second line, c5's width is 6 so you need to increase the width of the BINARY field to be able to accommodate the new string.
The first row defines c5 as a binary(4). but the second row writes 6 bytes to it. This means that the length of the binary column must be expanded to contain the data.
```json
st,t1=3,t2=4,t3=t3 c1=3i64 1626006833639000000
st,t1=3,t2=4,t3=t3 c1=3i64,c6="passit" 1626006833640000000
st,t1=3,t2=4,t3=t3 c1=3i64 1626006833639000000
st,t1=3,t2=4,t3=t3 c1=3i64,c6="passit" 1626006833640000000
```
The second line of data has an additional column c6 of type BINARY(6) compared to the first row. Then a column c6 of type BINARY(6) is automatically added at this point.
The preceding data includes a new entry, c6, with type binary(6). When this occurs, a new column c6 with type binary(6) is added automatically.
## Write integrity
## Write Integrity
TDengine provides idempotency guarantees for data writing, i.e., you can repeatedly call the API to write data with errors. However, it does not give atomicity guarantees for writing multiple rows of data. During the process of writing numerous rows of data in one batch, some data will be written successfully, and some data will fail.
TDengine guarantees the idempotency of data writes. This means that you can repeatedly call the API to perform write operations with bad data. However, TDengine does not guarantee the atomicity of multi-row writes. In a multi-row write, some data may be written successfully and other data unsuccessfully.
## Error code
##: Error Codes
If it is an error in the data itself during the schemaless writing process, the application will get `TSDB_CODE_TSC_LINE_SYNTAX_ERROR` error message, which indicates that the error occurred in writing. The other error codes are consistent with the TDengine and can be obtained via the `taos_errstr()` to get the specific cause of the error.
The TSDB_CODE_TSC_LINE_SYNTAX_ERROR indicates an error in the schemaless writing component.
This error occurs when writing text. For other errors, schemaless writing uses the standard TDengine error codes
found in taos_errstr.
......@@ -6,9 +6,7 @@ title: Grafana
import Tabs from "@theme/Tabs";
import TabItem from "@theme/TabItem";
TDengine can be quickly integrated with the open-source data visualization system [Grafana](https://www.grafana.com/) to build a data monitoring and alerting system. The whole process does not require any code development. And you can visualize the contents of the data tables in TDengine on a dashboard.
You can learn more about using the TDengine plugin on [GitHub](https://github.com/taosdata/grafanaplugin/blob/master/README.md).
TDengine can be quickly integrated with the open-source data visualization system [Grafana](https://www.grafana.com/) to build a data monitoring and alerting system. The whole process does not require any code development. And you can visualize the contents of the data tables in TDengine on a dashboard. You can learn more about using the TDengine plugin on [GitHub](https://github.com/taosdata/grafanaplugin/blob/master/README.md).
## Prerequisites
......@@ -65,7 +63,6 @@ Restart Grafana service and open Grafana in web-browser, usually <http://localho
Save the script and type `./install.sh --help` for the full usage of the script.
</TabItem>
<TabItem value="manual" label="Install & Configure Manually">
Follow the installation steps in [Grafana](https://grafana.com/grafana/plugins/tdengine-datasource/?tab=installation) with the [``grafana-cli`` command-line tool](https://grafana.com/docs/grafana/latest/administration/cli/) for plugin installation.
......@@ -76,7 +73,7 @@ grafana-cli plugins install tdengine-datasource
sudo -u grafana grafana-cli plugins install tdengine-datasource
```
Alternatively, you can manually download the .zip file from [GitHub](https://github.com/taosdata/grafanaplugin/releases/tag/latest) or [Grafana](https://grafana.com/grafana/plugins/tdengine-datasource/?tab=installation) and unpack it into your grafana plugins directory.
You can also download zip files from [GitHub](https://github.com/taosdata/grafanaplugin/releases/tag/latest) or [Grafana](https://grafana.com/grafana/plugins/tdengine-datasource/?tab=installation) and install manually. The commands are as follows:
```bash
GF_VERSION=3.2.2
......@@ -131,7 +128,7 @@ docker run -d \
grafana/grafana
```
You can setup a zero-configuration stack for TDengine + Grafana by [docker-compose](https://docs.docker.com/compose/) and [Grafana provisioning](https://grafana.com/docs/grafana/latest/administration/provisioning/) file
You can setup a zero-configuration stack for TDengine + Grafana by [docker-compose](https://docs.docker.com/compose/) and [Grafana provisioning](https://grafana.com/docs/grafana/latest/administration/provisioning/) file:
1. Save the provisioning configuration file to `tdengine.yml`.
......@@ -196,7 +193,7 @@ Go back to the main interface to create a dashboard and click Add Query to enter
As shown above, select the `TDengine` data source in the `Query` and enter the corresponding SQL in the query box below for query.
- INPUT SQL: enter the statement to be queried (the result set of the SQL statement should be two columns and multiple rows), for example: `select avg(mem_system) from log.dn where ts >= $from and ts < $to interval($interval)`, where, from, to and interval are built-in variables of the TDengine plugin, indicating the range and time interval of queries fetched from the Grafana plugin panel. In addition to the built-in variables, custom template variables are also supported.
- INPUT SQL: Enter the desired query (the results being two columns and multiple rows), such as `select _wstart, avg(mem_system) from log.dnodes_info where ts >= $from and ts < $to interval($interval)`. In this statement, $from, $to, and $interval are variables that Grafana replaces with the query time range and interval. In addition to the built-in variables, custom template variables are also supported.
- ALIAS BY: This allows you to set the current query alias.
- GENERATE SQL: Clicking this button will automatically replace the corresponding variables and generate the final executed statement.
......@@ -208,7 +205,11 @@ Follow the default prompt to query the average system memory usage for the speci
### Importing the Dashboard
You can install TDinsight dashboard in data source configuration page (like `http://localhost:3000/datasources/edit/1/dashboards`) as a monitoring visualization tool for TDengine cluster. The dashboard is published in Grafana as [Dashboard 15167 - TDinsight](https://grafana.com/grafana/dashboards/15167). Check the [TDinsight User Manual](/reference/tdinsight/) for the details.
You can install TDinsight dashboard in data source configuration page (like `http://localhost:3000/datasources/edit/1/dashboards`) as a monitoring visualization tool for TDengine cluster. Ensure that you use TDinsight for 3.x.
![TDengine Database Grafana plugine import dashboard](./import_dashboard.webp)
A dashboard for TDengine 2.x has been published on Grafana: [Dashboard 15167 - TDinsight](https://grafana.com/grafana/dashboards/15167)) 。 Check the [TDinsight User Manual](/reference/tdinsight/) for the details.
For more dashboards using TDengine data source, [search here in Grafana](https://grafana.com/grafana/dashboards/?dataSource=tdengine-datasource). Here is a sub list:
......
---
sidebar_label: StatsD
title: StatsD writing
title: StatsD Writing
---
import StatsD from "../14-reference/_statsd.mdx"
......@@ -12,8 +12,8 @@ You can write StatsD data to TDengine by simply modifying the configuration file
## Prerequisites
To write StatsD data to TDengine requires the following preparations.
- The TDengine cluster has been deployed and is working properly
- taosAdapter is installed and running properly. Please refer to the [taosAdapter manual](/reference/taosadapter) for details.
1. The TDengine cluster is deployed and functioning properly
2. taosAdapter is installed and running properly. Please refer to the taosAdapter manual for details.
- StatsD has been installed. To install StatsD, please refer to [official documentation](https://github.com/statsd/statsd)
## Configuration steps
......@@ -39,8 +39,12 @@ $ echo "foo:1|c" | nc -u -w0 127.0.0.1 8125
Use the TDengine CLI to verify that StatsD data is written to TDengine and can read out correctly.
```
Welcome to the TDengine shell from Linux, Client Version:3.0.0.0
Copyright (c) 2022 by TAOS Data, Inc. All rights reserved.
taos> show databases;
name | created_time | ntables | vgroups | replica | quorum | days | keep | cache(MB) | blocks | minrows | maxrows | wallevel | fsync | comp | cachelast | precision | update | status |
====================================================================================================================================================================================================================================================================================
log | 2022-04-20 07:19:50.260 | 11 | 1 | 1 | 1 | 10 | 3650 | 16 | 6 | 100 | 4096 | 1 | 3000 | 2 | 0 | ms | 0 | ready |
statsd | 2022-04-20 09:54:51.220 | 1 | 1 | 1 | 1 | 10 | 3650 | 16 | 6 | 100 | 4096 | 1 | 3000 | 2 | 0 | ns | 2 | ready |
Query OK, 2 row(s) in set (0.003142s)
taos> use statsd;
Database changed.
......
---
sidebar_label: HiveMQ Broker
title: HiveMQ Broker writing
title: HiveMQ Broker Writing
---
[HiveMQ](https://www.hivemq.com/) is an MQTT broker that provides community and enterprise editions. HiveMQ is mainly for enterprise emerging machine-to-machine M2M communication and internal transport, meeting scalability, ease of management, and security features. HiveMQ provides an open-source plug-in development kit. MQTT data can be saved to TDengine via TDengine extension for HiveMQ. Please refer to the [HiveMQ extension - TDengine documentation](https://github.com/huskar-t/hivemq-tdengine-extension/blob/b62a26ecc164a310104df57691691b237e091c89/README_EN.md) for details on how to use it.
\ No newline at end of file
[HiveMQ](https://www.hivemq.com/) is an MQTT broker that provides community and enterprise editions. HiveMQ is mainly for enterprise emerging machine-to-machine M2M communication and internal transport, meeting scalability, ease of management, and security features. HiveMQ provides an open-source plug-in development kit. MQTT data can be saved to TDengine via TDengine extension for HiveMQ. For more information, see [HiveMQ TDengine Extension](https://github.com/huskar-t/hivemq-tdengine-extension/blob/b62a26ecc164a310104df57691691b237e091c89/README_EN.md).
---
sidebar_label: FAQ
title: Frequently Asked Questions
---
## Submit an Issue
If the tips in FAQ don't help much, please submit an issue on [GitHub](https://github.com/taosdata/TDengine) to describe your problem. In your description please include the TDengine version, hardware and OS information, the steps to reproduce the problem and any other relevant information. It would be very helpful if you can package the contents in `/var/log/taos` and `/etc/taos` and upload. These two are the default directories used by TDengine. If you have changed the default directories in your configuration, please package the files in your configured directories. We recommended setting `debugFlag` to 135 in `taos.cfg`, restarting `taosd`, then reproducing the problem and collecting the logs. If you don't want to restart, an alternative way of setting `debugFlag` is executing `alter dnode <dnode_id> debugFlag 135` command in TDengine CLI `taos`. During normal running, however, please make sure `debugFlag` is set to 131.
If your issue could not be resolved by reviewing this documentation, you can submit your issue on GitHub and receive support from the TDengine Team. When you submit an issue, attach the following directories from your TDengine deployment:
## Frequently Asked Questions
1. The directory containing TDengine logs (`/var/log/taos` by default)
2. The directory containing TDengine configuration files (`/etc/taos` by default)
### 1. How to upgrade to TDengine 2.0 from older version?
In your GitHub issue, provide the version of TDengine and the operating system and environment for your deployment, the operations that you performed when the issue occurred, and the time of occurrence and affected tables.
version 2.x is not compatible with version 1.x. With regard to the configuration and data files, please perform the following steps before upgrading. Please follow data integrity, security, backup and other relevant SOPs, best practices before removing/deleting any data.
To obtain more debugging information, open `taos.cfg` and set the `debugFlag` parameter to `135`. Then restart TDengine Server and reproduce the issue. The debug-level logs generated help the TDengine Team to resolve your issue. If it is not possible to restart TDengine Server, you can run the following command in the TDengine CLI to set the debug flag:
1. Delete configuration files: `sudo rm -rf /etc/taos/taos.cfg`
2. Delete log files: `sudo rm -rf /var/log/taos/`
3. Delete data files if the data doesn't need to be kept: `sudo rm -rf /var/lib/taos/`
4. Install latest 2.x version
5. If the data needs to be kept and migrated to newer version, please contact professional service at TDengine for assistance.
```
alter dnode <dnode_id> 'debugFlag' '135';
```
### 2. How to handle "Unable to establish connection"?
You can run the `SHOW DNODES` command to determine the dnode ID.
When the client is unable to connect to the server, you can try the following ways to troubleshoot and resolve the problem.
When debugging information is no longer needed, set `debugFlag` to 131.
1. Check the network
## Frequently Asked Questions
- Check if the hosts where the client and server are running are accessible to each other, for example by `ping` command.
- Check if the TCP/UDP on port 6030-6042 are open for access if firewall is enabled. If possible, disable the firewall for diagnostics, but please ensure that you are following security and other relevant protocols.
- Check if the FQDN and serverPort are configured correctly in `taos.cfg` used by the server side.
- Check if the `firstEp` is set properly in the `taos.cfg` used by the client side.
### 1. What are the best practices for upgrading a previous version of TDengine to version 3.0?
2. Make sure the client version and server version are same.
TDengine 3.0 is not compatible with the configuration and data files from previous versions. Before upgrading, perform the following steps:
3. On server side, check the running status of `taosd` by executing `systemctl status taosd` . If your server is started using another way instead of `systemctl`, use the proper method to check whether the server process is running normally.
1. Run `sudo rm -rf /etc/taos/taos.cfg` to delete your configuration file.
2. Run `sudo rm -rf /var/log/taos/` to delete your log files.
3. Run `sudo rm -rf /var/lib/taos/` to delete your data files.
4. Install TDengine 3.0.
5. For assistance in migrating data to TDengine 3.0, contact [TDengine Support](https://tdengine.com/support).
4. If using connector of Python, Java, Go, Rust, C#, node.JS on Linux to connect to the server, please make sure `libtaos.so` is in directory `/usr/local/taos/driver` and `/usr/local/taos/driver` is in system lib search environment variable `LD_LIBRARY_PATH`.
### 4. How can I resolve the "Unable to establish connection" error?
5. If using connector on Windows, please make sure `C:\TDengine\driver\taos.dll` is in your system lib search path. We recommend putting `taos.dll` under `C:\Windows\System32`.
This error indicates that the client could not connect to the server. Perform the following troubleshooting steps:
6. Some advanced network diagnostics tools
1. Check the network.
- On Linux system tool `nc` can be used to check whether the TCP/UDP can be accessible on a specified port
Check whether a UDP port is open: `nc -vuz {hostIP} {port} `
Check whether a TCP port on server side is open: `nc -l {port}`
Check whether a TCP port on client side is open: `nc {hostIP} {port}`
- For machines deployed in the cloud, verify that your security group can access ports 6030 and 6031 (TCP and UDP).
- For virtual machines deployed locally, verify that the hosts where the client and server are running are accessible to each other. Do not use localhost as the hostname.
- For machines deployed on a corporate network, verify that your NAT configuration allows the server to respond to the client.
- On Windows system `Test-NetConnection -ComputerName {fqdn} -Port {port}` on PowerShell can be used to check whether the port on server side is open for access.
2. Verify that the client and server are running the same version of TDengine.
7. TDengine CLI `taos` can also be used to check network, please refer to [TDengine CLI](/reference/taos-shell).
3. On the server, run `systemctl status taosd` to verify that taosd is running normally. If taosd is stopped, run `systemctl start taosd`.
### 3. How to handle "Unexpected generic error in RPC" or "Unable to resolve FQDN" ?
4. Verify that the client is configured with the correct FQDN for the server.
This error is caused because the FQDN can't be resolved. Please try following ways:
5. If the server cannot be reached with the `ping` command, verify that network and DNS or hosts file settings are correct. For a TDengine cluster, the client must be able to ping the FQDN of every node in the cluster.
1. Check whether the FQDN is configured properly on the server side
2. If DSN server is configured in the network, please check whether it works; otherwise, check `/etc/hosts` to see whether the FQDN is configured with correct IP
3. If the network configuration on the server side is OK, try to ping the server from the client side.
4. If TDengine has been used before with an old hostname then the hostname has been changed, please check `/var/lib/taos/taos/dnode/dnodeEps.json`. Before setting up a new TDengine cluster, it's better to cleanup the directories configured.
6. Verify that your firewall settings allow all hosts in the cluster to communicate on ports 6030 and 6041 (TCP and UDP). You can run `ufw status` (Ubuntu) or `firewall-cmd --list-port` (CentOS) to check the configuration.
### 4. "Invalid SQL" is returned even though the Syntax is correct
7. If you are using the Python, Java, Go, Rust, C#, or Node.js connector on Linux to connect to the server, verify that `libtaos.so` is in the `/usr/local/taos/driver` directory and `/usr/local/taos/driver` is in the `LD_LIBRARY_PATH` environment variable.
"Invalid SQL" is returned when the length of SQL statement exceeds maximum allowed length or the syntax is not correct.
8. If you are using Windows, verify that `C:\TDengine\driver\taos.dll` is in the `PATH` environment variable. If possible, move `taos.dll` to the `C:\Windows\System32` directory.
### 5. Whether validation queries are supported?
9. On Linux systems, you can use the `nc` tool to check whether a port is accessible:
- To check whether a UDP port is open, run `nc -vuz {hostIP} {port}`.
- To check whether a TCP port on the server side is open, run `nc -l {port}`.
- To check whether a TCP port on client side is open, run `nc {hostIP} {port}`.
It's suggested to use a builtin database named as `log` to monitor.
10. On Windows systems, you can run `Test-NetConnection -ComputerName {fqdn} -Port {port}` in PowerShell to check whether a port on the server side is accessible.
<a class="anchor" id="update"></a>
11. You can also use the TDengine CLI to diagnose network issues. For more information, see [Problem Diagnostics](https://docs.tdengine.com/operation/diagnose/).
### 6. Can I delete a record?
### 5. How can I resolve the "Unable to resolve FQDN" error?
From version 2.6.0.0 Enterprise version, deleting data can be supported.
Clients and dnodes must be able to resolve the FQDN of each required node. You can confirm your configuration as follows:
### 7. How to create a table of over 1024 columns?
1. Verify that the FQDN is configured properly on the server.
2. If your network has a DNS server, verify that it is operational.
3. If your network does not have a DNS server, verify that the FQDNs in the `hosts` file are correct.
4. On the client, use the `ping` command to test your connection to the server. If you cannot ping an FQDN, TDengine cannot reach it.
5. If TDengine has been previously installed and the `hostname` was modified, open `dnode.json` in the `data` folder and verify that the endpoint configuration is correct. The default location of the dnode file is `/var/lib/taos/dnode`. Ensure that you clean up previous installations before reinstalling TDengine.
6. Confirm whether FQDNs are preconfigured in `/etc/hosts` and `/etc/hostname`.
From version 2.1.7.0, at most 4096 columns can be defined for a table.
### 6. What is the most effective way to write data to TDengine?
### 8. How to improve the efficiency of inserting data?
Writing data in batches provides higher efficiency in most situations. You can insert one or more data records into one or more tables in a single SQL statement.
Inserting data in batch is a good practice. Single SQL statement can insert data for one or multiple tables in batch.
### 9. Why are table names not fully displayed?
### 9. JDBC Error: the executed SQL is not a DML or a DDL?
The number of columns in the TDengine CLI terminal display is limited. This can cause table names to be cut off, and if you use an incomplete name in a statement, the "Table does not exist" error will occur. You can increase the display size with the `maxBinaryDisplayWidth` parameter or the SQL statement `set max_binary_display_width`. You can also append `\G` to your SQL statement to bypass this limitation.
Please upgrade to latest JDBC driver, for details please refer to [Java Connector](/reference/connector/java)
### 10. How can I migrate data?
### 10. Failed to connect with error "invalid timestamp"
In TDengine, the `hostname` uniquely identifies a machine. When you move data files to a new machine, you must configure the new machine to have the same `host name` as the original machine.
The most common reason is that the time setting is not aligned on the client side and the server side. On Linux system, please use `ntpdate` command. On Windows system, please enable automatic sync in system time setting.
:::note
### 11. Table name is not shown in full
The data structure of previous versions of TDengine is not compatible with version 3.0. To migrate from TDengine 1.x or 2.x to 3.0, you must export data from your older deployment and import it back into TDengine 3.0.
There is a display width setting in TDengine CLI `taos`. It can be controlled by configuration parameter `maxBinaryDisplayWidth`, or can be set using SQL command `set max_binary_display_width`. A more convenient way is to append `\G` in a SQL command to bypass this limitation.
:::
### 12. How to change log level temporarily?
### 11. How can I temporary change the log level from the TDengine Client?
Below SQL command can be used to adjust log level temporarily
To change the log level for debugging purposes, you can use the following command:
```sql
ALTER LOCAL flag_name flag_value;
ALTER LOCAL local_option
local_option: {
'resetLog'
| 'rpcDebugFlag' value
| 'tmrDebugFlag' value
| 'cDebugFlag' value
| 'uDebugFlag' value
| 'debugFlag' value
}
```
- flag_name can be: debugFlag,cDebugFlag,tmrDebugFlag,uDebugFlag,rpcDebugFlag
- flag_value can be: 131 (INFO/WARNING/ERROR), 135 (plus DEBUG), 143 (plus TRACE)
<a class="anchor" id="timezone"></a>
Use `resetlog` to remove all logs generated on the local client. Use the other parameters to specify a log level for a specific component.
### 13. What to do if go compilation fails?
For each parameter, you can set the value to `131` (error and warning), `135` (error, warning, and debug), or `143` (error, warning, debug, and trace).
From version 2.3.0.0, a new component named `taosAdapter` is introduced. Its' developed in Go. If you want to compile from source code and meet go compilation problems, try to do below steps to resolve Go environment problems.
### Why do TDengine components written in Go fail to compile?
```sh
go env -w GO111MODULE=on
go env -w GOPROXY=https://goproxy.cn,direct
```
TDengine includes taosAdapter, an independent component written in Go. This component provides the REST API as well as data access for other products such as Prometheus and Telegraf.
When using the develop branch, you must run `git submodule update --init --recursive` to download the taosAdapter repository and then compile it.
TDengine Go components require Go version 1.14 or later.
### 13. How can I query the storage space being used by my data?
The TDengine data files are stored in `/var/lib/taos` by default. Log files are stored in `/var/log/taos`.
To see how much space your data files occupy, run `du -sh /var/lib/taos/vnode --exclude='wal'`. This excludes the write-ahead log (WAL) because its size is relatively fixed while writes are occurring, and it is written to disk and cleared when you shut down TDengine.
If you want to see how much space is occupied by a single database, first determine which vgroup is storing the database by running `show vgroups`. Then check `/var/lib/taos/vnode` for the files associated with the vgroup ID.
### 15. How is timezone information processed for timestamps?
TDengine uses the timezone of the client for timestamps. The server timezone does not affect timestamps. The client converts Unix timestamps in SQL statements to UTC before sending them to the server. When you query data on the server, it provides timestamps in UTC to the client, which converts them to its local time.
Timestamps are processed as follows:
1. The client uses its system timezone unless it has been configured otherwise.
2. A timezone configured in `taos.cfg` takes precedence over the system timezone.
3. A timezone explicitly specified when establishing a connection to TDengine through a connector takes precedence over `taos.cfg` and the system timezone. For example, the Java connector allows you to specify a timezone in the JDBC URL.
4. If you use an RFC 3339 timestamp (2013-04-12T15:52:01.123+08:00), or an ISO 8601 timestamp (2013-04-12T15:52:01.123+0800), the timezone specified in the timestamp is used instead of the timestamps configured using any other method.
### 16. Which network ports are required by TDengine?
See [serverPort](https://docs.tdengine.com/reference/config/#serverport) in Configuration Parameters.
Note that ports are specified using 6030 as the default first port. If you change this port, all other ports change as well.
### 17. Why do applications such as Grafana fail to connect to TDengine over the REST API?
In TDengine, the REST API is provided by taosAdapter. Ensure that taosAdapter is running before you connect an application to TDengine over the REST API. You can run `systemctl start taosadapter` to start the service.
Note that the log path for taosAdapter must be configured separately. The default path is `/var/log/taos`. You can choose one of eight log levels. The default is `info`. You can set the log level to `panic` to disable log output. You can modify the taosAdapter configuration file to change these settings. The default location is `/etc/taos/taosadapter.toml`.
For more information, see [taosAdapter](https://docs.tdengine.com/reference/taosadapter/).
### 18. How can I resolve out-of-memory (OOM) errors?
OOM errors are thrown by the operating system when its memory, including swap, becomes insufficient and it needs to terminate processes to remain operational. Most OOM errors in TDengine occur for one of the following reasons: free memory is less than the value of `vm.min_free_kbytes` or free memory is less than the size of the request. If TDengine occupies reserved memory, an OOM error can occur even when free memory is sufficient.
TDengine preallocates memory to each vnode. The number of vnodes per database is determined by the `vgroups` parameter, and the amount of memory per vnode is determined by the `buffer` parameter. To prevent OOM errors from occurring, ensure that you prepare sufficient memory on your hosts to support the number of vnodes that your deployment requires. Configure an appropriately sized swap space. If you continue to receive OOM errors, your SQL statements may be querying too much data for your system. TDengine Enterprise Edition includes optimized memory management that increases stability for enterprise customers.
......@@ -16,14 +16,14 @@ public class RestInsertExample {
private static List<String> getRawData() {
return Arrays.asList(
"d1001,2018-10-03 14:38:05.000,10.30000,219,0.31000,California.SanFrancisco,2",
"d1001,2018-10-03 14:38:15.000,12.60000,218,0.33000,California.SanFrancisco,2",
"d1001,2018-10-03 14:38:16.800,12.30000,221,0.31000,California.SanFrancisco,2",
"d1002,2018-10-03 14:38:16.650,10.30000,218,0.25000,California.SanFrancisco,3",
"d1003,2018-10-03 14:38:05.500,11.80000,221,0.28000,California.LosAngeles,2",
"d1003,2018-10-03 14:38:16.600,13.40000,223,0.29000,California.LosAngeles,2",
"d1004,2018-10-03 14:38:05.000,10.80000,223,0.29000,California.LosAngeles,3",
"d1004,2018-10-03 14:38:06.500,11.50000,221,0.35000,California.LosAngeles,3"
"d1001,2018-10-03 14:38:05.000,10.30000,219,0.31000,'California.SanFrancisco',2",
"d1001,2018-10-03 14:38:15.000,12.60000,218,0.33000,'California.SanFrancisco',2",
"d1001,2018-10-03 14:38:16.800,12.30000,221,0.31000,'California.SanFrancisco',2",
"d1002,2018-10-03 14:38:16.650,10.30000,218,0.25000,'California.SanFrancisco',3",
"d1003,2018-10-03 14:38:05.500,11.80000,221,0.28000,'California.LosAngeles',2",
"d1003,2018-10-03 14:38:16.600,13.40000,223,0.29000,'California.LosAngeles',2",
"d1004,2018-10-03 14:38:05.000,10.80000,223,0.29000,'California.LosAngeles',3",
"d1004,2018-10-03 14:38:06.500,11.50000,221,0.35000,'California.LosAngeles',3"
);
}
......
......@@ -57,7 +57,7 @@ public class SubscribeDemo {
properties.setProperty(TMQConstants.ENABLE_AUTO_COMMIT, "true");
properties.setProperty(TMQConstants.GROUP_ID, "test");
properties.setProperty(TMQConstants.VALUE_DESERIALIZER,
"com.taosdata.jdbc.MetersDeserializer");
"com.taos.example.MetersDeserializer");
// poll data
try (TaosConsumer<Meters> consumer = new TaosConsumer<>(properties)) {
......
package com.taos.example.highvolume;
import java.sql.*;
/**
* Prepare target database.
* Count total records in database periodically so that we can estimate the writing speed.
*/
public class DataBaseMonitor {
private Connection conn;
private Statement stmt;
public DataBaseMonitor init() throws SQLException {
if (conn == null) {
String jdbcURL = System.getenv("TDENGINE_JDBC_URL");
conn = DriverManager.getConnection(jdbcURL);
stmt = conn.createStatement();
}
return this;
}
public void close() {
try {
stmt.close();
} catch (SQLException e) {
}
try {
conn.close();
} catch (SQLException e) {
}
}
public void prepareDatabase() throws SQLException {
stmt.execute("DROP DATABASE IF EXISTS test");
stmt.execute("CREATE DATABASE test");
stmt.execute("CREATE STABLE test.meters (ts TIMESTAMP, current FLOAT, voltage INT, phase FLOAT) TAGS (location BINARY(64), groupId INT)");
}
public Long count() throws SQLException {
if (!stmt.isClosed()) {
ResultSet result = stmt.executeQuery("SELECT count(*) from test.meters");
result.next();
return result.getLong(1);
}
return null;
}
/**
* show test.stables;
*
* name | created_time | columns | tags | tables |
* ============================================================================================
* meters | 2022-07-20 08:39:30.902 | 4 | 2 | 620000 |
*/
public Long getTableCount() throws SQLException {
if (!stmt.isClosed()) {
ResultSet result = stmt.executeQuery("show test.stables");
result.next();
return result.getLong(5);
}
return null;
}
}
\ No newline at end of file
package com.taos.example.highvolume;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.sql.*;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
public class FastWriteExample {
final static Logger logger = LoggerFactory.getLogger(FastWriteExample.class);
final static int taskQueueCapacity = 1000000;
final static List<BlockingQueue<String>> taskQueues = new ArrayList<>();
final static List<ReadTask> readTasks = new ArrayList<>();
final static List<WriteTask> writeTasks = new ArrayList<>();
final static DataBaseMonitor databaseMonitor = new DataBaseMonitor();
public static void stopAll() {
logger.info("shutting down");
readTasks.forEach(task -> task.stop());
writeTasks.forEach(task -> task.stop());
databaseMonitor.close();
}
public static void main(String[] args) throws InterruptedException, SQLException {
int readTaskCount = args.length > 0 ? Integer.parseInt(args[0]) : 1;
int writeTaskCount = args.length > 1 ? Integer.parseInt(args[1]) : 3;
int tableCount = args.length > 2 ? Integer.parseInt(args[2]) : 1000;
int maxBatchSize = args.length > 3 ? Integer.parseInt(args[3]) : 3000;
logger.info("readTaskCount={}, writeTaskCount={} tableCount={} maxBatchSize={}",
readTaskCount, writeTaskCount, tableCount, maxBatchSize);
databaseMonitor.init().prepareDatabase();
// Create task queues, whiting tasks and start writing threads.
for (int i = 0; i < writeTaskCount; ++i) {
BlockingQueue<String> queue = new ArrayBlockingQueue<>(taskQueueCapacity);
taskQueues.add(queue);
WriteTask task = new WriteTask(queue, maxBatchSize);
Thread t = new Thread(task);
t.setName("WriteThread-" + i);
t.start();
}
// create reading tasks and start reading threads
int tableCountPerTask = tableCount / readTaskCount;
for (int i = 0; i < readTaskCount; ++i) {
ReadTask task = new ReadTask(i, taskQueues, tableCountPerTask);
Thread t = new Thread(task);
t.setName("ReadThread-" + i);
t.start();
}
Runtime.getRuntime().addShutdownHook(new Thread(FastWriteExample::stopAll));
long lastCount = 0;
while (true) {
Thread.sleep(10000);
long numberOfTable = databaseMonitor.getTableCount();
long count = databaseMonitor.count();
logger.info("numberOfTable={} count={} speed={}", numberOfTable, count, (count - lastCount) / 10);
lastCount = count;
}
}
}
\ No newline at end of file
package com.taos.example.highvolume;
import java.util.Iterator;
/**
* Generate test data
*/
class MockDataSource implements Iterator {
private String tbNamePrefix;
private int tableCount;
private long maxRowsPerTable = 1000000000L;
// 100 milliseconds between two neighbouring rows.
long startMs = System.currentTimeMillis() - maxRowsPerTable * 100;
private int currentRow = 0;
private int currentTbId = -1;
// mock values
String[] location = {"LosAngeles", "SanDiego", "Hollywood", "Compton", "San Francisco"};
float[] current = {8.8f, 10.7f, 9.9f, 8.9f, 9.4f};
int[] voltage = {119, 116, 111, 113, 118};
float[] phase = {0.32f, 0.34f, 0.33f, 0.329f, 0.141f};
public MockDataSource(String tbNamePrefix, int tableCount) {
this.tbNamePrefix = tbNamePrefix;
this.tableCount = tableCount;
}
@Override
public boolean hasNext() {
currentTbId += 1;
if (currentTbId == tableCount) {
currentTbId = 0;
currentRow += 1;
}
return currentRow < maxRowsPerTable;
}
@Override
public String next() {
long ts = startMs + 100 * currentRow;
int groupId = currentTbId % 5 == 0 ? currentTbId / 5 : currentTbId / 5 + 1;
StringBuilder sb = new StringBuilder(tbNamePrefix + "_" + currentTbId + ","); // tbName
sb.append(ts).append(','); // ts
sb.append(current[currentRow % 5]).append(','); // current
sb.append(voltage[currentRow % 5]).append(','); // voltage
sb.append(phase[currentRow % 5]).append(','); // phase
sb.append(location[currentRow % 5]).append(','); // location
sb.append(groupId); // groupID
return sb.toString();
}
}
\ No newline at end of file
package com.taos.example.highvolume;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.BlockingQueue;
class ReadTask implements Runnable {
private final static Logger logger = LoggerFactory.getLogger(ReadTask.class);
private final int taskId;
private final List<BlockingQueue<String>> taskQueues;
private final int queueCount;
private final int tableCount;
private boolean active = true;
public ReadTask(int readTaskId, List<BlockingQueue<String>> queues, int tableCount) {
this.taskId = readTaskId;
this.taskQueues = queues;
this.queueCount = queues.size();
this.tableCount = tableCount;
}
/**
* Assign data received to different queues.
* Here we use the suffix number in table name.
* You are expected to define your own rule in practice.
*
* @param line record received
* @return which queue to use
*/
public int getQueueId(String line) {
String tbName = line.substring(0, line.indexOf(',')); // For example: tb1_101
String suffixNumber = tbName.split("_")[1];
return Integer.parseInt(suffixNumber) % this.queueCount;
}
@Override
public void run() {
logger.info("started");
Iterator<String> it = new MockDataSource("tb" + this.taskId, tableCount);
try {
while (it.hasNext() && active) {
String line = it.next();
int queueId = getQueueId(line);
taskQueues.get(queueId).put(line);
}
} catch (Exception e) {
logger.error("Read Task Error", e);
}
}
public void stop() {
logger.info("stop");
this.active = false;
}
}
\ No newline at end of file
package com.taos.example.highvolume;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.sql.*;
import java.util.HashMap;
import java.util.Map;
/**
* A helper class encapsulate the logic of writing using SQL.
* <p>
* The main interfaces are two methods:
* <ol>
* <li>{@link SQLWriter#processLine}, which receive raw lines from WriteTask and group them by table names.</li>
* <li>{@link SQLWriter#flush}, which assemble INSERT statement and execute it.</li>
* </ol>
* <p>
* There is a technical skill worth mentioning: we create table as needed when "table does not exist" error occur instead of creating table automatically using syntax "INSET INTO tb USING stb".
* This ensure that checking table existence is a one-time-only operation.
* </p>
*
* </p>
*/
public class SQLWriter {
final static Logger logger = LoggerFactory.getLogger(SQLWriter.class);
private Connection conn;
private Statement stmt;
/**
* current number of buffered records
*/
private int bufferedCount = 0;
/**
* Maximum number of buffered records.
* Flush action will be triggered if bufferedCount reached this value,
*/
private int maxBatchSize;
/**
* Maximum SQL length.
*/
private int maxSQLLength;
/**
* Map from table name to column values. For example:
* "tb001" -> "(1648432611249,2.1,114,0.09) (1648432611250,2.2,135,0.2)"
*/
private Map<String, String> tbValues = new HashMap<>();
/**
* Map from table name to tag values in the same order as creating stable.
* Used for creating table.
*/
private Map<String, String> tbTags = new HashMap<>();
public SQLWriter(int maxBatchSize) {
this.maxBatchSize = maxBatchSize;
}
/**
* Get Database Connection
*
* @return Connection
* @throws SQLException
*/
private static Connection getConnection() throws SQLException {
String jdbcURL = System.getenv("TDENGINE_JDBC_URL");
return DriverManager.getConnection(jdbcURL);
}
/**
* Create Connection and Statement
*
* @throws SQLException
*/
public void init() throws SQLException {
conn = getConnection();
stmt = conn.createStatement();
stmt.execute("use test");
ResultSet rs = stmt.executeQuery("show variables");
while (rs.next()) {
String configName = rs.getString(1);
if ("maxSQLLength".equals(configName)) {
maxSQLLength = Integer.parseInt(rs.getString(2));
logger.info("maxSQLLength={}", maxSQLLength);
}
}
}
/**
* Convert raw data to SQL fragments, group them by table name and cache them in a HashMap.
* Trigger writing when number of buffered records reached maxBachSize.
*
* @param line raw data get from task queue in format: tbName,ts,current,voltage,phase,location,groupId
*/
public void processLine(String line) throws SQLException {
bufferedCount += 1;
int firstComma = line.indexOf(',');
String tbName = line.substring(0, firstComma);
int lastComma = line.lastIndexOf(',');
int secondLastComma = line.lastIndexOf(',', lastComma - 1);
String value = "(" + line.substring(firstComma + 1, secondLastComma) + ") ";
if (tbValues.containsKey(tbName)) {
tbValues.put(tbName, tbValues.get(tbName) + value);
} else {
tbValues.put(tbName, value);
}
if (!tbTags.containsKey(tbName)) {
String location = line.substring(secondLastComma + 1, lastComma);
String groupId = line.substring(lastComma + 1);
String tagValues = "('" + location + "'," + groupId + ')';
tbTags.put(tbName, tagValues);
}
if (bufferedCount == maxBatchSize) {
flush();
}
}
/**
* Assemble INSERT statement using buffered SQL fragments in Map {@link SQLWriter#tbValues} and execute it.
* In case of "Table does not exit" exception, create all tables in the sql and retry the sql.
*/
public void flush() throws SQLException {
StringBuilder sb = new StringBuilder("INSERT INTO ");
for (Map.Entry<String, String> entry : tbValues.entrySet()) {
String tableName = entry.getKey();
String values = entry.getValue();
String q = tableName + " values " + values + " ";
if (sb.length() + q.length() > maxSQLLength) {
executeSQL(sb.toString());
logger.warn("increase maxSQLLength or decrease maxBatchSize to gain better performance");
sb = new StringBuilder("INSERT INTO ");
}
sb.append(q);
}
executeSQL(sb.toString());
tbValues.clear();
bufferedCount = 0;
}
private void executeSQL(String sql) throws SQLException {
try {
stmt.executeUpdate(sql);
} catch (SQLException e) {
// convert to error code defined in taoserror.h
int errorCode = e.getErrorCode() & 0xffff;
if (errorCode == 0x362 || errorCode == 0x218) {
// Table does not exist
createTables();
executeSQL(sql);
} else {
logger.error("Execute SQL: {}", sql);
throw e;
}
} catch (Throwable throwable) {
logger.error("Execute SQL: {}", sql);
throw throwable;
}
}
/**
* Create tables in batch using syntax:
* <p>
* CREATE TABLE [IF NOT EXISTS] tb_name1 USING stb_name TAGS (tag_value1, ...) [IF NOT EXISTS] tb_name2 USING stb_name TAGS (tag_value2, ...) ...;
* </p>
*/
private void createTables() throws SQLException {
StringBuilder sb = new StringBuilder("CREATE TABLE ");
for (String tbName : tbValues.keySet()) {
String tagValues = tbTags.get(tbName);
sb.append("IF NOT EXISTS ").append(tbName).append(" USING meters TAGS ").append(tagValues).append(" ");
}
String sql = sb.toString();
try {
stmt.executeUpdate(sql);
} catch (Throwable throwable) {
logger.error("Execute SQL: {}", sql);
throw throwable;
}
}
public boolean hasBufferedValues() {
return bufferedCount > 0;
}
public int getBufferedCount() {
return bufferedCount;
}
public void close() {
try {
stmt.close();
} catch (SQLException e) {
}
try {
conn.close();
} catch (SQLException e) {
}
}
}
\ No newline at end of file
package com.taos.example.highvolume;
public class StmtWriter {
}
package com.taos.example.highvolume;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.concurrent.BlockingQueue;
class WriteTask implements Runnable {
private final static Logger logger = LoggerFactory.getLogger(WriteTask.class);
private final int maxBatchSize;
// the queue from which this writing task get raw data.
private final BlockingQueue<String> queue;
// A flag indicate whether to continue.
private boolean active = true;
public WriteTask(BlockingQueue<String> taskQueue, int maxBatchSize) {
this.queue = taskQueue;
this.maxBatchSize = maxBatchSize;
}
@Override
public void run() {
logger.info("started");
String line = null; // data getting from the queue just now.
SQLWriter writer = new SQLWriter(maxBatchSize);
try {
writer.init();
while (active) {
line = queue.poll();
if (line != null) {
// parse raw data and buffer the data.
writer.processLine(line);
} else if (writer.hasBufferedValues()) {
// write data immediately if no more data in the queue
writer.flush();
} else {
// sleep a while to avoid high CPU usage if no more data in the queue and no buffered records, .
Thread.sleep(100);
}
}
if (writer.hasBufferedValues()) {
writer.flush();
}
} catch (Exception e) {
String msg = String.format("line=%s, bufferedCount=%s", line, writer.getBufferedCount());
logger.error(msg, e);
} finally {
writer.close();
}
}
public void stop() {
logger.info("stop");
this.active = false;
}
}
\ No newline at end of file
......@@ -23,16 +23,16 @@ public class TestAll {
String jdbcUrl = "jdbc:TAOS://localhost:6030?user=root&password=taosdata";
try (Connection conn = DriverManager.getConnection(jdbcUrl)) {
try (Statement stmt = conn.createStatement()) {
String sql = "INSERT INTO power.d1001 USING power.meters TAGS(California.SanFrancisco, 2) VALUES('2018-10-03 14:38:05.000',10.30000,219,0.31000)\n" +
" power.d1001 USING power.meters TAGS(California.SanFrancisco, 2) VALUES('2018-10-03 15:38:15.000',12.60000,218,0.33000)\n" +
" power.d1001 USING power.meters TAGS(California.SanFrancisco, 2) VALUES('2018-10-03 15:38:16.800',12.30000,221,0.31000)\n" +
" power.d1002 USING power.meters TAGS(California.SanFrancisco, 3) VALUES('2018-10-03 15:38:16.650',10.30000,218,0.25000)\n" +
" power.d1003 USING power.meters TAGS(California.LosAngeles, 2) VALUES('2018-10-03 15:38:05.500',11.80000,221,0.28000)\n" +
" power.d1003 USING power.meters TAGS(California.LosAngeles, 2) VALUES('2018-10-03 15:38:16.600',13.40000,223,0.29000)\n" +
" power.d1004 USING power.meters TAGS(California.LosAngeles, 3) VALUES('2018-10-03 15:38:05.000',10.80000,223,0.29000)\n" +
" power.d1004 USING power.meters TAGS(California.LosAngeles, 3) VALUES('2018-10-03 15:38:06.000',10.80000,223,0.29000)\n" +
" power.d1004 USING power.meters TAGS(California.LosAngeles, 3) VALUES('2018-10-03 15:38:07.000',10.80000,223,0.29000)\n" +
" power.d1004 USING power.meters TAGS(California.LosAngeles, 3) VALUES('2018-10-03 15:38:08.500',11.50000,221,0.35000)";
String sql = "INSERT INTO power.d1001 USING power.meters TAGS('California.SanFrancisco', 2) VALUES('2018-10-03 14:38:05.000',10.30000,219,0.31000)\n" +
" power.d1001 USING power.meters TAGS('California.SanFrancisco', 2) VALUES('2018-10-03 15:38:15.000',12.60000,218,0.33000)\n" +
" power.d1001 USING power.meters TAGS('California.SanFrancisco', 2) VALUES('2018-10-03 15:38:16.800',12.30000,221,0.31000)\n" +
" power.d1002 USING power.meters TAGS('California.SanFrancisco', 3) VALUES('2018-10-03 15:38:16.650',10.30000,218,0.25000)\n" +
" power.d1003 USING power.meters TAGS('California.LosAngeles', 2) VALUES('2018-10-03 15:38:05.500',11.80000,221,0.28000)\n" +
" power.d1003 USING power.meters TAGS('California.LosAngeles', 2) VALUES('2018-10-03 15:38:16.600',13.40000,223,0.29000)\n" +
" power.d1004 USING power.meters TAGS('California.LosAngeles', 3) VALUES('2018-10-03 15:38:05.000',10.80000,223,0.29000)\n" +
" power.d1004 USING power.meters TAGS('California.LosAngeles', 3) VALUES('2018-10-03 15:38:06.000',10.80000,223,0.29000)\n" +
" power.d1004 USING power.meters TAGS('California.LosAngeles', 3) VALUES('2018-10-03 15:38:07.000',10.80000,223,0.29000)\n" +
" power.d1004 USING power.meters TAGS('California.LosAngeles', 3) VALUES('2018-10-03 15:38:08.500',11.50000,221,0.35000)";
stmt.execute(sql);
}
......
# install dependencies:
# recommend python >= 3.8
# pip3 install faster-fifo
#
import logging
import math
import sys
import time
import os
from multiprocessing import Process
from faster_fifo import Queue
from mockdatasource import MockDataSource
from queue import Empty
from typing import List
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG, format="%(asctime)s [%(name)s] - %(message)s")
READ_TASK_COUNT = 1
WRITE_TASK_COUNT = 1
TABLE_COUNT = 1000
QUEUE_SIZE = 1000000
MAX_BATCH_SIZE = 3000
read_processes = []
write_processes = []
def get_connection():
"""
If variable TDENGINE_FIRST_EP is provided then it will be used. If not, firstEP in /etc/taos/taos.cfg will be used.
You can also override the default username and password by supply variable TDENGINE_USER and TDENGINE_PASSWORD
"""
import taos
firstEP = os.environ.get("TDENGINE_FIRST_EP")
if firstEP:
host, port = firstEP.split(":")
else:
host, port = None, 0
user = os.environ.get("TDENGINE_USER", "root")
password = os.environ.get("TDENGINE_PASSWORD", "taosdata")
return taos.connect(host=host, port=int(port), user=user, password=password)
# ANCHOR: read
def run_read_task(task_id: int, task_queues: List[Queue]):
table_count_per_task = TABLE_COUNT // READ_TASK_COUNT
data_source = MockDataSource(f"tb{task_id}", table_count_per_task)
try:
for batch in data_source:
for table_id, rows in batch:
# hash data to different queue
i = table_id % len(task_queues)
# block putting forever when the queue is full
task_queues[i].put_many(rows, block=True, timeout=-1)
except KeyboardInterrupt:
pass
# ANCHOR_END: read
# ANCHOR: write
def run_write_task(task_id: int, queue: Queue):
from sql_writer import SQLWriter
log = logging.getLogger(f"WriteTask-{task_id}")
writer = SQLWriter(get_connection)
lines = None
try:
while True:
try:
# get as many as possible
lines = queue.get_many(block=False, max_messages_to_get=MAX_BATCH_SIZE)
writer.process_lines(lines)
except Empty:
time.sleep(0.01)
except KeyboardInterrupt:
pass
except BaseException as e:
log.debug(f"lines={lines}")
raise e
# ANCHOR_END: write
def set_global_config():
argc = len(sys.argv)
if argc > 1:
global READ_TASK_COUNT
READ_TASK_COUNT = int(sys.argv[1])
if argc > 2:
global WRITE_TASK_COUNT
WRITE_TASK_COUNT = int(sys.argv[2])
if argc > 3:
global TABLE_COUNT
TABLE_COUNT = int(sys.argv[3])
if argc > 4:
global QUEUE_SIZE
QUEUE_SIZE = int(sys.argv[4])
if argc > 5:
global MAX_BATCH_SIZE
MAX_BATCH_SIZE = int(sys.argv[5])
# ANCHOR: monitor
def run_monitor_process():
log = logging.getLogger("DataBaseMonitor")
conn = get_connection()
conn.execute("DROP DATABASE IF EXISTS test")
conn.execute("CREATE DATABASE test")
conn.execute("CREATE STABLE test.meters (ts TIMESTAMP, current FLOAT, voltage INT, phase FLOAT) "
"TAGS (location BINARY(64), groupId INT)")
def get_count():
res = conn.query("SELECT count(*) FROM test.meters")
rows = res.fetch_all()
return rows[0][0] if rows else 0
last_count = 0
while True:
time.sleep(10)
count = get_count()
log.info(f"count={count} speed={(count - last_count) / 10}")
last_count = count
# ANCHOR_END: monitor
# ANCHOR: main
def main():
set_global_config()
logging.info(f"READ_TASK_COUNT={READ_TASK_COUNT}, WRITE_TASK_COUNT={WRITE_TASK_COUNT}, "
f"TABLE_COUNT={TABLE_COUNT}, QUEUE_SIZE={QUEUE_SIZE}, MAX_BATCH_SIZE={MAX_BATCH_SIZE}")
monitor_process = Process(target=run_monitor_process)
monitor_process.start()
time.sleep(3) # waiting for database ready.
task_queues: List[Queue] = []
# create task queues
for i in range(WRITE_TASK_COUNT):
queue = Queue(max_size_bytes=QUEUE_SIZE)
task_queues.append(queue)
# create write processes
for i in range(WRITE_TASK_COUNT):
p = Process(target=run_write_task, args=(i, task_queues[i]))
p.start()
logging.debug(f"WriteTask-{i} started with pid {p.pid}")
write_processes.append(p)
# create read processes
for i in range(READ_TASK_COUNT):
queues = assign_queues(i, task_queues)
p = Process(target=run_read_task, args=(i, queues))
p.start()
logging.debug(f"ReadTask-{i} started with pid {p.pid}")
read_processes.append(p)
try:
monitor_process.join()
except KeyboardInterrupt:
monitor_process.terminate()
[p.terminate() for p in read_processes]
[p.terminate() for p in write_processes]
[q.close() for q in task_queues]
def assign_queues(read_task_id, task_queues):
"""
Compute target queues for a specific read task.
"""
ratio = WRITE_TASK_COUNT / READ_TASK_COUNT
from_index = math.floor(read_task_id * ratio)
end_index = math.ceil((read_task_id + 1) * ratio)
return task_queues[from_index:end_index]
if __name__ == '__main__':
main()
# ANCHOR_END: main
import time
class MockDataSource:
samples = [
"8.8,119,0.32,LosAngeles,0",
"10.7,116,0.34,SanDiego,1",
"9.9,111,0.33,Hollywood,2",
"8.9,113,0.329,Compton,3",
"9.4,118,0.141,San Francisco,4"
]
def __init__(self, tb_name_prefix, table_count):
self.table_name_prefix = tb_name_prefix + "_"
self.table_count = table_count
self.max_rows = 10000000
self.current_ts = round(time.time() * 1000) - self.max_rows * 100
# [(tableId, tableName, values),]
self.data = self._init_data()
def _init_data(self):
lines = self.samples * (self.table_count // 5 + 1)
data = []
for i in range(self.table_count):
table_name = self.table_name_prefix + str(i)
data.append((i, table_name, lines[i])) # tableId, row
return data
def __iter__(self):
self.row = 0
return self
def __next__(self):
"""
next 1000 rows for each table.
return: {tableId:[row,...]}
"""
# generate 1000 timestamps
ts = []
for _ in range(1000):
self.current_ts += 100
ts.append(str(self.current_ts))
# add timestamp to each row
# [(tableId, ["tableName,ts,current,voltage,phase,location,groupId"])]
result = []
for table_id, table_name, values in self.data:
rows = [table_name + ',' + t + ',' + values for t in ts]
result.append((table_id, rows))
return result
import logging
import taos
class SQLWriter:
log = logging.getLogger("SQLWriter")
def __init__(self, get_connection_func):
self._tb_values = {}
self._tb_tags = {}
self._conn = get_connection_func()
self._max_sql_length = self.get_max_sql_length()
self._conn.execute("USE test")
def get_max_sql_length(self):
rows = self._conn.query("SHOW variables").fetch_all()
for r in rows:
name = r[0]
if name == "maxSQLLength":
return int(r[1])
return 1024 * 1024
def process_lines(self, lines: str):
"""
:param lines: [[tbName,ts,current,voltage,phase,location,groupId]]
"""
for line in lines:
ps = line.split(",")
table_name = ps[0]
value = '(' + ",".join(ps[1:-2]) + ') '
if table_name in self._tb_values:
self._tb_values[table_name] += value
else:
self._tb_values[table_name] = value
if table_name not in self._tb_tags:
location = ps[-2]
group_id = ps[-1]
tag_value = f"('{location}',{group_id})"
self._tb_tags[table_name] = tag_value
self.flush()
def flush(self):
"""
Assemble INSERT statement and execute it.
When the sql length grows close to MAX_SQL_LENGTH, the sql will be executed immediately, and a new INSERT statement will be created.
In case of "Table does not exit" exception, tables in the sql will be created and the sql will be re-executed.
"""
sql = "INSERT INTO "
sql_len = len(sql)
buf = []
for tb_name, values in self._tb_values.items():
q = tb_name + " VALUES " + values
if sql_len + len(q) >= self._max_sql_length:
sql += " ".join(buf)
self.execute_sql(sql)
sql = "INSERT INTO "
sql_len = len(sql)
buf = []
buf.append(q)
sql_len += len(q)
sql += " ".join(buf)
self.execute_sql(sql)
self._tb_values.clear()
def execute_sql(self, sql):
try:
self._conn.execute(sql)
except taos.Error as e:
error_code = e.errno & 0xffff
# Table does not exit
if error_code == 9731:
self.create_tables()
else:
self.log.error("Execute SQL: %s", sql)
raise e
except BaseException as baseException:
self.log.error("Execute SQL: %s", sql)
raise baseException
def create_tables(self):
sql = "CREATE TABLE "
for tb in self._tb_values.keys():
tag_values = self._tb_tags[tb]
sql += "IF NOT EXISTS " + tb + " USING meters TAGS " + tag_values + " "
try:
self._conn.execute(sql)
except BaseException as e:
self.log.error("Execute SQL: %s", sql)
raise e
......@@ -23,7 +23,7 @@ import PhpStmt from "./_php_stmt.mdx";
## SQL 写入简介
应用通过连接器执行 INSERT 语句来插入数据,用户还可以通过 TAOS Shell,手动输入 INSERT 语句插入数据。
应用通过连接器执行 INSERT 语句来插入数据,用户还可以通过 TDengine CLI,手动输入 INSERT 语句插入数据。
### 一次写入一条
下面这条 INSERT 就将一条记录写入到表 d1001 中:
......
此差异已折叠。
......@@ -52,7 +52,7 @@ Query OK, 2 row(s) in set (0.001100s)
### 示例一
在 TAOS Shell,查找加利福尼亚州所有智能电表采集的电压平均值,并按照 location 分组。
在 TDengine CLI,查找加利福尼亚州所有智能电表采集的电压平均值,并按照 location 分组。
```
taos> SELECT AVG(voltage), location FROM meters GROUP BY location;
......@@ -65,7 +65,7 @@ Query OK, 2 rows in database (0.005995s)
### 示例二
在 TAOS shell, 查找 groupId 为 2 的所有智能电表的记录条数,电流的最大值。
在 TDengine CLI, 查找 groupId 为 2 的所有智能电表的记录条数,电流的最大值。
```
taos> SELECT count(*), max(current) FROM meters where groupId = 2;
......
......@@ -71,7 +71,7 @@ serverPort 6030
## 启动集群
按照《立即开始》里的步骤,启动第一个数据节点,例如 h1.taosdata.com,然后执行 taos,启动 taos shell,从 shell 里执行命令“SHOW DNODES”,如下所示:
按照《立即开始》里的步骤,启动第一个数据节点,例如 h1.taosdata.com,然后执行 taos,启动 TDengine CLI,在其中执行命令 “SHOW DNODES”,如下所示:
```
taos> show dnodes;
......@@ -115,7 +115,7 @@ SHOW DNODES;
任何已经加入集群在线的数据节点,都可以作为后续待加入节点的 firstEp。
firstEp 这个参数仅仅在该数据节点首次加入集群时有作用,加入集群后,该数据节点会保存最新的 mnode 的 End Point 列表,不再依赖这个参数。
接下来,配置文件中的 firstEp 参数就主要在客户端连接的时候使用了,例如 taos shell 如果不加参数,会默认连接由 firstEp 指定的节点。
接下来,配置文件中的 firstEp 参数就主要在客户端连接的时候使用了,例如 TDengine CLI 如果不加参数,会默认连接由 firstEp 指定的节点。
两个没有配置 firstEp 参数的数据节点 dnode 启动后,会独立运行起来。这个时候,无法将其中一个数据节点加入到另外一个数据节点,形成集群。无法将两个独立的集群合并成为新的集群。
:::
......
......@@ -10,6 +10,7 @@ description: 利用 Kubernetes 部署 TDengine 集群的详细指南
要使用 Kubernetes 部署管理 TDengine 集群,需要做好如下准备工作。
* 本文适用 Kubernetes v1.5 以上版本
* 本文和下一章使用 minikube、kubectl 和 helm 等工具进行安装部署,请提前安装好相应软件
* Kubernetes 已经安装部署并能正常访问使用或更新必要的容器仓库或其他服务
......@@ -366,7 +367,7 @@ kubectl scale statefulsets tdengine --replicas=1
```
taos shell 中的所有数据库操作将无法成功。
TDengine CLI 中的所有数据库操作将无法成功。
```
taos> show dnodes;
......
......@@ -10,27 +10,27 @@ description: 对表的各种管理操作
```sql
CREATE TABLE [IF NOT EXISTS] [db_name.]tb_name (create_definition [, create_definitionn] ...) [table_options]
CREATE TABLE create_subtable_clause
CREATE TABLE [IF NOT EXISTS] [db_name.]tb_name (create_definition [, create_definitionn] ...)
[TAGS (create_definition [, create_definitionn] ...)]
[table_options]
create_subtable_clause: {
create_subtable_clause [create_subtable_clause] ...
| [IF NOT EXISTS] [db_name.]tb_name USING [db_name.]stb_name [(tag_name [, tag_name] ...)] TAGS (tag_value [, tag_value] ...)
}
create_definition:
col_name column_definition
column_definition:
type_name [comment 'string_value']
table_options:
table_option ...
table_option: {
COMMENT 'string_value'
| WATERMARK duration[,duration]
......@@ -54,12 +54,13 @@ table_option: {
需要注意的是转义字符中的内容必须是可打印字符。
**参数说明**
1. COMMENT:表注释。可用于超级表、子表和普通表。
2. WATERMARK:指定窗口的关闭时间,默认值为 5 秒,最小单位毫秒,范围为0到15分钟,多个以逗号分隔。只可用于超级表,且只有当数据库使用了RETENTIONS参数时,才可以使用此表参数。
3. MAX_DELAY:用于控制推送计算结果的最大延迟,默认值为 interval 的值(但不能超过最大值),最小单位毫秒,范围为1毫秒到15分钟,多个以逗号分隔。注:不建议 MAX_DELAY 设置太小,否则会过于频繁的推送结果,影响存储和查询性能,如无特殊需求,取默认值即可。只可用于超级表,且只有当数据库使用了RETENTIONS参数时,才可以使用此表参数。
4. ROLLUP:Rollup 指定的聚合函数,提供基于多层级的降采样聚合结果。只可用于超级表。只有当数据库使用了RETENTIONS参数时,才可以使用此表参数。作用于超级表除TS列外的其它所有列,但是只能定义一个聚合函数。 聚合函数支持 avg, sum, min, max, last, first。
5. SMA:Small Materialized Aggregates,提供基于数据块的自定义预计算功能。预计算类型包括MAX、MIN和SUM。可用于超级表/普通表。
6. TTL:Time to Live,是用户用来指定表的生命周期的参数。如果在持续的TTL时间内,都没有数据写入该表,则TDengine系统会自动删除该表。这个TTL的时间只是一个大概时间,我们系统不保证到了时间一定会将其删除,而只保证存在这样一个机制。TTL单位是天,默认为0,表示不限制。用户需要注意,TTL优先级高于KEEP,即TTL时间满足删除机制时,即使当前数据的存在时间小于KEEP,此表也会被删除。只可用于子表和普通表
2. WATERMARK:指定窗口的关闭时间,默认值为 5 秒,最小单位毫秒,范围为 0 到 15 分钟,多个以逗号分隔。只可用于超级表,且只有当数据库使用了 RETENTIONS 参数时,才可以使用此表参数。
3. MAX_DELAY:用于控制推送计算结果的最大延迟,默认值为 interval 的值(但不能超过最大值),最小单位毫秒,范围为 1 毫秒到 15 分钟,多个以逗号分隔。注:不建议 MAX_DELAY 设置太小,否则会过于频繁的推送结果,影响存储和查询性能,如无特殊需求,取默认值即可。只可用于超级表,且只有当数据库使用了 RETENTIONS 参数时,才可以使用此表参数。
4. ROLLUP:Rollup 指定的聚合函数,提供基于多层级的降采样聚合结果。只可用于超级表。只有当数据库使用了 RETENTIONS 参数时,才可以使用此表参数。作用于超级表除 TS 列外的其它所有列,但是只能定义一个聚合函数。 聚合函数支持 avg, sum, min, max, last, first。
5. SMA:Small Materialized Aggregates,提供基于数据块的自定义预计算功能。预计算类型包括 MAX、MIN 和 SUM。可用于超级表/普通表。
6. TTL:Time to Live,是用户用来指定表的生命周期的参数。如果创建表时指定了这个参数,当该表的存在时间超过 TTL 指定的时间后,TDengine 自动删除该表。这个 TTL 的时间只是一个大概时间,系统不保证到了时间一定会将其删除,而只保证存在这样一个机制且最终一定会删除。TTL 单位是天,默认为 0,表示不限制,到期时间为表创建时间加上 TTL 时间
## 创建子表
......@@ -89,7 +90,7 @@ CREATE TABLE [IF NOT EXISTS] tb_name1 USING stb_name TAGS (tag_value1, ...) [IF
```sql
ALTER TABLE [db_name.]tb_name alter_table_clause
alter_table_clause: {
alter_table_options
| ADD COLUMN col_name column_type
......@@ -97,10 +98,10 @@ alter_table_clause: {
| MODIFY COLUMN col_name column_type
| RENAME COLUMN old_col_name new_col_name
}
alter_table_options:
alter_table_option ...
alter_table_option: {
TTL value
| COMMENT 'string_value'
......@@ -110,6 +111,7 @@ alter_table_option: {
**使用说明**
对普通表可以进行如下修改操作
1. ADD COLUMN:添加列。
2. DROP COLUMN:删除列。
3. MODIFY COLUMN:修改列定义,如果数据列的类型是可变长类型,那么可以使用此指令修改其宽度,只能改大,不能改小。
......@@ -143,15 +145,15 @@ ALTER TABLE tb_name RENAME COLUMN old_col_name new_col_name
```sql
ALTER TABLE [db_name.]tb_name alter_table_clause
alter_table_clause: {
alter_table_options
| SET TAG tag_name = new_tag_value
}
alter_table_options:
alter_table_option ...
alter_table_option: {
TTL value
| COMMENT 'string_value'
......@@ -159,6 +161,7 @@ alter_table_option: {
```
**使用说明**
1. 对子表的列和标签的修改,除了更改标签值以外,都要通过超级表才能进行。
### 修改子表标签值
......@@ -169,7 +172,7 @@ ALTER TABLE tb_name SET TAG tag_name=new_tag_value;
## 删除表
可以在一条SQL语句中删除一个或多个普通表或子表。
可以在一条 SQL 语句中删除一个或多个普通表或子表。
```sql
DROP TABLE [IF EXISTS] [db_name.]tb_name [, [IF EXISTS] [db_name.]tb_name] ...
......@@ -179,7 +182,7 @@ DROP TABLE [IF EXISTS] [db_name.]tb_name [, [IF EXISTS] [db_name.]tb_name] ...
### 显示所有表
如下SQL语句可以列出当前数据库中的所有表名。
如下 SQL 语句可以列出当前数据库中的所有表名。
```sql
SHOW TABLES [LIKE tb_name_wildchar];
......
......@@ -1167,7 +1167,7 @@ SELECT stateDuration(field_name, oper, val, unit) FROM { tb_name | stb_name } [W
**参数范围**
- oper : "LT" (小于)、"GT"(大于)、"LE"(小于等于)、"GE"(大于等于)、"NE"(不等于)、"EQ"(等于),不区分大小写
- oper : `'LT'` (小于)、`'GT'`(大于)、`'LE'`(小于等于)、`'GE'`(大于等于)、`'NE'`(不等于)、`'EQ'`(等于),不区分大小写,但需要用`''`包括
- val : 数值型
- unit : 时间长度的单位,可取值时间单位: 1b(纳秒), 1u(微秒),1a(毫秒),1s(秒),1m(分),1h(小时),1d(天), 1w(周)。如果省略,默认为当前数据库精度。
......
......@@ -31,7 +31,7 @@ description: 合法字符集和命名中的限制规则
- 最多允许 4096 列,最少需要 2 列,第一列必须是时间戳。
- 标签名最大长度为 64
- 最多允许 128 个,至少要有 1 个标签,一个表中标签值的总长度不超过 16KB
- SQL 语句最大长度 1048576 个字符,也可通过客户端配置参数 maxSQLLength 修改,取值范围 65480 ~ 1048576
- SQL 语句最大长度 1048576 个字符
- SELECT 语句的查询结果,最多允许返回 4096 列(语句中的函数调用可能也会占用一些列空间),超限时需要显式指定较少的返回数据列,以避免语句执行报错
- 库的数目,超级表的数目、表的数目,系统不做限制,仅受系统资源限制
- 数据库的副本数只能设置为 1 或 3
......
......@@ -195,7 +195,7 @@ SHOW STREAMS;
SHOW SUBSCRIPTIONS;
```
显示当前数据库下的所有的订阅关系
显示当前系统内所有的订阅关系
## SHOW TABLES
......
......@@ -32,7 +32,7 @@ taos> show databases;
Query OK, 2 rows in database (0.033802s)
```
因为运行在容器中的 TDengine 服务端使用容器的 hostname 建立连接,使用 taos shell 或者各种连接器(例如 JDBC-JNI)从容器外访问容器内的 TDengine 比较复杂,所以上述方式是访问容器中 TDengine 服务的最简单的方法,适用于一些简单场景。如果在一些复杂场景下想要从容器化使用 taos shell 或者各种连接器访问容器中的 TDengine 服务,请参考下一节。
因为运行在容器中的 TDengine 服务端使用容器的 hostname 建立连接,使用 TDengine CLI 或者各种连接器(例如 JDBC-JNI)从容器外访问容器内的 TDengine 比较复杂,所以上述方式是访问容器中 TDengine 服务的最简单的方法,适用于一些简单场景。如果在一些复杂场景下想要从容器化使用 TDengine CLI 或者各种连接器访问容器中的 TDengine 服务,请参考下一节。
## 在 host 网络上启动 TDengine
......@@ -75,7 +75,7 @@ docker run -d \
echo 127.0.0.1 tdengine |sudo tee -a /etc/hosts
```
最后,可以从 taos shell 或者任意连接器以 "tdengine" 为服务端地址访问 TDengine 服务。
最后,可以从 TDengine CLI 或者任意连接器以 "tdengine" 为服务端地址访问 TDengine 服务。
```shell
taos -h tdengine -P 6030
......@@ -354,7 +354,7 @@ test-docker_td-2_1 /tini -- /usr/bin/entrypoi ... Up
test-docker_td-3_1 /tini -- /usr/bin/entrypoi ... Up
```
4.taos shell 查看 dnodes
4.TDengine CLI 查看 dnodes
```shell
......
......@@ -47,7 +47,7 @@ lrwxrwxrwx 1 root root 13 Feb 22 09:34 log -> /var/log/taos/
<Tabs>
<TabItem label="apt-get 卸载" value="aptremove">
卸载命令如下:
TDengine 卸载命令如下:
```
$ sudo apt-get remove tdengine
......@@ -65,10 +65,26 @@ TDengine is removed successfully!
```
taosTools 卸载命令如下:
```
$ sudo apt remove taostools
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages will be REMOVED:
taostools
0 upgraded, 0 newly installed, 1 to remove and 0 not upgraded.
After this operation, 68.3 MB disk space will be freed.
Do you want to continue? [Y/n]
(Reading database ... 147973 files and directories currently installed.)
Removing taostools (2.1.2) ...
```
</TabItem>
<TabItem label="Deb 卸载" value="debuninst">
卸载命令如下:
TDengine 卸载命令如下:
```
$ sudo dpkg -r tdengine
......@@ -78,28 +94,52 @@ TDengine is removed successfully!
```
taosTools 卸载命令如下:
```
$ sudo dpkg -r taostools
(Reading database ... 147973 files and directories currently installed.)
Removing taostools (2.1.2) ...
```
</TabItem>
<TabItem label="RPM 卸载" value="rpmuninst">
卸载命令如下:
卸载 TDengine 命令如下:
```
$ sudo rpm -e tdengine
TDengine is removed successfully!
```
卸载 taosTools 命令如下:
```
sudo rpm -e taostools
taosToole is removed successfully!
```
</TabItem>
<TabItem label="tar.gz 卸载" value="taruninst">
卸载命令如下:
卸载 TDengine 命令如下:
```
$ rmtaos
TDengine is removed successfully!
```
卸载 taosTools 命令如下:
```
$ rmtaostools
Start to uninstall taos tools ...
taos tools is uninstalled successfully!
```
</TabItem>
<TabItem label="Windows 卸载" value="windows">
在 C:\TDengine 目录下,通过运行 unins000.exe 卸载程序来卸载 TDengine。
......
......@@ -7,7 +7,7 @@ description: 如何导出 TDengine 中的数据
## 按表导出 CSV 文件
如果用户需要导出一个表或一个 STable 中的数据,可在 taos shell 中运行:
如果用户需要导出一个表或一个 STable 中的数据,可在 TDengine CLI 中运行:
```sql
select * from <tb_name> >> data.csv;
......
......@@ -116,7 +116,7 @@ charset UTF-8
### 9. 表名显示不全
由于 taos shell 在终端中显示宽度有限,有可能比较长的表名显示不全,如果按照显示的不全的表名进行相关操作会发生 Table does not exist 错误。解决方法可以是通过修改 taos.cfg 文件中的设置项 maxBinaryDisplayWidth, 或者直接输入命令 set max_binary_display_width 100。或者在命令结尾使用 \G 参数来调整结果的显示方式。
由于 TDengine CLI 在终端中显示宽度有限,有可能比较长的表名显示不全,如果按照显示的不全的表名进行相关操作会发生 Table does not exist 错误。解决方法可以是通过修改 taos.cfg 文件中的设置项 maxBinaryDisplayWidth, 或者直接输入命令 set max_binary_display_width 100。或者在命令结尾使用 \G 参数来调整结果的显示方式。
### 10. 如何进行数据迁移?
......
......@@ -129,7 +129,7 @@ https://www.taosdata.com/cn/all-downloads/
192.168.236.136 td01
```
配置完成后,在命令行内使用taos shell连接server端
配置完成后,在命令行内使用TDengine CLI连接server端
```shell
C:\TDengine>taos -h td01
......
......@@ -35,7 +35,7 @@ Python 2.7.18
下载地址:https://www.taosdata.com/cn/all-downloads/,选择一个合适的windows-client下载(client应该尽量与server端的版本保持一致)
使用client的taos shell连接server
使用client的TDengine CLI连接server
```shell
>taos -h node5
......
......@@ -2677,15 +2677,6 @@ typedef struct {
int32_t tSerializeSMDropSmaReq(void* buf, int32_t bufLen, SMDropSmaReq* pReq);
int32_t tDeserializeSMDropSmaReq(void* buf, int32_t bufLen, SMDropSmaReq* pReq);
typedef struct {
int32_t vgId;
SEpSet epSet;
} SVgEpSet;
typedef struct {
int32_t padding;
} SRSmaExecMsg;
typedef struct {
int8_t version; // for compatibility(default 0)
int8_t intervalUnit; // MACRO: TIME_UNIT_XXX
......
......@@ -139,9 +139,8 @@ typedef struct SqlFunctionCtx {
struct SExprInfo *pExpr;
struct SDiskbasedBuf *pBuf;
struct SSDataBlock *pSrcBlock;
struct SSDataBlock *pDstBlock; // used by indifinite rows function to set selectivity
struct SSDataBlock *pDstBlock; // used by indefinite rows function to set selectivity
int32_t curBufPage;
bool increase;
bool isStream;
char udfName[TSDB_FUNC_NAME_LEN];
......
......@@ -256,8 +256,9 @@ static FORCE_INLINE int32_t udfColDataSet(SUdfColumn* pColumn, uint32_t currentR
typedef int32_t (*TUdfScalarProcFunc)(SUdfDataBlock* block, SUdfColumn *resultCol);
typedef int32_t (*TUdfAggStartFunc)(SUdfInterBuf *buf);
typedef int32_t (*TUdfAggProcessFunc)(SUdfDataBlock* block, SUdfInterBuf *interBuf, SUdfInterBuf *newInterBuf);
typedef int32_t (*TUdfAggFinishFunc)(SUdfInterBuf* buf, SUdfInterBuf *resultData);
typedef int32_t (*TUdfAggProcessFunc)(SUdfDataBlock *block, SUdfInterBuf *interBuf, SUdfInterBuf *newInterBuf);
typedef int32_t (*TUdfAggMergeFunc)(SUdfInterBuf *inputBuf1, SUdfInterBuf *inputBuf2, SUdfInterBuf *outputBuf);
typedef int32_t (*TUdfAggFinishFunc)(SUdfInterBuf *buf, SUdfInterBuf *resultData);
#ifdef __cplusplus
}
......
......@@ -79,6 +79,7 @@ extern "C" {
#include <wchar.h>
#include <wctype.h>
#include "taoserror.h"
#include "osAtomic.h"
#include "osDef.h"
#include "osDir.h"
......
......@@ -67,10 +67,9 @@ void* getNewBufPage(SDiskbasedBuf* pBuf, int32_t groupId, int32_t* pageId);
/**
*
* @param pBuf
* @param groupId
* @return
*/
SIDList getDataBufPagesIdList(SDiskbasedBuf* pBuf, int32_t groupId);
SIDList getDataBufPagesIdList(SDiskbasedBuf* pBuf);
/**
* get the specified buffer page by id
......@@ -101,13 +100,6 @@ void releaseBufPageInfo(SDiskbasedBuf* pBuf, struct SPageInfo* pi);
*/
size_t getTotalBufSize(const SDiskbasedBuf* pBuf);
/**
* get the number of groups in the result buffer
* @param pBuf
* @return
*/
size_t getNumOfBufGroupId(const SDiskbasedBuf* pBuf);
/**
* destroy result buffer
* @param pBuf
......
def sync_source(branch_name) {
sh '''
hostname
env
echo ''' + branch_name + '''
'''
sh '''
cd ${TDINTERNAL_ROOT_DIR}
git reset --hard
git fetch || git fetch
git checkout ''' + branch_name + ''' -f
git branch
git pull || git pull
git log | head -n 20
cd ${TDENGINE_ROOT_DIR}
git reset --hard
git fetch || git fetch
git checkout ''' + branch_name + ''' -f
git branch
git pull || git pull
git log | head -n 20
git submodule update --init --recursive
'''
return 1
}
def run_test() {
sh '''
cd ${TDENGINE_ROOT_DIR}/packaging
'''
sh '''
export LD_LIBRARY_PATH=${TDINTERNAL_ROOT_DIR}/debug/build/lib
./fulltest.sh
'''
sh '''
cd ${TDENGINE_ROOT_DIR}/tests
./test-all.sh b1fq
'''
}
def build_run() {
sync_source("${BRANCH_NAME}")
}
pipeline {
agent none
parameters {
string (
name:'version',
defaultValue:'3.0.0.1',
description: 'release version number,eg: 3.0.0.1 or 3.0.0.'
)
string (
name:'baseVersion',
defaultValue:'3.0.0.1',
description: 'This number of baseVerison is generally not modified.Now it is 3.0.0.1'
)
}
environment{
WORK_DIR = '/var/lib/jenkins/workspace'
TDINTERNAL_ROOT_DIR = '/var/lib/jenkins/workspace/TDinternal'
TDENGINE_ROOT_DIR = '/var/lib/jenkins/workspace/TDinternal/community'
BRANCH_NAME = '3.0'
TD_SERVER_TAR = "TDengine-server-${version}-Linux-x64.tar.gz"
BASE_TD_SERVER_TAR = "TDengine-server-${baseVersion}-arm64-x64.tar.gz"
TD_SERVER_ARM_TAR = "TDengine-server-${version}-Linux-arm64.tar.gz"
BASE_TD_SERVER_ARM_TAR = "TDengine-server-${baseVersion}-Linux-arm64.tar.gz"
TD_SERVER_LITE_TAR = "TDengine-server-${version}-Linux-x64-Lite.tar.gz"
BASE_TD_SERVER_LITE_TAR = "TDengine-server-${baseVersion}-Linux-x64-Lite.tar.gz"
TD_CLIENT_TAR = "TDengine-client-${version}-Linux-x64.tar.gz"
BASE_TD_CLIENT_TAR = "TDengine-client-${baseVersion}-arm64-x64.tar.gz"
TD_CLIENT_ARM_TAR = "TDengine-client-${version}-Linux-arm64.tar.gz"
BASE_TD_CLIENT_ARM_TAR = "TDengine-client-${baseVersion}-Linux-arm64.tar.gz"
TD_CLIENT_LITE_TAR = "TDengine-client-${version}-Linux-x64-Lite.tar.gz"
BASE_TD_CLIENT_LITE_TAR = "TDengine-client-${baseVersion}-Linux-x64-Lite.tar.gz"
TD_SERVER_RPM = "TDengine-server-${version}-Linux-x64.rpm"
TD_SERVER_DEB = "TDengine-server-${version}-Linux-x64.deb"
TD_SERVER_EXE = "TDengine-server-${version}-Windows-x64.exe"
TD_CLIENT_EXE = "TDengine-client-${version}-Windows-x64.exe"
}
stages {
stage ('RUN') {
stage('get check package scritps'){
agent{label 'ubuntu18'}
steps {
catchError(buildResult: 'FAILURE', stageResult: 'FAILURE') {
script{
sync_source("${BRANCH_NAME}")
}
}
}
}
parallel {
stage('ubuntu16') {
agent{label " ubuntu16 "}
steps {
timeout(time: 3, unit: 'MINUTES'){
sh '''
cd ${TDENGINE_ROOT_DIR}/packaging
bash testpackage.sh ${TD_SERVER_TAR} ${version} ${BASE_TD_SERVER_TAR} ${baseVersion} server
python3 checkPackageRuning.py
rmtaos
'''
sh '''
cd ${TDENGINE_ROOT_DIR}/packaging
bash testpackage.sh ${TD_SERVER_LITE_TAR} ${version} ${BASE_TD_SERVER_LITE_TAR} ${baseVersion} server
python3 checkPackageRuning.py
'''
sh '''
cd ${TDENGINE_ROOT_DIR}/packaging
bash testpackage.sh ${TD_SERVER_DEB} ${version} ${BASE_TD_SERVER_TAR} ${baseVersion} server
python3 checkPackageRuning.py
'''
}
}
}
stage('ubuntu18') {
agent{label " ubuntu18 "}
steps {
timeout(time: 3, unit: 'MINUTES'){
sh '''
cd ${TDENGINE_ROOT_DIR}/packaging
bash testpackage.sh ${TD_SERVER_TAR} ${version} ${BASE_TD_SERVER_TAR} ${baseVersion} server
python3 checkPackageRuning.py
rmtaos
'''
sh '''
cd ${TDENGINE_ROOT_DIR}/packaging
bash testpackage.sh ${TD_SERVER_LITE_TAR} ${version} ${BASE_TD_SERVER_LITE_TAR} ${baseVersion} server
python3 checkPackageRuning.py
'''
sh '''
cd ${TDENGINE_ROOT_DIR}/packaging
bash testpackage.sh ${TD_SERVER_DEB} ${version} ${BASE_TD_SERVER_DEB} ${baseVersion} server
python3 checkPackageRuning.py
'''
}
}
}
stage('centos7') {
agent{label " centos7_9 "}
steps {
timeout(time: 240, unit: 'MINUTES'){
sh '''
cd ${TDENGINE_ROOT_DIR}/packaging
bash testpackage.sh ${TD_SERVER_TAR} ${version} ${BASE_TD_SERVER_TAR} ${baseVersion} server
python3 checkPackageRuning.py
rmtaos
'''
sh '''
cd ${TDENGINE_ROOT_DIR}/packaging
bash testpackage.sh ${TD_SERVER_LITE_TAR} ${version} ${BASE_TD_SERVER_LITE_TAR} ${baseVersion} server
python3 checkPackageRuning.py
'''
sh '''
cd ${TDENGINE_ROOT_DIR}/packaging
bash testpackage.sh ${TD_SERVER_RPM} ${version} ${BASE_TD_SERVER_TAR} ${baseVersion} server
python3 checkPackageRuning.py
'''
}
}
}
stage('centos8') {
agent{label " centos8_3 "}
steps {
timeout(time: 240, unit: 'MINUTES'){
sh '''
cd ${TDENGINE_ROOT_DIR}/packaging
bash testpackage.sh ${TD_SERVER_TAR} ${version} ${BASE_TD_SERVER_TAR} ${baseVersion} server
python3 checkPackageRuning.py
rmtaos
'''
sh '''
cd ${TDENGINE_ROOT_DIR}/packaging
bash testpackage.sh ${TD_SERVER_LITE_TAR} ${version} ${BASE_TD_SERVER_LITE_TAR} ${baseVersion} server
python3 checkPackageRuning.py
'''
sh '''
cd ${TDENGINE_ROOT_DIR}/packaging
bash testpackage.sh ${TD_SERVER_RPM} ${version} ${BASE_TD_SERVER_TAR} ${baseVersion} server
python3 checkPackageRuning.py
'''
}
}
}
}
}
}
}
\ No newline at end of file
......@@ -38,7 +38,7 @@
# The interval of dnode reporting status to mnode
# statusInterval 1
# The interval for taos shell to send heartbeat to mnode
# The interval for TDengine CLI to send heartbeat to mnode
# shellActivityTimer 3
# The minimum sliding window time, milli-second
......
此差异已折叠。
#!/bin/bash
if [ $1 -eq "abort-upgrade" ]; then
if [ "$1"x = "abort-upgrade"x ]; then
exit 0
fi
......
......@@ -47,7 +47,7 @@ taos> show databases;
Query OK, 1 row(s) in set (0.002843s)
```
Since TDengine use container hostname to establish connections, it's a bit more complex to use taos shell and native connectors(such as JDBC-JNI) with TDengine container instance. This is the recommended way to expose ports and use TDengine with docker in simple cases. If you want to use taos shell or taosc/connectors smoothly outside the `tdengine` container, see next use cases that match you need.
Since TDengine use container hostname to establish connections, it's a bit more complex to use TDengine CLI and native connectors(such as JDBC-JNI) with TDengine container instance. This is the recommended way to expose ports and use TDengine with docker in simple cases. If you want to use TDengine CLI or taosc/connectors smoothly outside the `tdengine` container, see next use cases that match you need.
### Start with host network
......@@ -87,7 +87,7 @@ docker run -d \
This command starts a docker container with TDengine server running and maps the container's TCP ports from 6030 to 6049 to the host's ports from 6030 to 6049 with TCP protocol and UDP ports range 6030-6039 to the host's UDP ports 6030-6039. If the host is already running TDengine server and occupying the same port(s), you need to map the container's port to a different unused port segment. (Please see TDengine 2.0 Port Description for details). In order to support TDengine clients accessing TDengine server services, both TCP and UDP ports need to be exposed by default(unless `rpcForceTcp` is set to `1`).
If you want to use taos shell or native connectors([JDBC-JNI](https://www.taosdata.com/cn/documentation/connector/java), or [driver-go](https://github.com/taosdata/driver-go)), you need to make sure the `TAOS_FQDN` is resolvable at `/etc/hosts` or with custom DNS service.
If you want to use TDengine CLI or native connectors([JDBC-JNI](https://www.taosdata.com/cn/documentation/connector/java), or [driver-go](https://github.com/taosdata/driver-go)), you need to make sure the `TAOS_FQDN` is resolvable at `/etc/hosts` or with custom DNS service.
If you set the `TAOS_FQDN` to host's hostname, it will works as using `hosts` network like previous use case. Otherwise, like in `-e TAOS_FQDN=tdengine`, you can add the hostname record `tdengine` into `/etc/hosts` (use `127.0.0.1` here in host path, if use TDengine client/application in other hosts, you should set the right ip to the host eg. `192.168.10.1`(check the real ip in host with `hostname -i` or `ip route list default`) to make the TDengine endpoint resolvable):
......@@ -391,7 +391,7 @@ test_td-1_1 /usr/bin/entrypoint.sh taosd Up 6030/tcp, 6031/tcp,
test_td-2_1 /usr/bin/entrypoint.sh taosd Up 6030/tcp, 6031/tcp, 6032/tcp, 6033/tcp, 6034/tcp, 6035/tcp, 6036/tcp, 6037/tcp, 6038/tcp, 6039/tcp, 6040/tcp, 6041/tcp, 6042/tcp
```
Check dnodes with taos shell:
Check dnodes with TDengine CLI:
```bash
$ docker-compose exec td-1 taos -s "show dnodes"
......
此差异已折叠。
......@@ -381,8 +381,7 @@ function install_header() {
${install_main_dir}/include ||
${csudo}cp -f ${source_dir}/include/client/taos.h ${source_dir}/include/common/taosdef.h ${source_dir}/include/util/taoserror.h ${source_dir}/include/libs/function/taosudf.h \
${install_main_2_dir}/include &&
${csudo}chmod 644 ${install_main_dir}/include/* ||:
${csudo}chmod 644 ${install_main_2_dir}/include/*
${csudo}chmod 644 ${install_main_dir}/include/* || ${csudo}chmod 644 ${install_main_2_dir}/include/*
fi
}
......
......@@ -1706,8 +1706,8 @@ static char* formatTimestamp(char* buf, int64_t val, int precision) {
}
void blockDebugShowDataBlock(SSDataBlock* pBlock, const char* flag) {
SArray* dataBlocks = taosArrayInit(1, sizeof(SSDataBlock));
taosArrayPush(dataBlocks, pBlock);
SArray* dataBlocks = taosArrayInit(1, sizeof(SSDataBlock*));
taosArrayPush(dataBlocks, &pBlock);
blockDebugShowDataBlocks(dataBlocks, flag);
taosArrayDestroy(dataBlocks);
}
......
......@@ -38,7 +38,6 @@ static SSdbRow *mndSmaActionDecode(SSdbRaw *pRaw);
static int32_t mndSmaActionInsert(SSdb *pSdb, SSmaObj *pSma);
static int32_t mndSmaActionDelete(SSdb *pSdb, SSmaObj *pSpSmatb);
static int32_t mndSmaActionUpdate(SSdb *pSdb, SSmaObj *pOld, SSmaObj *pNew);
static int32_t mndSmaGetVgEpSet(SMnode *pMnode, SDbObj *pDb, SVgEpSet **ppVgEpSet, int32_t *numOfVgroups);
static int32_t mndProcessCreateSmaReq(SRpcMsg *pReq);
static int32_t mndProcessDropSmaReq(SRpcMsg *pReq);
static int32_t mndProcessGetSmaReq(SRpcMsg *pReq);
......@@ -841,6 +840,7 @@ static int32_t mndDropSma(SMnode *pMnode, SRpcMsg *pReq, SDbObj *pDb, SSmaObj *p
_OVER:
mndTransDrop(pTrans);
mndReleaseStream(pMnode, pStream);
mndReleaseVgroup(pMnode, pVgroup);
mndReleaseStb(pMnode, pStb);
return code;
......@@ -961,6 +961,7 @@ _OVER:
mError("sma:%s, failed to drop since %s", dropReq.name, terrstr());
}
mndReleaseSma(pMnode, pSma);
mndReleaseDb(pMnode, pDb);
return code;
}
......
......@@ -128,8 +128,10 @@ typedef struct STsdbReader STsdbReader;
#define TIMEWINDOW_RANGE_CONTAINED 1
#define TIMEWINDOW_RANGE_EXTERNAL 2
#define LASTROW_RETRIEVE_TYPE_ALL 0x1
#define LASTROW_RETRIEVE_TYPE_SINGLE 0x2
#define CACHESCAN_RETRIEVE_TYPE_ALL 0x1
#define CACHESCAN_RETRIEVE_TYPE_SINGLE 0x2
#define CACHESCAN_RETRIEVE_LAST_ROW 0x4
#define CACHESCAN_RETRIEVE_LAST 0x8
int32_t tsdbSetTableId(STsdbReader *pReader, int64_t uid);
int32_t tsdbReaderOpen(SVnode *pVnode, SQueryTableDataCond *pCond, SArray *pTableList, STsdbReader **ppReader,
......@@ -146,9 +148,9 @@ void *tsdbGetIdx(SMeta *pMeta);
void *tsdbGetIvtIdx(SMeta *pMeta);
uint64_t getReaderMaxVersion(STsdbReader *pReader);
int32_t tsdbLastRowReaderOpen(void *pVnode, int32_t type, SArray *pTableIdList, int32_t numOfCols, void **pReader);
int32_t tsdbRetrieveLastRow(void *pReader, SSDataBlock *pResBlock, const int32_t *slotIds, SArray *pTableUids);
int32_t tsdbLastrowReaderClose(void *pReader);
int32_t tsdbCacherowsReaderOpen(void *pVnode, int32_t type, SArray *pTableIdList, int32_t numOfCols, void **pReader);
int32_t tsdbRetrieveCacheRows(void *pReader, SSDataBlock *pResBlock, const int32_t *slotIds, SArray *pTableUids);
int32_t tsdbCacherowsReaderClose(void *pReader);
int32_t tsdbGetTableSchema(SVnode *pVnode, int64_t uid, STSchema **pSchema, int64_t *suid);
void tsdbCacheSetCapacity(SVnode *pVnode, size_t capacity);
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册