提交 a9160283 编写于 作者: M Minglei Jin

rmonotonic: a monotonic clock source

上级 b4aff484
......@@ -9,6 +9,7 @@ ADD_SUBDIRECTORY(lz4)
ADD_SUBDIRECTORY(cJson)
ADD_SUBDIRECTORY(wepoll)
ADD_SUBDIRECTORY(MsvcLibX)
ADD_SUBDIRECTORY(rmonotonic)
IF (TD_LINUX AND TD_MQTT)
ADD_SUBDIRECTORY(MQTT-C)
......
AUX_SOURCE_DIRECTORY(${CMAKE_CURRENT_SOURCE_DIR}/src SOURCE_LIST)
add_definitions(-DUSE_PROCESSOR_CLOCK)
ADD_LIBRARY(rmonotonic ${SOURCE_LIST})
TARGET_INCLUDE_DIRECTORIES(rmonotonic PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}/inc)
#ifndef __MONOTONIC_H
#define __MONOTONIC_H
/* The monotonic clock is an always increasing clock source. It is unrelated to
* the actual time of day and should only be used for relative timings. The
* monotonic clock is also not guaranteed to be chronologically precise; there
* may be slight skew/shift from a precise clock.
*
* Depending on system architecture, the monotonic time may be able to be
* retrieved much faster than a normal clock source by using an instruction
* counter on the CPU. On x86 architectures (for example), the RDTSC
* instruction is a very fast clock source for this purpose.
*/
//#include "fmacros.h"
#include <stdint.h>
//#include <unistd.h>
/* A counter in micro-seconds. The 'monotime' type is provided for variables
* holding a monotonic time. This will help distinguish & document that the
* variable is associated with the monotonic clock and should not be confused
* with other types of time.*/
typedef uint64_t monotime;
/* Retrieve counter of micro-seconds relative to an arbitrary point in time. */
extern monotime (*getMonotonicUs)(void);
/* Call once at startup to initialize the monotonic clock. Though this only
* needs to be called once, it may be called additional times without impact.
* Returns a printable string indicating the type of clock initialized.
* (The returned string is static and doesn't need to be freed.) */
const char * monotonicInit();
/* Functions to measure elapsed time. Example:
* monotime myTimer;
* elapsedStart(&myTimer);
* while (elapsedMs(myTimer) < 10) {} // loops for 10ms
*/
static inline void elapsedStart(monotime *start_time) {
*start_time = getMonotonicUs();
}
static inline uint64_t elapsedUs(monotime start_time) {
return getMonotonicUs() - start_time;
}
static inline uint64_t elapsedMs(monotime start_time) {
return elapsedUs(start_time) / 1000;
}
#endif
#include "monotonic.h"
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#undef NDEBUG
#include <assert.h>
/* The function pointer for clock retrieval. */
monotime (*getMonotonicUs)(void) = NULL;
static char monotonic_info_string[32];
/* Using the processor clock (aka TSC on x86) can provide improved performance
* throughout Redis wherever the monotonic clock is used. The processor clock
* is significantly faster than calling 'clock_getting' (POSIX). While this is
* generally safe on modern systems, this link provides additional information
* about use of the x86 TSC: http://oliveryang.net/2015/09/pitfalls-of-TSC-usage
*
* To use the processor clock, either uncomment this line, or build with
* CFLAGS="-DUSE_PROCESSOR_CLOCK"
#define USE_PROCESSOR_CLOCK
*/
#if defined(USE_PROCESSOR_CLOCK) && defined(__x86_64__) && defined(__linux__)
#include <regex.h>
#include <x86intrin.h>
static long mono_ticksPerMicrosecond = 0;
static monotime getMonotonicUs_x86() {
return __rdtsc() / mono_ticksPerMicrosecond;
}
static void monotonicInit_x86linux() {
const int bufflen = 256;
char buf[bufflen];
regex_t cpuGhzRegex, constTscRegex;
const size_t nmatch = 2;
regmatch_t pmatch[nmatch];
int constantTsc = 0;
int rc;
/* Determine the number of TSC ticks in a micro-second. This is
* a constant value matching the standard speed of the processor.
* On modern processors, this speed remains constant even though
* the actual clock speed varies dynamically for each core. */
rc = regcomp(&cpuGhzRegex, "^model name\\s+:.*@ ([0-9.]+)GHz", REG_EXTENDED);
assert(rc == 0);
/* Also check that the constant_tsc flag is present. (It should be
* unless this is a really old CPU. */
rc = regcomp(&constTscRegex, "^flags\\s+:.* constant_tsc", REG_EXTENDED);
assert(rc == 0);
FILE *cpuinfo = fopen("/proc/cpuinfo", "r");
if (cpuinfo != NULL) {
while (fgets(buf, bufflen, cpuinfo) != NULL) {
if (regexec(&cpuGhzRegex, buf, nmatch, pmatch, 0) == 0) {
buf[pmatch[1].rm_eo] = '\0';
double ghz = atof(&buf[pmatch[1].rm_so]);
mono_ticksPerMicrosecond = (long)(ghz * 1000);
break;
}
}
while (fgets(buf, bufflen, cpuinfo) != NULL) {
if (regexec(&constTscRegex, buf, nmatch, pmatch, 0) == 0) {
constantTsc = 1;
break;
}
}
fclose(cpuinfo);
}
regfree(&cpuGhzRegex);
regfree(&constTscRegex);
if (mono_ticksPerMicrosecond == 0) {
fprintf(stderr, "monotonic: x86 linux, unable to determine clock rate");
return;
}
if (!constantTsc) {
fprintf(stderr, "monotonic: x86 linux, 'constant_tsc' flag not present");
return;
}
snprintf(monotonic_info_string, sizeof(monotonic_info_string),
"X86 TSC @ %ld ticks/us", mono_ticksPerMicrosecond);
getMonotonicUs = getMonotonicUs_x86;
}
#endif
#if defined(USE_PROCESSOR_CLOCK) && defined(__aarch64__)
static long mono_ticksPerMicrosecond = 0;
/* Read the clock value. */
static inline uint64_t __cntvct() {
uint64_t virtual_timer_value;
__asm__ volatile("mrs %0, cntvct_el0" : "=r"(virtual_timer_value));
return virtual_timer_value;
}
/* Read the Count-timer Frequency. */
static inline uint32_t cntfrq_hz() {
uint64_t virtual_freq_value;
__asm__ volatile("mrs %0, cntfrq_el0" : "=r"(virtual_freq_value));
return (uint32_t)virtual_freq_value; /* top 32 bits are reserved */
}
static monotime getMonotonicUs_aarch64() {
return __cntvct() / mono_ticksPerMicrosecond;
}
static void monotonicInit_aarch64() {
mono_ticksPerMicrosecond = (long)cntfrq_hz() / 1000L / 1000L;
if (mono_ticksPerMicrosecond == 0) {
fprintf(stderr, "monotonic: aarch64, unable to determine clock rate");
return;
}
snprintf(monotonic_info_string, sizeof(monotonic_info_string),
"ARM CNTVCT @ %ld ticks/us", mono_ticksPerMicrosecond);
getMonotonicUs = getMonotonicUs_aarch64;
}
#endif
static monotime getMonotonicUs_posix() {
/* clock_gettime() is specified in POSIX.1b (1993). Even so, some systems
* did not support this until much later. CLOCK_MONOTONIC is technically
* optional and may not be supported - but it appears to be universal.
* If this is not supported, provide a system-specific alternate version. */
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return ((uint64_t)ts.tv_sec) * 1000000 + ts.tv_nsec / 1000;
}
static void monotonicInit_posix() {
/* Ensure that CLOCK_MONOTONIC is supported. This should be supported
* on any reasonably current OS. If the assertion below fails, provide
* an appropriate alternate implementation. */
struct timespec ts;
int rc = clock_gettime(CLOCK_MONOTONIC, &ts);
assert(rc == 0);
snprintf(monotonic_info_string, sizeof(monotonic_info_string),
"POSIX clock_gettime");
getMonotonicUs = getMonotonicUs_posix;
}
const char * monotonicInit() {
#if defined(USE_PROCESSOR_CLOCK) && defined(__x86_64__) && defined(__linux__)
if (getMonotonicUs == NULL) monotonicInit_x86linux();
#endif
#if defined(USE_PROCESSOR_CLOCK) && defined(__aarch64__)
if (getMonotonicUs == NULL) monotonicInit_aarch64();
#endif
if (getMonotonicUs == NULL) monotonicInit_posix();
return monotonic_info_string;
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册