提交 c8e3cb6a 编写于 作者: D dingbo

docs: move images

上级 f167ca92
......@@ -4,7 +4,7 @@ title: 连接器
TDengine 提供了丰富的应用程序开发接口,为了便于用户快速开发自己的应用,TDengine 支持了多种编程语言的连接器,其中官方连接器包括支持 C/C++、Java、Python、Go、Node.js、C# 和 Rust 的连接器。这些连接器支持使用原生接口(taosc)和 REST 接口(部分语言暂不支持)连接 TDengine 集群。社区开发者也贡献了多个非官方连接器,例如 ADO.NET 连接器、Lua 连接器和 PHP 连接器。
![image-connector](/img/connector.png)
![image-connector](./connector.png)
## 支持的平台
......
......@@ -64,15 +64,15 @@ GF_PLUGINS_ALLOW_LOADING_UNSIGNED_PLUGINS=tdengine-datasource
用户可以直接通过 http://localhost:3000 的网址,登录 Grafana 服务器(用户名/密码:admin/admin),通过左侧 `Configuration -> Data Sources` 可以添加数据源,如下图所示:
![img](/img/connections/add_datasource1.jpg)
![img](./add_datasource1.jpg)
点击 `Add data source` 可进入新增数据源页面,在查询框中输入 TDengine 可选择添加,如下图所示:
![img](/img/connections/add_datasource2.jpg)
![img](./add_datasource2.jpg)
进入数据源配置页面,按照默认提示修改相应配置即可:
![img](/img/connections/add_datasource3.jpg)
![img](./add_datasource3.jpg)
- Host: TDengine 集群中提供 REST 服务 (在 2.4 之前由 taosd 提供, 从 2.4 开始由 taosAdapter 提供)的组件所在服务器的 IP 地址与 TDengine REST 服务的端口号(6041),默认 http://localhost:6041。
- User:TDengine 用户名。
......@@ -80,13 +80,13 @@ GF_PLUGINS_ALLOW_LOADING_UNSIGNED_PLUGINS=tdengine-datasource
点击 `Save & Test` 进行测试,成功会有如下提示:
![img](/img/connections/add_datasource4.jpg)
![img](./add_datasource4.jpg)
### 创建 Dashboard
回到主界面创建 Dashboard,点击 Add Query 进入面板查询页面:
![img](/img/connections/create_dashboard1.jpg)
![img](./create_dashboard1.jpg)
如上图所示,在 Query 中选中 `TDengine` 数据源,在下方查询框可输入相应 SQL 进行查询,具体说明如下:
......@@ -96,7 +96,7 @@ GF_PLUGINS_ALLOW_LOADING_UNSIGNED_PLUGINS=tdengine-datasource
按照默认提示查询当前 TDengine 部署所在服务器指定间隔系统内存平均使用量如下:
![img](/img/connections/create_dashboard2.jpg)
![img](./create_dashboard2.jpg)
> 关于如何使用 Grafana 创建相应的监测界面以及更多有关使用 Grafana 的信息,请参考 Grafana 官方的[文档](https://grafana.com/docs/)。
......
......@@ -11,7 +11,7 @@ TDengine 的设计是基于单个硬件、软件系统不可靠,基于任何
TDengine 分布式架构的逻辑结构图如下:
![TDengine架构示意图](/img/architecture/structure.png)
![TDengine架构示意图](./structure.png)
<center> 图 1 TDengine架构示意图 </center>
......@@ -63,7 +63,7 @@ TDengine 分布式架构的逻辑结构图如下:
为解释 vnode、mnode、taosc 和应用之间的关系以及各自扮演的角色,下面对写入数据这个典型操作的流程进行剖析。
![TDengine典型的操作流程](/img/architecture/message.png)
![TDengine典型的操作流程](./message.png)
<center> 图 2 TDengine 典型的操作流程 </center>
......@@ -135,7 +135,7 @@ TDengine 除 vnode 分片之外,还对时序数据按照时间段进行分区
Master Vnode 遵循下面的写入流程:
![TDengine Master写入流程](/img/architecture/write_master.png)
![TDengine Master写入流程](./write_master.png)
<center> 图 3 TDengine Master 写入流程 </center>
......@@ -150,7 +150,7 @@ Master Vnode 遵循下面的写入流程:
对于 slave vnode,写入流程是:
![TDengine Slave 写入流程](/img/architecture/write_slave.png)
![TDengine Slave 写入流程](./write_slave.png)
<center> 图 4 TDengine Slave 写入流程 </center>
......@@ -284,7 +284,7 @@ SELECT COUNT(*) FROM d1001 WHERE ts >= '2017-7-14 00:00:00' AND ts < '2017-7-14
TDengine 对每个数据采集点单独建表,但在实际应用中经常需要对不同的采集点数据进行聚合。为高效的进行聚合操作,TDengine 引入超级表(STable)的概念。超级表用来代表一特定类型的数据采集点,它是包含多张表的表集合,集合里每张表的模式(schema)完全一致,但每张表都带有自己的静态标签,标签可以有多个,可以随时增加、删除和修改。应用可通过指定标签的过滤条件,对一个 STable 下的全部或部分表进行聚合或统计操作,这样大大简化应用的开发。其具体流程如下图所示:
![多表聚合查询原理图](/img/architecture/multi_tables.png)
![多表聚合查询原理图](./multi_tables.png)
<center> 图 5 多表聚合查询原理图 </center>
......
......@@ -93,7 +93,7 @@ TDengine采取的是Master-Slave模式进行同步,与流行的RAFT一致性
具体的流程图如下:
![replica-master.png](/img/architecture/replica-master.png)
![replica-master.png](./replica-master.png)
选择Master的具体规则如下:
......@@ -108,7 +108,7 @@ TDengine采取的是Master-Slave模式进行同步,与流行的RAFT一致性
如果vnode A是master, vnode B是slave, vnode A能接受客户端的写请求,而vnode B不能。当vnode A收到写的请求后,遵循下面的流程:
![replica-forward.png](/img/architecture/replica-forward.png)
![replica-forward.png](./replica-forward.png)
1. 应用对写请求做基本的合法性检查,通过,则给该请求包打上一个版本号(version, 单调递增)
2. 应用将打上版本号的写请求封装一个WAL Head, 写入WAL(Write Ahead Log)
......@@ -143,7 +143,7 @@ TDengine采取的是Master-Slave模式进行同步,与流行的RAFT一致性
整个数据恢复流程分为两大步骤,第一步,先恢复archived data(file), 然后恢复wal。具体流程如下:
![replica-restore.png](/img/architecture/replica-restore.png)
![replica-restore.png](./replica-restore.png)
1. 通过已经建立的TCP连接,发送sync req给master节点
2. master收到sync req后,以client的身份,向vnode B主动建立一新的专用于同步的TCP连接(syncFd)
......
......@@ -9,7 +9,7 @@ title: taosd的设计
taosd 包含 rpc,dnode,vnode,tsdb,query,cq,sync,wal,mnode,http,monitor 等模块,具体如下图:
![modules.png](/img/architecture/modules.png)
![modules.png](./modules.png)
taosd 的启动入口是 dnode 模块,dnode 然后启动其他模块,包括可选配置的 http,monitor 模块。taosc 或 dnode 之间交互的消息都是通过 rpc 模块进行,dnode 模块根据接收到的消息类型,将消息分发到 vnode 或 mnode 的消息队列,或由 dnode 模块自己消费。dnode 的工作线程(worker)消费消息队列里的消息,交给 mnode 或 vnode 进行处理。下面对各个模块做简要说明。
......@@ -44,13 +44,13 @@ RPC 模块还提供数据压缩功能,如果数据包的字节数超过系统
taosd 的消息消费由 dnode 通过读写线程池进行控制,是系统的中枢。该模块内的结构体图如下:
![dnode.png](/img/architecture/dnode.png)
![dnode.png](./dnode.png)
## VNODE 模块
vnode 是一独立的数据存储查询逻辑单元,但因为一个 vnode 只能容许一个 DB ,因此 vnode 内部没有 account,DB,user 等概念。为实现更好的模块化、封装以及未来的扩展,它有很多子模块,包括负责存储的 TSDB,负责查询的 query,负责数据复制的 sync,负责数据库日志的的 WAL,负责连续查询的 cq(continuous query),负责事件触发的流计算的 event 等模块,这些子模块只与 vnode 模块发生关系,与其他模块没有任何调用关系。模块图如下:
![vnode.png](/img/architecture/vnode.png)
![vnode.png](./vnode.png)
vnode 模块向下,与 dnodeVRead,dnodeVWrite 发生互动,向上,与子模块发生互动。它主要的功能有:
......
......@@ -16,7 +16,7 @@ IT 运维监测数据通常都是对时间特性比较敏感的数据,例如
本文介绍不需要写一行代码,通过简单修改几行配置文件,就可以快速搭建一个基于 TDengine + Telegraf + Grafana 的 IT 运维系统。架构如下图:
![IT-DevOps-Solutions-Telegraf.png](/img/IT-DevOps-Solutions-Telegraf.png)
![IT-DevOps-Solutions-Telegraf.png](./IT-DevOps-Solutions-Telegraf.png)
## 安装步骤
......@@ -75,7 +75,7 @@ sudo systemctl start telegraf
点击左侧齿轮图标并选择 `Plugins`,应该可以找到 TDengine data source 插件图标。
点击左侧加号图标并选择 `Import`,从 `https://github.com/taosdata/grafanaplugin/blob/master/examples/telegraf/grafana/dashboards/telegraf-dashboard-v0.1.0.json` 下载 dashboard JSON 文件后导入。之后可以看到如下界面的仪表盘:
![IT-DevOps-Solutions-telegraf-dashboard.png](/img/IT-DevOps-Solutions-telegraf-dashboard.png)
![IT-DevOps-Solutions-telegraf-dashboard.png]./IT-DevOps-Solutions-telegraf-dashboard.png)
## 总结
......
......@@ -16,7 +16,7 @@ IT 运维监测数据通常都是对时间特性比较敏感的数据,例如
本文介绍不需要写一行代码,通过简单修改几行配置文件,就可以快速搭建一个基于 TDengine + collectd / statsD + Grafana 的 IT 运维系统。架构如下图:
![IT-DevOps-Solutions-Collectd-StatsD.png](/img/IT-DevOps-Solutions-Collectd-StatsD.png)
![IT-DevOps-Solutions-Collectd-StatsD.png](./IT-DevOps-Solutions-Collectd-StatsD.png)
## 安装步骤
......@@ -81,12 +81,12 @@ repeater 部分添加 { host:'<TDengine server/cluster host>', port: <port for S
从 https://github.com/taosdata/grafanaplugin/blob/master/examples/collectd/grafana/dashboards/collect-metrics-with-tdengine-v0.1.0.json 下载 dashboard json 文件,点击左侧加号图标并选择 `Import`,按照界面提示选择 JSON 文件导入。之后可以看到如下界面的仪表盘:
![IT-DevOps-Solutions-collectd-dashboard.png](/img/IT-DevOps-Solutions-collectd-dashboard.png)
![IT-DevOps-Solutions-collectd-dashboard.png](./IT-DevOps-Solutions-collectd-dashboard.png)
#### 导入 StatsD 仪表盘
`https://github.com/taosdata/grafanaplugin/blob/master/examples/statsd/dashboards/statsd-with-tdengine-v0.1.0.json` 下载 dashboard json 文件,点击左侧加号图标并选择 `Import`,按照界面提示导入 JSON 文件。之后可以看到如下界面的仪表盘:
![IT-DevOps-Solutions-statsd-dashboard.png](/img/IT-DevOps-Solutions-statsd-dashboard.png)
![IT-DevOps-Solutions-statsd-dashboard.png](./IT-DevOps-Solutions-statsd-dashboard.png)
## 总结
......
......@@ -27,7 +27,7 @@ title: OpenTSDB 应用迁移到 TDengine 的最佳实践
一个典型的 DevOps 应用场景的系统整体的架构如下图(图 1) 所示。
**图 1. DevOps 场景中典型架构**
![IT-DevOps-Solutions-Immigrate-OpenTSDB-Arch](/img/IT-DevOps-Solutions-Immigrate-OpenTSDB-Arch.jpg "图1. DevOps 场景中典型架构")
![IT-DevOps-Solutions-Immigrate-OpenTSDB-Arch](./IT-DevOps-Solutions-Immigrate-OpenTSDB-Arch.jpg "图1. DevOps 场景中典型架构")
在该应用场景中,包含了部署在应用环境中负责收集机器度量(Metrics)、网络度量(Metrics)以及应用度量(Metrics)的 Agent 工具、汇聚 Agent 收集信息的数据收集器,数据持久化存储和管理的系统以及监控数据可视化工具(例如:Grafana 等)。
......@@ -70,7 +70,7 @@ LoadPlugin write_tsdb
TDengine 提供了默认的两套 Dashboard 模板,用户只需要将 Grafana 目录下的模板导入到 Grafana 中即可激活使用。
**图 2. 导入 Grafana 模板**
![](/img/IT-DevOps-Solutions-Immigrate-OpenTSDB-Dashboard.jpg "图2. 导入 Grafana 模板")
![](./IT-DevOps-Solutions-Immigrate-OpenTSDB-Dashboard.jpg "图2. 导入 Grafana 模板")
操作完以上步骤后,就完成了将 OpenTSDB 替换成为 TDengine 的迁移工作。可以看到整个流程非常简单,不需要写代码,只需要对某些配置文件进行调整即可完成全部的迁移工作。
......@@ -83,7 +83,7 @@ TDengine 提供了默认的两套 Dashboard 模板,用户只需要将 Grafana
如果你的应用特别复杂,或者应用领域并不是 DevOps 场景,你可以继续阅读后续的章节,更加全面深入地了解将 OpenTSDB 的应用迁移到 TDengine 的高级话题。
**图 3. 迁移完成后的系统架构**
![IT-DevOps-Solutions-Immigrate-TDengine-Arch](/img/IT-DevOps-Solutions-Immigrate-TDengine-Arch.jpg "图 3. 迁移完成后的系统架构")
![IT-DevOps-Solutions-Immigrate-TDengine-Arch](./IT-DevOps-Solutions-Immigrate-TDengine-Arch.jpg "图 3. 迁移完成后的系统架构")
## 其他场景的迁移评估与策略
......
......@@ -4,7 +4,7 @@ title: Connector
TDengine provides a rich set of APIs (application development interface). To facilitate users to develop their applications quickly, TDengine supports connectors for multiple programming languages, including official connectors for C/C++, Java, Python, Go, Node.js, C#, and Rust. These connectors support connecting to TDengine clusters using both native interfaces (taosc) and REST interfaces (not supported in a few languages yet). Community developers have also contributed several unofficial connectors, such as the ADO.NET connector, the Lua connector, and the PHP connector.
![image-connector](/img/connector.png)
![image-connector](./connector.png)
## Supported platforms
......
......@@ -16,7 +16,7 @@ Current mainstream IT DevOps system usually include a data collection module, a
This article introduces how to quickly build a TDengine + Telegraf + Grafana based IT DevOps visualization system without writing even a single line of code and by simply modifying a few lines of configuration files. The architecture is as follows.
![IT-DevOps-Solutions-Telegraf.png](/img/IT-DevOps-Solutions-Telegraf.png)
![IT-DevOps-Solutions-Telegraf.png](./IT-DevOps-Solutions-Telegraf.png)
## Installation steps
......@@ -75,7 +75,7 @@ Log in to the Grafana interface using a web browser at `IP:3000`, with the syste
Click on the gear icon on the left and select `Plugins`, you should find the TDengine data source plugin icon.
Click on the plus icon on the left and select `Import` to get the data from `https://github.com/taosdata/grafanaplugin/blob/master/examples/telegraf/grafana/dashboards/telegraf-dashboard- v0.1.0.json`, download the dashboard JSON file and import it. You will then see the dashboard in the following screen.
![IT-DevOps-Solutions-telegraf-dashboard.png](/img/IT-DevOps-Solutions-telegraf-dashboard.png)
![IT-DevOps-Solutions-telegraf-dashboard.png](./IT-DevOps-Solutions-telegraf-dashboard.png)
## Wrap-up
......
......@@ -17,7 +17,7 @@ The new version of TDengine supports multiple data protocols and can accept data
This article introduces how to quickly build an IT DevOps visualization system based on TDengine + collectd / StatsD + Grafana without writing even a single line of code but by simply modifying a few lines of configuration files. The architecture is shown in the following figure.
![IT-DevOps-Solutions-Collectd-StatsD.png](/img/IT-DevOps-Solutions-Collectd-StatsD.png)
![IT-DevOps-Solutions-Collectd-StatsD.png](./IT-DevOps-Solutions-Collectd-StatsD.png)
## Installation Steps
......@@ -83,19 +83,19 @@ Click on the gear icon on the left and select `Plugins`, you should find the TDe
Download the dashboard json from `https://github.com/taosdata/grafanaplugin/blob/master/examples/collectd/grafana/dashboards/collect-metrics-with-tdengine-v0.1.0.json`, click the plus icon on the left and select Import, follow the instructions to import the JSON file. After that, you can see
The dashboard can be seen in the following screen.
![IT-DevOps-Solutions-collectd-dashboard.png](/img/IT-DevOps-Solutions-collectd-dashboard.png)
![IT-DevOps-Solutions-collectd-dashboard.png](./IT-DevOps-Solutions-collectd-dashboard.png)
#### import collectd dashboard
Download the dashboard json file from `https://github.com/taosdata/grafanaplugin/blob/master/examples/collectd/grafana/dashboards/collect-metrics-with-tdengine-v0.1.0.json`. Download the dashboard json file, click the plus icon on the left side and select `Import`, and follow the interface prompts to select the JSON file to import. After that, you can see
dashboard with the following interface.
![IT-DevOps-Solutions-collectd-dashboard.png](/img/IT-DevOps-Solutions-collectd-dashboard.png)
![IT-DevOps-Solutions-collectd-dashboard.png](./IT-DevOps-Solutions-collectd-dashboard.png)
#### Importing the StatsD dashboard
Download the dashboard json from `https://github.com/taosdata/grafanaplugin/blob/master/examples/statsd/dashboards/statsd-with-tdengine-v0.1.0.json`. Click on the plus icon on the left and select `Import`, and follow the interface prompts to import the JSON file. You will then see the dashboard in the following screen.
![IT-DevOps-Solutions-statsd-dashboard.png](/img/IT-DevOps-Solutions-statsd-dashboard.png)
![IT-DevOps-Solutions-statsd-dashboard.png](./IT-DevOps-Solutions-statsd-dashboard.png)
## Wrap-up
......
......@@ -32,7 +32,7 @@ We will explain how to migrate OpenTSDB applications to TDengine quickly, secure
The following figure (Figure 1) shows the system's overall architecture for a typical DevOps application scenario.
**Figure 1. Typical architecture in a DevOps scenario**
![IT-DevOps-Solutions-Immigrate-OpenTSDB-Arch](/img/IT-DevOps-Solutions-Immigrate-OpenTSDB-Arch.jpg "Figure 1. Typical architecture in a DevOps scenario")
![IT-DevOps-Solutions-Immigrate-OpenTSDB-Arch](./IT-DevOps-Solutions-Immigrate-OpenTSDB-Arch.jpg "Figure 1. Typical architecture in a DevOps scenario")
In this application scenario, there are Agent tools deployed in the application environment to collect machine metrics, network metrics, and application metrics. Data collectors to aggregate information collected by agents, systems for persistent data storage and management, and tools for monitoring data visualization (e.g., Grafana, etc.).
......@@ -75,7 +75,7 @@ After writing the data to TDengine properly, you can adapt Grafana to visualize
TDengine provides two sets of Dashboard templates by default, and users only need to import the templates from the Grafana directory into Grafana to activate their use.
**Importing Grafana Templates** Figure 2.
![](/img/IT-DevOps-Solutions-Immigrate-OpenTSDB-Dashboard.jpg "Figure 2. Importing a Grafana Template")
![](./IT-DevOps-Solutions-Immigrate-OpenTSDB-Dashboard.jpg "Figure 2. Importing a Grafana Template")
After the above steps, you completed the migration to replace OpenTSDB with TDengine. You can see that the whole process is straightforward, there is no need to write any code, and only some configuration files need to be adjusted to meet the migration work.
......@@ -88,7 +88,7 @@ In most DevOps scenarios, if you have a small OpenTSDB cluster (3 or fewer nodes
Suppose your application is particularly complex, or the application domain is not a DevOps scenario. You can continue reading subsequent chapters for a more comprehensive and in-depth look at the advanced topics of migrating an OpenTSDB application to TDengine.
**Figure 3. System architecture after migration**
![IT-DevOps-Solutions-Immigrate-TDengine-Arch](/img/IT-DevOps-Solutions-Immigrate-TDengine-Arch.jpg "Figure 3. System architecture after migration completion")
![IT-DevOps-Solutions-Immigrate-TDengine-Arch](./IT-DevOps-Solutions-Immigrate-TDengine-Arch.jpg "Figure 3. System architecture after migration completion")
## Migration evaluation and strategy for other scenarios
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册