未验证 提交 a62806bd 编写于 作者: 陶建辉(Jeff)'s avatar 陶建辉(Jeff) 提交者: GitHub

Update index.md

上级 b9e1539c
......@@ -39,7 +39,7 @@ By making full use of [characteristics of time series data](https://tdengine.com
- **[Cloud Native](https://tdengine.com/tdengine/cloud-native-time-series-database/)**: Through native distributed design, sharding and partitioning, separation of compute and storage, RAFT, support for kubernetes deployment and full observability, TDengine is a cloud native Time-Series Database and can be deployed on public, private or hybrid clouds.
- **[Ease of Use]((https://tdengine.com/tdengine/easy-time-series-data-platform/)**: For administrators, TDengine significantly reduces the effort to[
- **[Ease of Use](https://tdengine.com/tdengine/easy-time-series-data-platform/)**: For administrators, TDengine significantly reduces the effort to[
](https://tdengine.com/tdengine/easy-time-series-data-platform/) deploy and maintain. For developers, it provides a simple interface, simplified solution and seamless integrations for third party tools. For data users, it gives easy data access.
- **[Easy Data Analytics](https://tdengine.com/tdengine/time-series-data-analytics-made-easy/)**: Through super tables, storage and compute separation, data partitioning by time interval, pre-computation and other means, TDengine makes it easy to explore, format, and get access to data in a highly efficient way.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册