TDengine is an open source, cloud native time-series database optimized for Internet of Things (IoT), Connected Cars, and Industrial IoT. It enables efficient, real-time data ingestion, processing, and monitoring of TB and even PB scale data per day, generated by billions of sensors and data collectors. This document is the TDengine user manual. It introduces the basic, as well as novel concepts, in TDengine, and also talks in detail about installation, features, SQL, APIs, operation, maintenance, kernel design and other topics. It’s written mainly for architects, developers and system administrators.
TDengine is an [open source](https://tdengine.com/tdengine/open-source-time-series-database/), [cloud native](https://tdengine.com/tdengine/cloud-native-time-series-database/) time-series database optimized for Internet of Things (IoT), Connected Cars, and Industrial IoT. It enables efficient, real-time data ingestion, processing, and monitoring of TB and even PB scale data per day, generated by billions of sensors and data collectors. This document is the TDengine user manual. It introduces the basic, as well as novel concepts, in TDengine, and also talks in detail about installation, features, SQL, APIs, operation, maintenance, kernel design and other topics. It’s written mainly for architects, developers and system administrators.
To get an overview of TDengine, such as a feature list, benchmarks, and competitive advantages, please browse through the [Introduction](./intro) section.
To get an overview of TDengine, such as a feature list, benchmarks, and competitive advantages, please browse through the [Introduction](./intro) section.
TDengine is an open source, high-performance, cloud native time-series database optimized for Internet of Things (IoT), Connected Cars, and Industrial IoT. Its code, including its cluster feature is open source under GNU AGPL v3.0. Besides the database engine, it provides [caching](../develop/cache), [stream processing](../develop/stream), [data subscription](../develop/tmq) and other functionalities to reduce the system complexity and cost of development and operation.
TDengine is an open source, high-performance, cloud native [time-series database](https://tdengine.com/tsdb/) optimized for Internet of Things (IoT), Connected Cars, and Industrial IoT. Its code, including its cluster feature is open source under GNU AGPL v3.0. Besides the database engine, it provides [caching](../develop/cache), [stream processing](../develop/stream), [data subscription](../develop/tmq) and other functionalities to reduce the system complexity and cost of development and operation.
This section introduces the major features, competitive advantages, typical use-cases and benchmarks to help you get a high level overview of TDengine.
This section introduces the major features, competitive advantages, typical use-cases and benchmarks to help you get a high level overview of TDengine.
...
@@ -33,17 +33,18 @@ For more details on features, please read through the entire documentation.
...
@@ -33,17 +33,18 @@ For more details on features, please read through the entire documentation.
By making full use of [characteristics of time series data](https://tdengine.com/tsdb/characteristics-of-time-series-data/), TDengine differentiates itself from other time series databases, with the following advantages.
By making full use of [characteristics of time series data](https://tdengine.com/tsdb/characteristics-of-time-series-data/), TDengine differentiates itself from other time series databases, with the following advantages.
-**High-Performance**: TDengine is the only time-series database to solve the high cardinality issue to support billions of data collection points while out performing other time-series databases for data ingestion, querying and data compression.
-**[High-Performance](https://tdengine.com/tdengine/high-performance-time-series-database/)**: TDengine is the only time-series database to solve the high cardinality issue to support billions of data collection points while out performing other time-series databases for data ingestion, querying and data compression.
-**Simplified Solution**: Through built-in caching, stream processing and data subscription features, TDengine provides a simplified solution for time-series data processing. It reduces system design complexity and operation costs significantly.
-**[Simplified Solution](https://tdengine.com/tdengine/simplified-time-series-data-solution/)**: Through built-in caching, stream processing and data subscription features, TDengine provides a simplified solution for time-series data processing. It reduces system design complexity and operation costs significantly.
-**Cloud Native**: Through native distributed design, sharding and partitioning, separation of compute and storage, RAFT, support for kubernetes deployment and full observability, TDengine is a cloud native Time-Series Database and can be deployed on public, private or hybrid clouds.
-**[Cloud Native](https://tdengine.com/tdengine/cloud-native-time-series-database/)**: Through native distributed design, sharding and partitioning, separation of compute and storage, RAFT, support for kubernetes deployment and full observability, TDengine is a cloud native Time-Series Database and can be deployed on public, private or hybrid clouds.
-**Ease of Use**: For administrators, TDengine significantly reduces the effort to deploy and maintain. For developers, it provides a simple interface, simplified solution and seamless integrations for third party tools. For data users, it gives easy data access.
-**[Ease of Use](https://tdengine.com/tdengine/easy-time-series-data-platform/)**: For administrators, TDengine significantly reduces the effort to[
](https://tdengine.com/tdengine/easy-time-series-data-platform/) deploy and maintain. For developers, it provides a simple interface, simplified solution and seamless integrations for third party tools. For data users, it gives easy data access.
-**Easy Data Analytics**: Through super tables, storage and compute separation, data partitioning by time interval, pre-computation and other means, TDengine makes it easy to explore, format, and get access to data in a highly efficient way.
-**[Easy Data Analytics](https://tdengine.com/tdengine/time-series-data-analytics-made-easy/)**: Through super tables, storage and compute separation, data partitioning by time interval, pre-computation and other means, TDengine makes it easy to explore, format, and get access to data in a highly efficient way.
-**Open Source**: TDengine’s core modules, including cluster feature, are all available under open source licenses. It has gathered over 19k stars on GitHub. There is an active developer community, and over 140k running instances worldwide.
-**[Open Source](https://tdengine.com/tdengine/open-source-time-series-database/)**: TDengine’s core modules, including cluster feature, are all available under open source licenses. It has gathered over 19k stars on GitHub. There is an active developer community, and over 140k running instances worldwide.
With TDengine, the total cost of ownership of your time-series data platform can be greatly reduced. 1: With its superior performance, the computing and storage resources are reduced significantly;2: With SQL support, it can be seamlessly integrated with many third party tools, and learning costs/migration costs are reduced significantly;3: With its simplified solution and nearly zero management, the operation and maintenance costs are reduced significantly.
With TDengine, the total cost of ownership of your time-series data platform can be greatly reduced. 1: With its superior performance, the computing and storage resources are reduced significantly;2: With SQL support, it can be seamlessly integrated with many third party tools, and learning costs/migration costs are reduced significantly;3: With its simplified solution and nearly zero management, the operation and maintenance costs are reduced significantly.
- `INTERP` is used to get the value that matches the specified time slice from a column. If no such value exists an interpolation value will be returned based on `FILL` parameter.
- `INTERP` is used to get the value that matches the specified time slice from a column. If no such value exists an interpolation value will be returned based on `FILL` parameter.
- The input data of `INTERP` is the value of the specified column and a `where` clause can be used to filter the original data. If no `where` condition is specified then all original data is the input.
- The input data of `INTERP` is the value of the specified column and a `where` clause can be used to filter the original data. If no `where` condition is specified then all original data is the input.
- The output time range of `INTERP` is specified by `RANGE(timestamp1,timestamp2)` parameter, with timestamp1<=timestamp2. timestamp1 is the starting point of the output time range and must be specified. timestamp2 is the ending point of the output time range and must be specified. If `RANGE` is not specified, then the timestamp of the first row that matches the filter condition is treated as timestamp1, the timestamp of the last row that matches the filter condition is treated as timestamp2.
- The output time range of `INTERP` is specified by `RANGE(timestamp1,timestamp2)` parameter, with timestamp1<=timestamp2. timestamp1 is the starting point of the output time range and must be specified. timestamp2 is the ending point of the output time range and must be specified.
- The number of rows in the result set of `INTERP` is determined by the parameter `EVERY`. Starting from timestamp1, one interpolation is performed for every time interval specified `EVERY` parameter. If `EVERY` parameter is not used, the time windows will be considered as no ending timestamp, i.e. there is only one time window from timestamp1.
- The number of rows in the result set of `INTERP` is determined by the parameter `EVERY`. Starting from timestamp1, one interpolation is performed for every time interval specified `EVERY` parameter.
- Interpolation is performed based on `FILL` parameter. No interpolation is performed if `FILL` is not used, that means either the original data that matches is returned or nothing is returned.
- Interpolation is performed based on `FILL` parameter.
- `INTERP` can only be used to interpolate in single timeline. So it must be used with `group by tbname` when it's used on a STable. It can't be used with `GROUP BY` when it's used in the inner query of a nested query.
- `INTERP` can only be used to interpolate in single timeline. So it must be used with `partition by tbname` when it's used on a STable.
- The result of `INTERP` is not influenced by `ORDER BY TIMESTAMP`, which impacts the output order only..
@@ -329,4 +329,4 @@ In TDengine server 2.2.x.x or earlier, the TDengine server process (taosd) conta
...
@@ -329,4 +329,4 @@ In TDengine server 2.2.x.x or earlier, the TDengine server process (taosd) conta
| 3 | telegrafUseFieldNum | See the taosAdapter telegraf configuration method | |
| 3 | telegrafUseFieldNum | See the taosAdapter telegraf configuration method | |
| 4 | restfulRowLimit | restfulRowLimit | Embedded httpd outputs 10240 rows of data by default, the maximum allowed is 102400. taosAdapter also provides restfulRowLimit but it is not limited by default. You can configure it according to the actual scenario.
| 4 | restfulRowLimit | restfulRowLimit | Embedded httpd outputs 10240 rows of data by default, the maximum allowed is 102400. taosAdapter also provides restfulRowLimit but it is not limited by default. You can configure it according to the actual scenario.
| 5 | httpDebugFlag | Not applicable | httpdDebugFlag does not work for taosAdapter |
| 5 | httpDebugFlag | Not applicable | httpdDebugFlag does not work for taosAdapter |
| 6 | httpDBNameMandatory | N/A | taosAdapter requires the database name to be specified in the URL |
| 6 | httpDBNameMandatory | N/A | taosAdapter requires the database name to be specified in the URL |
@@ -34,7 +34,7 @@ Please refer to the [official documentation](https://grafana.com/grafana/downloa
...
@@ -34,7 +34,7 @@ Please refer to the [official documentation](https://grafana.com/grafana/downloa
### TDengine
### TDengine
Download the latest TDengine-server 2.4.0.x or above from the [Downloads](http://taosdata.com/cn/all-downloads/) page on the TAOSData website and install it.
Download the latest TDengine-server from the [Downloads](http://tdengine.com/en/all-downloads/) page on the TAOSData website and install it.
## Data Connection Setup
## Data Connection Setup
...
@@ -79,5 +79,5 @@ Click on the plus icon on the left and select `Import` to get the data from `htt
...
@@ -79,5 +79,5 @@ Click on the plus icon on the left and select `Import` to get the data from `htt
## Wrap-up
## Wrap-up
The above demonstrates how to quickly build a IT DevOps visualization system. Thanks to the new schemaless protocol parsing feature in TDengine version 2.4.0.0 and ability to integrate easily with a large software ecosystem, users can build an efficient and easy-to-use IT DevOps visualization system in just a few minutes.
The above demonstrates how to quickly build a IT DevOps visualization system. Thanks to the schemaless protocol parsing feature in TDengine and ability to integrate easily with a large software ecosystem, users can build an efficient and easy-to-use IT DevOps visualization system in just a few minutes.
Please refer to the official documentation and product implementation cases for other features.
Please refer to the official documentation and product implementation cases for other features.
@@ -37,7 +37,7 @@ Please refer to the [official documentation](https://grafana.com/grafana/downloa
...
@@ -37,7 +37,7 @@ Please refer to the [official documentation](https://grafana.com/grafana/downloa
### Install TDengine
### Install TDengine
Download the latest TDengine-server 2.4.0.x or above from the [Downloads](http://taosdata.com/cn/all-downloads/) page on the TAOSData website and install it.
Download the latest TDengine-server from the [Downloads](http://tdengine.com/en/all-downloads/) page on the TAOSData website and install it.
## Data Connection Setup
## Data Connection Setup
...
@@ -99,6 +99,6 @@ Download the dashboard json from `https://github.com/taosdata/grafanaplugin/blob
...
@@ -99,6 +99,6 @@ Download the dashboard json from `https://github.com/taosdata/grafanaplugin/blob
## Wrap-up
## Wrap-up
TDengine, as an emerging time-series big data platform, has the advantages of high performance, high reliability, easy management and easy maintenance. Thanks to the new schemaless protocol parsing feature in TDengine version 2.4.0.0 and ability to integrate easily with a large software ecosystem, users can build an efficient and easy-to-use IT DevOps visualization system, or adapt an existing system, in just a few minutes.
TDengine, as an emerging time-series big data platform, has the advantages of high performance, high reliability, easy management and easy maintenance. Thanks to the new schemaless protocol parsing feature in TDengine and ability to integrate easily with a large software ecosystem, users can build an efficient and easy-to-use IT DevOps visualization system, or adapt an existing system, in just a few minutes.
For TDengine's powerful data writing and querying performance and other features, please refer to the official documentation and successful product implementation cases.
For TDengine's powerful data writing and querying performance and other features, please refer to the official documentation and successful product implementation cases.