@@ -9,8 +9,8 @@ One of the modules of TDengine is the time-series database. However, in addition
-**Performance improvement over 10 times**: An innovative data storage structure is defined, with each single core can process at least 20,000 requests per second, insert millions of data points, and read more than 10 million data points, which is more than 10 times faster than other existing general database.
-**Reduce the cost of hardware or cloud services to 1/5**: Due to its ultra-performance, TDengine’s computing resources consumption is less than 1/5 of other common Big Data solutions; through columnar storage and advanced compression algorithms, the storage consumption is less than 1/10 of other general databases.
-**Full-stack time-series data processing engine**: Integrate database, message queue, cache, stream computing, and other functions, and the applications do not need to integrate with software such as Kafka/Redis/HBase/Spark/HDFS, thus greatly reducing the complexity cost of application development and maintenance.
-**Powerful analysis functions**: Data from ten years ago or one second ago, can all be queried based on a specified time range. Data can be aggregated on a timeline or multiple devices. Ad-hoc queries can be made at any time through Shell, Python, R, and Matlab.
-**Seamless connection with third-party tools**: Integration with Telegraf, Grafana, EMQ, HiveMQ, Prometheus, Matlab, R, etc. without even one single line of code. OPC, Hadoop, Spark, etc. will be supported in the future, and more BI tools will be seamlessly connected to.
-**Powerful analysis functions**: Data from ten years ago or one second ago, can all be queried based on a specified time range. Data can be aggregated on a timeline or multiple devices. Ad-hoc queries can be made at any time through Shell, Python, R, and MATLAB.
-**Seamless connection with third-party tools**: Integration with Telegraf, Grafana, EMQ, HiveMQ, Prometheus, MATLAB, R, etc. without even one single line of code. OPC, Hadoop, Spark, etc. will be supported in the future, and more BI tools will be seamlessly connected to.
-**Zero operation cost & zero learning cost**: Installing clusters is simple and quick, with real-time backup built-in, and no need to split libraries or tables. Similar to standard SQL, TDengine can support RESTful, Python/Java/C/C + +/C#/Go/Node.js, and similar to MySQL with zero learning cost.
With TDengine, the total cost of ownership of typical IoT, Internet of Vehicles, and Industrial Internet Big Data platforms can be greatly reduced. However, it should be pointed out that due to making full use of the characteristics of IoT time-series data, TDengine cannot be used to process general data from web crawlers, microblogs, WeChat, e-commerce, ERP, CRM, and other sources.
MatLab can access data to the local workspace by connecting directly to the TDengine via the JDBC Driver provided in the installation package.
MATLAB can access data to the local workspace by connecting directly to the TDengine via the JDBC Driver provided in the installation package.
### JDBC Interface Adaptation of MatLab
### JDBC Interface Adaptation of MATLAB
Several steps are required to adapt Matlab to TDengine. Taking adapting Matlab2017a on Windows10 as an example:
Several steps are required to adapt MATLAB to TDengine. Taking adapting MATLAB2017a on Windows10 as an example:
- Copy the file JDBCDriver-1.0.0-dist.ja*r* in TDengine package to the directory ${matlab_root}\MATLAB\R2017a\java\jar\toolbox
- Copy the file taos.lib in TDengine package to ${matlab root dir}\MATLAB\R2017a\lib\win64
- Add the .jar package just copied to the Matlab classpath. Append the line below as the end of the file of ${matlab root dir}\MATLAB\R2017a\toolbox\local\classpath.txt
- Add the .jar package just copied to the MATLAB classpath. Append the line below as the end of the file of ${matlab root dir}\MATLAB\R2017a\toolbox\local\classpath.txt