未验证 提交 6be28cbd 编写于 作者: S Shengliang Guan 提交者: GitHub

Merge pull request #16585 from taosdata/release/3.0.0.2

release: 3.0.0.2
......@@ -88,4 +88,3 @@ Standard: Auto
TabWidth: 8
UseTab: Never
...
*.py linguist-detectable=false
......@@ -46,7 +46,7 @@ IF (${CMAKE_SYSTEM_NAME} MATCHES "Linux" OR ${CMAKE_SYSTEM_NAME} MATCHES "Darwin
MESSAGE("Current system processor is ${CMAKE_SYSTEM_PROCESSOR}.")
IF (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm64" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES "x86_64")
MESSAGE("Current system arch is arm64")
MESSAGE("Current system arch is 64")
SET(TD_DARWIN_64 TRUE)
ADD_DEFINITIONS("-D_TD_DARWIN_64")
ENDIF ()
......
......@@ -2,7 +2,7 @@
# taos-tools
ExternalProject_Add(taos-tools
GIT_REPOSITORY https://github.com/taosdata/taos-tools.git
GIT_TAG d237772
GIT_TAG 212c34d
SOURCE_DIR "${TD_SOURCE_DIR}/tools/taos-tools"
BINARY_DIR ""
#BUILD_IN_SOURCE TRUE
......
......@@ -2,7 +2,7 @@
# taosws-rs
ExternalProject_Add(taosws-rs
GIT_REPOSITORY https://github.com/taosdata/taos-connector-rust.git
GIT_TAG 7a54d21
GIT_TAG b91b39c
SOURCE_DIR "${TD_SOURCE_DIR}/tools/taosws-rs"
BINARY_DIR ""
#BUILD_IN_SOURCE TRUE
......
......@@ -4,25 +4,24 @@ sidebar_label: Documentation Home
slug: /
---
TDengine is an open source, cloud native time-series database optimized for Internet of Things (IoT), Connected Cars, and Industrial IoT. It enables efficient, real-time data ingestion, processing, and monitoring of TB and even PB scale data per day, generated by billions of sensors and data collectors. This document is the TDengine user manual. It introduces the basic, as well as novel concepts, in TDengine, and also talks in detail about installation, features, SQL, APIs, operation, maintenance, kernel design and other topics. It’s written mainly for architects, developers and system administrators.
TDengine is an [open-source](https://tdengine.com/tdengine/open-source-time-series-database/), [cloud-native](https://tdengine.com/tdengine/cloud-native-time-series-database/) time-series database optimized for the Internet of Things (IoT), Connected Cars, and Industrial IoT. It enables efficient, real-time data ingestion, processing, and monitoring of TB and even PB scale data per day, generated by billions of sensors and data collectors. This document is the TDengine user manual. It introduces the basic, as well as novel concepts, in TDengine, and also talks in detail about installation, features, SQL, APIs, operation, maintenance, kernel design, and other topics. It’s written mainly for architects, developers, and system administrators.
To get an overview of TDengine, such as a feature list, benchmarks, and competitive advantages, please browse through the [Introduction](./intro) section.
TDengine greatly improves the efficiency of data ingestion, querying and storage by exploiting the characteristics of time series data, introducing the novel concepts of "one table for one data collection point" and "super table", and designing an innovative storage engine. To understand the new concepts in TDengine and make full use of the features and capabilities of TDengine, please read [“Concepts”](./concept) thoroughly.
TDengine greatly improves the efficiency of data ingestion, querying, and storage by exploiting the characteristics of time series data, introducing the novel concepts of "one table for one data collection point" and "super table", and designing an innovative storage engine. To understand the new concepts in TDengine and make full use of the features and capabilities of TDengine, please read [Concepts](./concept) thoroughly.
If you are a developer, please read the [“Developer Guide”](./develop) carefully. This section introduces the database connection, data modeling, data ingestion, query, continuous query, cache, data subscription, user-defined functions, and other functionality in detail. Sample code is provided for a variety of programming languages. In most cases, you can just copy and paste the sample code, make a few changes to accommodate your application, and it will work.
If you are a developer, please read the [Developer Guide](./develop) carefully. This section introduces the database connection, data modeling, data ingestion, query, continuous query, cache, data subscription, user-defined functions, and other functionality in detail. Sample code is provided for a variety of programming languages. In most cases, you can just copy and paste the sample code, and make a few changes to accommodate your application, and it will work.
We live in the era of big data, and scale-up is unable to meet the growing needs of business. Any modern data system must have the ability to scale out, and clustering has become an indispensable feature of big data systems. Not only did the TDengine team develop the cluster feature, but also decided to open source this important feature. To learn how to deploy, manage and maintain a TDengine cluster please refer to ["cluster deployment"](../deployment).
We live in the era of big data, and scale-up is unable to meet the growing needs of the business. Any modern data system must have the ability to scale out, and clustering has become an indispensable feature of big data systems. Not only did the TDengine team develop the cluster feature, but also decided to open source this important feature. To learn how to deploy, manage and maintain a TDengine cluster please refer to [Cluster Deployment](../deployment).
TDengine uses ubiquitious SQL as its query language, which greatly reduces learning costs and migration costs. In addition to the standard SQL, TDengine has extensions to better support time series data analysis. These extensions include functions such as roll up, interpolation and time weighted average, among many others. The ["SQL Reference"](./taos-sql) chapter describes the SQL syntax in detail, and lists the various supported commands and functions.
TDengine uses ubiquitous SQL as its query language, which greatly reduces learning costs and migration costs. In addition to the standard SQL, TDengine has extensions to better support time series data analysis. These extensions include functions such as roll-up, interpolation, and time-weighted average, among many others. The [SQL Reference](./taos-sql) chapter describes the SQL syntax in detail and lists the various supported commands and functions.
If you are a system administrator who cares about installation, upgrade, fault tolerance, disaster recovery, data import, data export, system configuration, how to monitor whether TDengine is running healthily, and how to improve system performance, please refer to, and thoroughly read the ["Administration"](./operation) section.
If you are a system administrator who cares about installation, upgrade, fault tolerance, disaster recovery, data import, data export, system configuration, how to monitor whether TDengine is running healthily, and how to improve system performance, please refer to, and thoroughly read the [Administration](./operation) section.
If you want to know more about TDengine tools, the REST API, and connectors for various programming languages, please see the ["Reference"](./reference) chapter.
If you want to know more about TDengine tools, the REST API, and connectors for various programming languages, please see the [Reference](./reference) chapter.
If you are very interested in the internal design of TDengine, please read the chapter ["Inside TDengine”](./tdinternal), which introduces the cluster design, data partitioning, sharding, writing, and reading processes in detail. If you want to study TDengine code or even contribute code, please read this chapter carefully.
If you are very interested in the internal design of TDengine, please read the chapter [Inside TDengine](./tdinternal), which introduces the cluster design, data partitioning, sharding, writing, and reading processes in detail. If you want to study TDengine code or even contribute code, please read this chapter carefully.
TDengine is an open source database, and we would love for you to be a part of TDengine. If you find any errors in the documentation, or see parts where more clarity or elaboration is needed, please click "Edit this page" at the bottom of each page to edit it directly.
TDengine is an open-source database, and we would love for you to be a part of TDengine. If you find any errors in the documentation or see parts where more clarity or elaboration is needed, please click "Edit this page" at the bottom of each page to edit it directly.
Together, we make a difference.
Together, we make a difference!
此差异已折叠。
......@@ -104,15 +104,15 @@ Each row contains the device ID, time stamp, collected metrics (current, voltage
## Metric
Metric refers to the physical quantity collected by sensors, equipment or other types of data collection devices, such as current, voltage, temperature, pressure, GPS position, etc., which change with time, and the data type can be integer, float, Boolean, or strings. As time goes by, the amount of collected metric data stored increases.
Metric refers to the physical quantity collected by sensors, equipment or other types of data collection devices, such as current, voltage, temperature, pressure, GPS position, etc., which change with time, and the data type can be integer, float, Boolean, or strings. As time goes by, the amount of collected metric data stored increases. In the smart meters example, current, voltage and phase are the metrics.
## Label/Tag
Label/Tag refers to the static properties of sensors, equipment or other types of data collection devices, which do not change with time, such as device model, color, fixed location of the device, etc. The data type can be any type. Although static, TDengine allows users to add, delete or update tag values at any time. Unlike the collected metric data, the amount of tag data stored does not change over time.
Label/Tag refers to the static properties of sensors, equipment or other types of data collection devices, which do not change with time, such as device model, color, fixed location of the device, etc. The data type can be any type. Although static, TDengine allows users to add, delete or update tag values at any time. Unlike the collected metric data, the amount of tag data stored does not change over time. In the meters example, `location` and `groupid` are the tags.
## Data Collection Point
Data Collection Point (DCP) refers to hardware or software that collects metrics based on preset time periods or triggered by events. A data collection point can collect one or multiple metrics, but these metrics are collected at the same time and have the same time stamp. For some complex equipment, there are often multiple data collection points, and the sampling rate of each collection point may be different, and fully independent. For example, for a car, there could be a data collection point to collect GPS position metrics, a data collection point to collect engine status metrics, and a data collection point to collect the environment metrics inside the car. So in this example the car would have three data collection points.
Data Collection Point (DCP) refers to hardware or software that collects metrics based on preset time periods or triggered by events. A data collection point can collect one or multiple metrics, but these metrics are collected at the same time and have the same time stamp. For some complex equipment, there are often multiple data collection points, and the sampling rate of each collection point may be different, and fully independent. For example, for a car, there could be a data collection point to collect GPS position metrics, a data collection point to collect engine status metrics, and a data collection point to collect the environment metrics inside the car. So in this example the car would have three data collection points. In the smart meters example, d1001, d1002, d1003, and d1004 are the data collection points.
## Table
......@@ -137,7 +137,7 @@ The design of one table for one data collection point will require a huge number
STable is a template for a type of data collection point. A STable contains a set of data collection points (tables) that have the same schema or data structure, but with different static attributes (tags). To describe a STable, in addition to defining the table structure of the metrics, it is also necessary to define the schema of its tags. The data type of tags can be int, float, string, and there can be multiple tags, which can be added, deleted, or modified afterward. If the whole system has N different types of data collection points, N STables need to be established.
In the design of TDengine, **a table is used to represent a specific data collection point, and STable is used to represent a set of data collection points of the same type**.
In the design of TDengine, **a table is used to represent a specific data collection point, and STable is used to represent a set of data collection points of the same type**. In the smart meters example, we can create a super table named `meters`.
## Subtable
......@@ -156,11 +156,13 @@ The relationship between a STable and the subtables created based on this STable
Queries can be executed on both a table (subtable) and a STable. For a query on a STable, TDengine will treat the data in all its subtables as a whole data set for processing. TDengine will first find the subtables that meet the tag filter conditions, then scan the time-series data of these subtables to perform aggregation operation, which reduces the number of data sets to be scanned which in turn greatly improves the performance of data aggregation across multiple DCPs. In essence, querying a supertable is a very efficient aggregate query on multiple DCPs of the same type.
In TDengine, it is recommended to use a subtable instead of a regular table for a DCP.
In TDengine, it is recommended to use a subtable instead of a regular table for a DCP. In the smart meters example, we can create subtables like d1001, d1002, d1003, and d1004 under super table meters.
To better understand the data model using metri, tags, super table and subtable, please refer to the diagram below which demonstrates the data model of the smart meters example. ![Meters Data Model Diagram](./supertable.webp)
## Database
A database is a collection of tables. TDengine allows a running instance to have multiple databases, and each database can be configured with different storage policies. The [characteristics of time-series data](https://www.taosdata.com/blog/2019/07/09/86.html) from different data collection points may be different. Characteristics include collection frequency, retention policy and others which determine how you create and configure the database. For e.g. days to keep, number of replicas, data block size, whether data updates are allowed and other configurable parameters would be determined by the characteristics of your data and your business requirements. In order for TDengine to work with maximum efficiency in various scenarios, TDengine recommends that STables with different data characteristics be created in different databases.
A database is a collection of tables. TDengine allows a running instance to have multiple databases, and each database can be configured with different storage policies. The [characteristics of time-series data](https://tdengine.com/tsdb/characteristics-of-time-series-data/) from different data collection points may be different. Characteristics include collection frequency, retention policy and others which determine how you create and configure the database. For e.g. days to keep, number of replicas, data block size, whether data updates are allowed and other configurable parameters would be determined by the characteristics of your data and your business requirements. In order for TDengine to work with maximum efficiency in various scenarios, TDengine recommends that STables with different data characteristics be created in different databases.
In a database, there can be one or more STables, but a STable belongs to only one database. All tables owned by a STable are stored in only one database.
......
......@@ -31,17 +31,6 @@ You can now access TDengine or run other Linux commands.
Note: For information about installing docker, see the [official documentation](https://docs.docker.com/get-docker/).
## Open the TDengine CLI
On the container, run the following command to open the TDengine CLI:
```
$ taos
taos>
```
## Insert Data into TDengine
You can use the `taosBenchmark` tool included with TDengine to write test data into your deployment.
......@@ -53,45 +42,57 @@ To do so, run the following command:
```
This command creates the `meters` supertable in the `test` database. In the `meters` supertable, it then creates 10,000 subtables named `d0` to `d9999`. Each table has 10,000 rows and each row has four columns: `ts`, `current`, `voltage`, and `phase`. The timestamps of the data in these columns range from 2017-07-14 10:40:00 000 to 2017-07-14 10:40:09 999. Each table is randomly assigned a `groupId` tag from 1 to ten and a `location` tag of either `California.SanFrancisco` or `California.SanDiego`.
This command creates the `meters` supertable in the `test` database. In the `meters` supertable, it then creates 10,000 subtables named `d0` to `d9999`. Each table has 10,000 rows and each row has four columns: `ts`, `current`, `voltage`, and `phase`. The timestamps of the data in these columns range from 2017-07-14 10:40:00 000 to 2017-07-14 10:40:09 999. Each table is randomly assigned a `groupId` tag from 1 to 10 and a `location` tag of either `Campbell`, `Cupertino`, `Los Angeles`, `Mountain View`, `Palo Alto`, `San Diego`, `San Francisco`, `San Jose`, `Santa Clara` or `Sunnyvale`.
The `taosBenchmark` command creates a deployment with 100 million data points that you can use for testing purposes. The time required depends on the hardware specifications of the local system.
You can customize the test deployment that taosBenchmark creates by specifying command-line parameters. For information about command-line parameters, run the `taosBenchmark --help` command. For more information about taosBenchmark, see [taosBenchmark](/reference/taosbenchmark).
## Open the TDengine CLI
On the container, run the following command to open the TDengine CLI:
```
$ taos
taos>
```
## Query Data in TDengine
After using taosBenchmark to create your test deployment, you can run queries in the TDengine CLI to test its performance. For example:
Query the number of rows in the `meters` supertable:
From the TDengine CLI query the number of rows in the `meters` supertable:
```sql
taos> select count(*) from test.meters;
select count(*) from test.meters;
```
Query the average, maximum, and minimum values of all 100 million rows of data:
```sql
taos> select avg(current), max(voltage), min(phase) from test.meters;
select avg(current), max(voltage), min(phase) from test.meters;
```
Query the number of rows whose `location` tag is `California.SanFrancisco`:
Query the number of rows whose `location` tag is `San Francisco`:
```sql
taos> select count(*) from test.meters where location="San Francisco";
select count(*) from test.meters where location="San Francisco";
```
Query the average, maximum, and minimum values of all rows whose `groupId` tag is `10`:
```sql
taos> select avg(current), max(voltage), min(phase) from test.meters where groupId=10;
select avg(current), max(voltage), min(phase) from test.meters where groupId=10;
```
Query the average, maximum, and minimum values for table `d10` in 10 second intervals:
Query the average, maximum, and minimum values for table `d10` in 1 second intervals:
```sql
taos> select avg(current), max(voltage), min(phase) from test.d10 interval(10s);
select first(ts), avg(current), max(voltage), min(phase) from test.d10 interval(1s);
```
In the query above you are selecting the first timestamp (ts) in the interval, another way of selecting this would be _wstart which will give the start of the time window. For more information about windowed queries, see [Time-Series Extensions](../../taos-sql/distinguished/).
## Additional Information
......
......@@ -67,13 +67,6 @@ Users will be prompted to enter some configuration information when install.sh i
</TabItem>
<TabItem label="Windows" value="windows">
1. Download the Windows installation package.
<PkgListV3 type={3}/>
2. Run the downloaded package to install TDengine.
</TabItem>
<TabItem value="apt-get" label="apt-get">
You can use `apt-get` to install TDengine from the official package repository.
......@@ -102,6 +95,15 @@ sudo apt-get install tdengine
:::tip
This installation method is supported only for Debian and Ubuntu.
::::
</TabItem>
<TabItem label="Windows" value="windows">
Note: TDengine only supports Windows Server 2016/2019 and windows 10/11 system versions on the windows platform.
1. Download the Windows installation package.
<PkgListV3 type={3}/>
2. Run the downloaded package to install TDengine.
</TabItem>
</Tabs>
......@@ -172,6 +174,20 @@ After the installation is complete, run `C:\TDengine\taosd.exe` to start TDengin
</TabItem>
</Tabs>
## Test data insert performance
After your TDengine Server is running normally, you can run the taosBenchmark utility to test its performance:
```bash
taosBenchmark
```
This command creates the `meters` supertable in the `test` database. In the `meters` supertable, it then creates 10,000 subtables named `d0` to `d9999`. Each table has 10,000 rows and each row has four columns: `ts`, `current`, `voltage`, and `phase`. The timestamps of the data in these columns range from 2017-07-14 10:40:00 000 to 2017-07-14 10:40:09 999. Each table is randomly assigned a `groupId` tag from 1 to 10 and a `location` tag of either `Campbell`, `Cupertino`, `Los Angeles`, `Mountain View`, `Palo Alto`, `San Diego`, `San Francisco`, `San Jose`, `Santa Clara` or `Sunnyvale`.
The `taosBenchmark` command creates a deployment with 100 million data points that you can use for testing purposes. The time required to create the deployment depends on your hardware. On most modern servers, the deployment is created in less than a minute.
You can customize the test deployment that taosBenchmark creates by specifying command-line parameters. For information about command-line parameters, run the `taosBenchmark --help` command. For more information about taosBenchmark, see [taosBenchmark](../../reference/taosbenchmark).
## Command Line Interface
You can use the TDengine CLI to monitor your TDengine deployment and execute ad hoc queries. To open the CLI, run the following command:
......@@ -203,51 +219,38 @@ Query OK, 2 row(s) in set (0.003128s)
```
You can also can monitor the deployment status, add and remove user accounts, and manage running instances. You can run the TDengine CLI on either Linux or Windows machines. For more information, see [TDengine CLI](../../reference/taos-shell/).
## Test data insert performance
After your TDengine Server is running normally, you can run the taosBenchmark utility to test its performance:
```bash
taosBenchmark
```
This command creates the `meters` supertable in the `test` database. In the `meters` supertable, it then creates 10,000 subtables named `d0` to `d9999`. Each table has 10,000 rows and each row has four columns: `ts`, `current`, `voltage`, and `phase`. The timestamps of the data in these columns range from 2017-07-14 10:40:00 000 to 2017-07-14 10:40:09 999. Each table is randomly assigned a `groupId` tag from 1 to ten and a `location` tag of either `California.SanFrancisco` or `California.LosAngeles`.
The `taosBenchmark` command creates a deployment with 100 million data points that you can use for testing purposes. The time required to create the deployment depends on your hardware. On most modern servers, the deployment is created in less than a minute.
You can customize the test deployment that taosBenchmark creates by specifying command-line parameters. For information about command-line parameters, run the `taosBenchmark --help` command. For more information about taosBenchmark, see [taosBenchmark](../../reference/taosbenchmark).
## Test data query performance
After using taosBenchmark to create your test deployment, you can run queries in the TDengine CLI to test its performance:
Query the number of rows in the `meters` supertable:
From the TDengine CLI query the number of rows in the `meters` supertable:
```sql
taos> select count(*) from test.meters;
select count(*) from test.meters;
```
Query the average, maximum, and minimum values of all 100 million rows of data:
```sql
taos> select avg(current), max(voltage), min(phase) from test.meters;
select avg(current), max(voltage), min(phase) from test.meters;
```
Query the number of rows whose `location` tag is `California.SanFrancisco`:
Query the number of rows whose `location` tag is `San Francisco`:
```sql
taos> select count(*) from test.meters where location="California.SanFrancisco";
select count(*) from test.meters where location="San Francisco";
```
Query the average, maximum, and minimum values of all rows whose `groupId` tag is `10`:
```sql
taos> select avg(current), max(voltage), min(phase) from test.meters where groupId=10;
select avg(current), max(voltage), min(phase) from test.meters where groupId=10;
```
Query the average, maximum, and minimum values for table `d10` in 10 second intervals:
Query the average, maximum, and minimum values for table `d10` in 1 second intervals:
```sql
taos> select avg(current), max(voltage), min(phase) from test.d10 interval(10s);
select first(ts), avg(current), max(voltage), min(phase) from test.d10 interval(1s);
```
In the query above you are selecting the first timestamp (ts) in the interval, another way of selecting this would be _wstart which will give the start of the time window. For more information about windowed queries, see [Time-Series Extensions](../../taos-sql/distinguished/).
---
title: Connect
description: "This document explains how to establish connections to TDengine and how to install and use TDengine connectors."
sidebar_label: Connect
title: Connect to TDengine
description: "How to establish connections to TDengine and how to install and use TDengine connectors."
---
import Tabs from "@theme/Tabs";
......@@ -279,6 +280,6 @@ Prior to establishing connection, please make sure TDengine is already running a
</Tabs>
:::tip
If the connection fails, in most cases it's caused by improper configuration for FQDN or firewall. Please refer to the section "Unable to establish connection" in [FAQ](https://docs.taosdata.com/train-faq/faq).
If the connection fails, in most cases it's caused by improper configuration for FQDN or firewall. Please refer to the section "Unable to establish connection" in [FAQ](https://docs.tdengine.com/train-faq/faq).
:::
此差异已折叠。
......@@ -16,7 +16,7 @@ import CDemo from "./_sub_c.mdx";
TDengine provides data subscription and consumption interfaces similar to message queue products. These interfaces make it easier for applications to obtain data written to TDengine either in real time and to process data in the order that events occurred. This simplifies your time-series data processing systems and reduces your costs because it is no longer necessary to deploy a message queue product such as Kafka.
To use TDengine data subscription, you define topics like in Kafka. However, a topic in TDengine is based on query conditions for an existing supertable, standard table, or subtable - in other words, a SELECT statement. You can use SQL to filter data by tag, table name, column, or expression and then perform a scalar function or user-defined function on the data. Aggregate functions are not supported. This gives TDengine data subscription more flexibility than similar products. The granularity of data can be controlled on demand by applications, while filtering and preprocessing are handled by TDengine instead of the application layer. This implementation reduces the amount of data transmitted and the complexity of applications.
To use TDengine data subscription, you define topics like in Kafka. However, a topic in TDengine is based on query conditions for an existing supertable, table, or subtable - in other words, a SELECT statement. You can use SQL to filter data by tag, table name, column, or expression and then perform a scalar function or user-defined function on the data. Aggregate functions are not supported. This gives TDengine data subscription more flexibility than similar products. The granularity of data can be controlled on demand by applications, while filtering and preprocessing are handled by TDengine instead of the application layer. This implementation reduces the amount of data transmitted and the complexity of applications.
By subscribing to a topic, a consumer can obtain the latest data in that topic in real time. Multiple consumers can be formed into a consumer group that consumes messages together. Consumer groups enable faster speed through multi-threaded, distributed data consumption. Note that consumers in different groups that are subscribed to the same topic do not consume messages together. A single consumer can subscribe to multiple topics. If the data in a supertable is sharded across multiple vnodes, consumer groups can consume it much more efficiently than single consumers. TDengine also includes an acknowledgement mechanism that ensures at-least-once delivery in complicated environments where machines may crash or restart.
......
......@@ -20,11 +20,11 @@ In theory, larger cache sizes are always better. However, at a certain point, it
## Read Cache
When you create a database, you can configure whether the latest data from every subtable is cached. To do so, set the *cachelast* parameter as follows:
- 0: Caching is disabled.
- 1: The latest row of data in each subtable is cached. This option significantly improves the performance of the `LAST_ROW` function
- 2: The latest non-null value in each column of each subtable is cached. This option significantly improves the performance of the `LAST` function in normal situations, such as WHERE, ORDER BY, GROUP BY, and INTERVAL statements.
- 3: Rows and columns are both cached. This option is equivalent to simultaneously enabling options 1 and 2.
When you create a database, you can configure whether the latest data from every subtable is cached. To do so, set the *cachemodel* parameter as follows:
- none: Caching is disabled.
- last_row: The latest row of data in each subtable is cached. This option significantly improves the performance of the `LAST_ROW` function
- last_value: The latest non-null value in each column of each subtable is cached. This option significantly improves the performance of the `LAST` function in normal situations, such as WHERE, ORDER BY, GROUP BY, and INTERVAL statements.
- both: Rows and columns are both cached. This option is equivalent to simultaneously enabling option last_row and last_value.
## Metadata Cache
......
......@@ -39,18 +39,18 @@ To get the hostname on any host, the command `hostname -f` can be executed.
On the physical machine running the application, ping the dnode that is running taosd. If the dnode is not accessible, the application cannot connect to taosd. In this case, verify the DNS and hosts settings on the physical node running the application.
The end point of each dnode is the output hostname and port, such as h1.taosdata.com:6030.
The end point of each dnode is the output hostname and port, such as h1.tdengine.com:6030.
### Step 5
Modify the TDengine configuration file `/etc/taos/taos.cfg` on each node. Assuming the first dnode of TDengine cluster is "h1.taosdata.com:6030", its `taos.cfg` is configured as following.
Modify the TDengine configuration file `/etc/taos/taos.cfg` on each node. Assuming the first dnode of TDengine cluster is "h1.tdengine.com:6030", its `taos.cfg` is configured as following.
```c
// firstEp is the end point to connect to when any dnode starts
firstEp h1.taosdata.com:6030
firstEp h1.tdengine.com:6030
// must be configured to the FQDN of the host where the dnode is launched
fqdn h1.taosdata.com
fqdn h1.tdengine.com
// the port used by the dnode, default is 6030
serverPort 6030
......@@ -76,13 +76,13 @@ The first dnode can be started following the instructions in [Get Started](/get-
taos> show dnodes;
id | endpoint | vnodes | support_vnodes | status | create_time | note |
============================================================================================================================================
1 | h1.taosdata.com:6030 | 0 | 1024 | ready | 2022-07-16 10:50:42.673 | |
1 | h1.tdengine.com:6030 | 0 | 1024 | ready | 2022-07-16 10:50:42.673 | |
Query OK, 1 rows affected (0.007984s)
```
From the above output, it is shown that the end point of the started dnode is "h1.taosdata.com:6030", which is the `firstEp` of the cluster.
From the above output, it is shown that the end point of the started dnode is "h1.tdengine.com:6030", which is the `firstEp` of the cluster.
## Add DNODE
......@@ -90,7 +90,7 @@ There are a few steps necessary to add other dnodes in the cluster.
Second, we can start `taosd` as instructed in [Get Started](/get-started/).
Then, on the first dnode i.e. h1.taosdata.com in our example, use TDengine CLI `taos` to execute the following command:
Then, on the first dnode i.e. h1.tdengine.com in our example, use TDengine CLI `taos` to execute the following command:
```sql
CREATE DNODE "h2.taos.com:6030";
......@@ -98,7 +98,7 @@ CREATE DNODE "h2.taos.com:6030";
This adds the end point of the new dnode (from Step 4) into the end point list of the cluster. In the command "fqdn:port" should be quoted using double quotes. Change `"h2.taos.com:6030"` to the end point of your new dnode.
Then on the first dnode h1.taosdata.com, execute `show dnodes` in `taos`
Then on the first dnode h1.tdengine.com, execute `show dnodes` in `taos`
```sql
SHOW DNODES;
......@@ -114,7 +114,9 @@ The above process can be repeated to add more dnodes in the cluster.
Any node that is in the cluster and online can be the firstEp of new nodes.
Nodes use the firstEp parameter only when joining a cluster for the first time. After a node has joined the cluster, it stores the latest mnode in its end point list and no longer makes use of firstEp.
However, firstEp is used by clients that connect to the cluster. For example, if you run `taos shell` without arguments, it connects to the firstEp by default.
However, firstEp is used by clients that connect to the cluster. For example, if you run TDengine CLI `taos` without arguments, it connects to the firstEp by default.
Two dnodes that are launched without a firstEp value operate independently of each other. It is not possible to add one dnode to the other dnode and form a cluster. It is also not possible to form two independent clusters into a new cluster.
:::
......
......@@ -9,6 +9,7 @@ TDengine is a cloud-native time-series database that can be deployed on Kubernet
Before deploying TDengine on Kubernetes, perform the following:
* Current steps are compatible with Kubernetes v1.5 and later version.
* Install and configure minikube, kubectl, and helm.
* Install and deploy Kubernetes and ensure that it can be accessed and used normally. Update any container registries or other services as necessary.
......@@ -100,7 +101,7 @@ spec:
# Must set if you want a cluster.
- name: TAOS_FIRST_EP
value: "$(STS_NAME)-0.$(SERVICE_NAME).$(STS_NAMESPACE).svc.cluster.local:$(TAOS_SERVER_PORT)"
# TAOS_FQND should always be setted in k8s env.
# TAOS_FQDN should always be set in k8s env.
- name: TAOS_FQDN
value: "$(POD_NAME).$(SERVICE_NAME).$(STS_NAMESPACE).svc.cluster.local"
volumeMounts:
......
......@@ -152,7 +152,7 @@ clusterDomainSuffix: ""
# converting an upper-snake-cased variable like `TAOS_DEBUG_FLAG`,
# to a camelCase taos config variable `debugFlag`.
#
# See the variable list at https://www.taosdata.com/cn/documentation/administrator .
# See the [Configuration Variables](../../reference/config)
#
# Note:
# 1. firstEp/secondEp: should not be setted here, it's auto generated at scale-up.
......@@ -170,71 +170,21 @@ taoscfg:
# number of replications, for cluster only
TAOS_REPLICA: "1"
# number of days per DB file
# TAOS_DAYS: "10"
# number of days to keep DB file, default is 10 years.
#TAOS_KEEP: "3650"
# cache block size (Mbyte)
#TAOS_CACHE: "16"
# number of cache blocks per vnode
#TAOS_BLOCKS: "6"
# minimum rows of records in file block
#TAOS_MIN_ROWS: "100"
# maximum rows of records in file block
#TAOS_MAX_ROWS: "4096"
#
# TAOS_NUM_OF_THREADS_PER_CORE: number of threads per CPU core
#TAOS_NUM_OF_THREADS_PER_CORE: "1.0"
# TAOS_NUM_OF_RPC_THREADS: number of threads for RPC
#TAOS_NUM_OF_RPC_THREADS: "2"
#
# TAOS_NUM_OF_COMMIT_THREADS: number of threads to commit cache data
#TAOS_NUM_OF_COMMIT_THREADS: "4"
#
# TAOS_RATIO_OF_QUERY_CORES:
# the proportion of total CPU cores available for query processing
# 2.0: the query threads will be set to double of the CPU cores.
# 1.0: all CPU cores are available for query processing [default].
# 0.5: only half of the CPU cores are available for query.
# 0.0: only one core available.
#TAOS_RATIO_OF_QUERY_CORES: "1.0"
#
# TAOS_KEEP_COLUMN_NAME:
# the last_row/first/last aggregator will not change the original column name in the result fields
#TAOS_KEEP_COLUMN_NAME: "0"
# enable/disable backuping vnode directory when removing vnode
#TAOS_VNODE_BAK: "1"
# enable/disable installation / usage report
#TAOS_TELEMETRY_REPORTING: "1"
# enable/disable load balancing
#TAOS_BALANCE: "1"
# max timer control blocks
#TAOS_MAX_TMR_CTRL: "512"
# time interval of system monitor, seconds
#TAOS_MONITOR_INTERVAL: "30"
# number of seconds allowed for a dnode to be offline, for cluster only
#TAOS_OFFLINE_THRESHOLD: "8640000"
# RPC re-try timer, millisecond
#TAOS_RPC_TIMER: "1000"
# RPC maximum time for ack, seconds.
#TAOS_RPC_MAX_TIME: "600"
# time interval of dnode status reporting to mnode, seconds, for cluster only
#TAOS_STATUS_INTERVAL: "1"
......@@ -245,37 +195,7 @@ taoscfg:
#TAOS_MIN_SLIDING_TIME: "10"
# minimum time window, milli-second
#TAOS_MIN_INTERVAL_TIME: "10"
# maximum delay before launching a stream computation, milli-second
#TAOS_MAX_STREAM_COMP_DELAY: "20000"
# maximum delay before launching a stream computation for the first time, milli-second
#TAOS_MAX_FIRST_STREAM_COMP_DELAY: "10000"
# retry delay when a stream computation fails, milli-second
#TAOS_RETRY_STREAM_COMP_DELAY: "10"
# the delayed time for launching a stream computation, from 0.1(default, 10% of whole computing time window) to 0.9
#TAOS_STREAM_COMP_DELAY_RATIO: "0.1"
# max number of vgroups per db, 0 means configured automatically
#TAOS_MAX_VGROUPS_PER_DB: "0"
# max number of tables per vnode
#TAOS_MAX_TABLES_PER_VNODE: "1000000"
# the number of acknowledgments required for successful data writing
#TAOS_QUORUM: "1"
# enable/disable compression
#TAOS_COMP: "2"
# write ahead log (WAL) level, 0: no wal; 1: write wal, but no fysnc; 2: write wal, and call fsync
#TAOS_WAL_LEVEL: "1"
# if walLevel is set to 2, the cycle of fsync being executed, if set to 0, fsync is called right away
#TAOS_FSYNC: "3000"
#TAOS_MIN_INTERVAL_TIME: "1"
# the compressed rpc message, option:
# -1 (no compression)
......@@ -283,17 +203,8 @@ taoscfg:
# > 0 (rpc message body which larger than this value will be compressed)
#TAOS_COMPRESS_MSG_SIZE: "-1"
# max length of an SQL
#TAOS_MAX_SQL_LENGTH: "1048576"
# the maximum number of records allowed for super table time sorting
#TAOS_MAX_NUM_OF_ORDERED_RES: "100000"
# max number of connections allowed in dnode
#TAOS_MAX_SHELL_CONNS: "5000"
# max number of connections allowed in client
#TAOS_MAX_CONNECTIONS: "5000"
#TAOS_MAX_SHELL_CONNS: "50000"
# stop writing logs when the disk size of the log folder is less than this value
#TAOS_MINIMAL_LOG_DIR_G_B: "0.1"
......@@ -313,21 +224,8 @@ taoscfg:
# enable/disable system monitor
#TAOS_MONITOR: "1"
# enable/disable recording the SQL statements via restful interface
#TAOS_HTTP_ENABLE_RECORD_SQL: "0"
# number of threads used to process http requests
#TAOS_HTTP_MAX_THREADS: "2"
# maximum number of rows returned by the restful interface
#TAOS_RESTFUL_ROW_LIMIT: "10240"
# The following parameter is used to limit the maximum number of lines in log files.
# max number of lines per log filters
# numOfLogLines 10000000
# enable/disable async log
#TAOS_ASYNC_LOG: "0"
#TAOS_ASYNC_LOG: "1"
#
# time of keeping log files, days
......@@ -344,25 +242,8 @@ taoscfg:
# debug flag for all log type, take effect when non-zero value\
#TAOS_DEBUG_FLAG: "143"
# enable/disable recording the SQL in taos client
#TAOS_ENABLE_RECORD_SQL: "0"
# generate core file when service crash
#TAOS_ENABLE_CORE_FILE: "1"
# maximum display width of binary and nchar fields in the shell. The parts exceeding this limit will be hidden
#TAOS_MAX_BINARY_DISPLAY_WIDTH: "30"
# enable/disable stream (continuous query)
#TAOS_STREAM: "1"
# in retrieve blocking model, only in 50% query threads will be used in query processing in dnode
#TAOS_RETRIEVE_BLOCKING_MODEL: "0"
# the maximum allowed query buffer size in MB during query processing for each data node
# -1 no limit (default)
# 0 no query allowed, queries are disabled
#TAOS_QUERY_BUFFER_SIZE: "-1"
```
## Scaling Out
......
......@@ -11,7 +11,7 @@ When using TDengine to store and query data, the most important part of the data
- The format must be `YYYY-MM-DD HH:mm:ss.MS`, the default time precision is millisecond (ms), for example `2017-08-12 18:25:58.128`
- Internal function `now` can be used to get the current timestamp on the client side
- The current timestamp of the client side is applied when `now` is used to insert data
- Epoch Time:timestamp can also be a long integer number, which means the number of seconds, milliseconds or nanoseconds, depending on the time precision, from 1970-01-01 00:00:00.000 (UTC/GMT)
- Epoch Time:timestamp can also be a long integer number, which means the number of seconds, milliseconds or nanoseconds, depending on the time precision, from UTC 1970-01-01 00:00:00.
- Add/subtract operations can be carried out on timestamps. For example `now-2h` means 2 hours prior to the time at which query is executed. The units of time in operations can be b(nanosecond), u(microsecond), a(millisecond), s(second), m(minute), h(hour), d(day), or w(week). So `select * from t1 where ts > now-2w and ts <= now-1w` means the data between two weeks ago and one week ago. The time unit can also be n (calendar month) or y (calendar year) when specifying the time window for down sampling operations.
Time precision in TDengine can be set by the `PRECISION` parameter when executing `CREATE DATABASE`. The default time precision is millisecond. In the statement below, the precision is set to nanonseconds.
......
......@@ -71,9 +71,9 @@ database_option: {
- SINGLE_STABLE: specifies whether the database can contain more than one supertable.
- 0: The database can contain multiple supertables.
- 1: The database can contain only one supertable.
- WAL_RETENTION_PERIOD: specifies the time after which WAL files are deleted. This parameter is used for data subscription. Enter a time in seconds. The default value is 0. A value of 0 indicates that each WAL file is deleted immediately after its contents are written to disk. -1: WAL files are never deleted.
- WAL_RETENTION_SIZE: specifies the size at which WAL files are deleted. This parameter is used for data subscription. Enter a size in KB. The default value is 0. A value of 0 indicates that each WAL file is deleted immediately after its contents are written to disk. -1: WAL files are never deleted.
- WAL_ROLL_PERIOD: specifies the time after which WAL files are rotated. After this period elapses, a new WAL file is created. The default value is 0. A value of 0 indicates that a new WAL file is created only after the previous WAL file was written to disk.
- WAL_RETENTION_PERIOD: specifies the time after which WAL files are deleted. This parameter is used for data subscription. Enter a time in seconds. The default value of single copy is 0. A value of 0 indicates that each WAL file is deleted immediately after its contents are written to disk. -1: WAL files are never deleted. The default value of multiple copy is 4 days.
- WAL_RETENTION_SIZE: specifies the size at which WAL files are deleted. This parameter is used for data subscription. Enter a size in KB. The default value of single copy is 0. A value of 0 indicates that each WAL file is deleted immediately after its contents are written to disk. -1: WAL files are never deleted. The default value of multiple copy is -1.
- WAL_ROLL_PERIOD: specifies the time after which WAL files are rotated. After this period elapses, a new WAL file is created. The default value of single copy is 0. A value of 0 indicates that a new WAL file is created only after the previous WAL file was written to disk. The default values of multiple copy is 1 day.
- WAL_SEGMENT_SIZE: specifies the maximum size of a WAL file. After the current WAL file reaches this size, a new WAL file is created. The default value is 0. A value of 0 indicates that a new WAL file is created only after the previous WAL file was written to disk.
### Example Statement
......
......@@ -57,7 +57,7 @@ table_option: {
3. MAX_DELAY: specifies the maximum latency for pushing computation results. The default value is 15 minutes or the value of the INTERVAL parameter, whichever is smaller. Enter a value between 0 and 15 minutes in milliseconds, seconds, or minutes. You can enter multiple values separated by commas (,). Note: Retain the default value if possible. Configuring a small MAX_DELAY may cause results to be frequently pushed, affecting storage and query performance. This parameter applies only to supertables and takes effect only when the RETENTIONS parameter has been specified for the database.
4. ROLLUP: specifies aggregate functions to roll up. Rolling up a function provides downsampled results based on multiple axes. This parameter applies only to supertables and takes effect only when the RETENTIONS parameter has been specified for the database. You can specify only one function to roll up. The rollup takes effect on all columns except TS. Enter one of the following values: avg, sum, min, max, last, or first.
5. SMA: specifies functions on which to enable small materialized aggregates (SMA). SMA is user-defined precomputation of aggregates based on data blocks. Enter one of the following values: max, min, or sum This parameter can be used with supertables and standard tables.
6. TTL: specifies the time to live (TTL) for the table. If the period specified by the TTL parameter elapses without any data being written to the table, TDengine will automatically delete the table. Note: The system may not delete the table at the exact moment that the TTL expires. Enter a value in days. The default value is 0. Note: The TTL parameter has a higher priority than the KEEP parameter. If a table is marked for deletion because the TTL has expired, it will be deleted even if the time specified by the KEEP parameter has not elapsed. This parameter can be used with standard tables and subtables.
6. TTL: specifies the time to live (TTL) for the table. If TTL is specified when creatinga table, after the time period for which the table has been existing is over TTL, TDengine will automatically delete the table. Please be noted that the system may not delete the table at the exact moment that the TTL expires but guarantee there is such a system and finally the table will be deleted. The unit of TTL is in days. The default value is 0, i.e. never expire.
## Create Subtables
......
......@@ -171,8 +171,8 @@ The \_QSTART and \_QEND pseudocolumns contain the beginning and end of the time
The \_QSTART and \_QEND pseudocolumns cannot be used in a WHERE clause.
**\_WSTART, \_WEND, and \_DURATION**
\_WSTART, \_WEND, and \_WDURATION pseudocolumns
**\_WSTART, \_WEND, and \_WDURATION**
The \_WSTART, \_WEND, and \_WDURATION pseudocolumns indicate the beginning, end, and duration of a window.
These pseudocolumns can be used only in time window-based aggregations and must occur after the aggregation clause.
......
......@@ -613,6 +613,7 @@ SELECT APERCENTILE(field_name, P[, algo_type]) FROM { tb_name | stb_name } [WHER
**Explanations**
- _P_ is in range [0,100], when _P_ is 0, the result is same as using function MIN; when _P_ is 100, the result is same as function MAX.
- `algo_type` can only be input as `default` or `t-digest` Enter `default` to use a histogram-based algorithm. Enter `t-digest` to use the t-digest algorithm to calculate the approximation of the quantile. `default` is used by default.
- The approximation result of `t-digest` algorithm is sensitive to input data order. For example, when querying STable with different input data order there might be minor differences in calculated results.
### AVG
......@@ -846,7 +847,7 @@ SELECT FIRST(field_name) FROM { tb_name | stb_name } [WHERE clause];
### INTERP
```sql
SELECT INTERP(field_name) FROM { tb_name | stb_name } [WHERE where_condition] [ RANGE(timestamp1,timestamp2) ] [EVERY(interval)] [FILL ({ VALUE | PREV | NULL | LINEAR | NEXT})];
SELECT INTERP(field_name) FROM { tb_name | stb_name } [WHERE where_condition] RANGE(timestamp1,timestamp2) EVERY(interval) FILL({ VALUE | PREV | NULL | LINEAR | NEXT});
```
**Description**: The value that matches the specified timestamp range is returned, if existing; or an interpolation value is returned.
......@@ -861,11 +862,10 @@ SELECT INTERP(field_name) FROM { tb_name | stb_name } [WHERE where_condition] [
- `INTERP` is used to get the value that matches the specified time slice from a column. If no such value exists an interpolation value will be returned based on `FILL` parameter.
- The input data of `INTERP` is the value of the specified column and a `where` clause can be used to filter the original data. If no `where` condition is specified then all original data is the input.
- The output time range of `INTERP` is specified by `RANGE(timestamp1,timestamp2)` parameter, with timestamp1<=timestamp2. timestamp1 is the starting point of the output time range and must be specified. timestamp2 is the ending point of the output time range and must be specified. If `RANGE` is not specified, then the timestamp of the first row that matches the filter condition is treated as timestamp1, the timestamp of the last row that matches the filter condition is treated as timestamp2.
- The number of rows in the result set of `INTERP` is determined by the parameter `EVERY`. Starting from timestamp1, one interpolation is performed for every time interval specified `EVERY` parameter. If `EVERY` parameter is not used, the time windows will be considered as no ending timestamp, i.e. there is only one time window from timestamp1.
- Interpolation is performed based on `FILL` parameter. No interpolation is performed if `FILL` is not used, that means either the original data that matches is returned or nothing is returned.
- `INTERP` can only be used to interpolate in single timeline. So it must be used with `group by tbname` when it's used on a STable. It can't be used with `GROUP BY` when it's used in the inner query of a nested query.
- The result of `INTERP` is not influenced by `ORDER BY TIMESTAMP`, which impacts the output order only..
- The output time range of `INTERP` is specified by `RANGE(timestamp1,timestamp2)` parameter, with timestamp1<=timestamp2. timestamp1 is the starting point of the output time range and must be specified. timestamp2 is the ending point of the output time range and must be specified.
- The number of rows in the result set of `INTERP` is determined by the parameter `EVERY`. Starting from timestamp1, one interpolation is performed for every time interval specified `EVERY` parameter.
- Interpolation is performed based on `FILL` parameter.
- `INTERP` can only be used to interpolate in single timeline. So it must be used with `partition by tbname` when it's used on a STable.
### LAST
......@@ -1140,7 +1140,7 @@ SELECT STATECOUNT(field_name, oper, val) FROM { tb_name | stb_name } [WHERE clau
**Applicable parameter values**:
- oper : Can be one of `LT` (lower than), `GT` (greater than), `LE` (lower than or equal to), `GE` (greater than or equal to), `NE` (not equal to), `EQ` (equal to), the value is case insensitive
- oper : Can be one of `'LT'` (lower than), `'GT'` (greater than), `'LE'` (lower than or equal to), `'GE'` (greater than or equal to), `'NE'` (not equal to), `'EQ'` (equal to), the value is case insensitive, the value must be in quotes.
- val : Numeric types
**Return value type**: Integer
......@@ -1167,7 +1167,7 @@ SELECT stateDuration(field_name, oper, val, unit) FROM { tb_name | stb_name } [W
**Applicable parameter values**:
- oper : Can be one of `LT` (lower than), `GT` (greater than), `LE` (lower than or equal to), `GE` (greater than or equal to), `NE` (not equal to), `EQ` (equal to), the value is case insensitive
- oper : Can be one of `'LT'` (lower than), `'GT'` (greater than), `'LE'` (lower than or equal to), `'GE'` (greater than or equal to), `'NE'` (not equal to), `'EQ'` (equal to), the value is case insensitive, the value must be in quotes.
- val : Numeric types
- unit: The unit of time interval. Enter one of the following options: 1b (nanoseconds), 1u (microseconds), 1a (milliseconds), 1s (seconds), 1m (minutes), 1h (hours), 1d (days), or 1w (weeks) If you do not enter a unit of time, the precision of the current database is used by default.
......@@ -1232,7 +1232,7 @@ SELECT SERVER_VERSION();
### SERVER_STATUS
```sql
SELECT SERVER_VERSION();
SELECT SERVER_STATUS();
```
**Description**: The server status.
......@@ -58,6 +58,15 @@ The following restrictions apply:
- The window clause cannot be used with a GROUP BY clause.
- `WHERE` clause can be used to specify the starting and ending time and other filter conditions
### Window Pseudocolumns
**\_WSTART, \_WEND, and \_WDURATION**
The \_WSTART, \_WEND, and \_WDURATION pseudocolumns indicate the beginning, end, and duration of a window.
These pseudocolumns occur after the aggregation clause.
### FILL Clause
`FILL` clause is used to specify how to fill when there is data missing in any window, including:
......
......@@ -44,13 +44,13 @@ For example, the following SQL statement creates a stream and automatically crea
```sql
CREATE STREAM avg_vol_s INTO avg_vol AS
SELECT _wstartts, count(*), avg(voltage) FROM meters PARTITION BY tbname INTERVAL(1m) SLIDING(30s);
SELECT _wstart, count(*), avg(voltage) FROM meters PARTITION BY tbname INTERVAL(1m) SLIDING(30s);
```
## Delete a Stream
```sql
DROP STREAM [IF NOT EXISTS] stream_name
DROP STREAM [IF EXISTS] stream_name
```
This statement deletes the stream processing service only. The data generated by the stream is retained.
......
......@@ -30,7 +30,7 @@ The following characters cannot occur in a password: single quotation marks ('),
- Maximum number of columns is 4096. There must be at least 2 columns, and the first column must be timestamp.
- The maximum length of a tag name is 64 bytes
- Maximum number of tags is 128. There must be at least 1 tag. The total length of tag values cannot exceed 16 KB.
- Maximum length of single SQL statement is 1 MB (1048576 bytes). It can be configured in the parameter `maxSQLLength` in the client side, the applicable range is [65480, 1048576].
- Maximum length of single SQL statement is 1 MB (1048576 bytes).
- At most 4096 columns can be returned by `SELECT`. Functions in the query statement constitute columns. An error is returned if the limit is exceeded.
- Maximum numbers of databases, STables, tables are dependent only on the system resources.
- The number of replicas can only be 1 or 3.
......
......@@ -245,3 +245,35 @@ Provides dnode configuration information.
| 1 | dnode_id | INT | Dnode ID |
| 2 | name | BINARY(32) | Parameter |
| 3 | value | BINARY(64) | Value |
## INS_TOPICS
| # | **Column** | **Data Type** | **Description** |
| --- | :---------: | ------------ | ------------------------------ |
| 1 | topic_name | BINARY(192) | Topic name |
| 2 | db_name | BINARY(64) | Database for the topic |
| 3 | create_time | TIMESTAMP | Creation time |
| 4 | sql | BINARY(1024) | SQL statement used to create the topic |
## INS_SUBSCRIPTIONS
| # | **Column** | **Data Type** | **Description** |
| --- | :------------: | ------------ | ------------------------ |
| 1 | topic_name | BINARY(204) | Subscribed topic |
| 2 | consumer_group | BINARY(193) | Subscribed consumer group |
| 3 | vgroup_id | INT | Vgroup ID for the consumer |
| 4 | consumer_id | BIGINT | Consumer ID |
## INS_STREAMS
| # | **Column** | **Data Type** | **Description** |
| --- | :----------: | ------------ | --------------------------------------- |
| 1 | stream_name | BINARY(64) | Stream name |
| 2 | create_time | TIMESTAMP | Creation time |
| 3 | sql | BINARY(1024) | SQL statement used to create the stream |
| 4 | status | BIANRY(20) | Current status |
| 5 | source_db | BINARY(64) | Source database |
| 6 | target_db | BIANRY(64) | Target database |
| 7 | target_table | BINARY(192) | Target table |
| 8 | watermark | BIGINT | Watermark (see stream processing documentation) |
| 9 | trigger | INT | Method of triggering the result push (see stream processing documentation) |
......@@ -61,15 +61,6 @@ Provides information about SQL queries currently running. Similar to SHOW QUERIE
| 12 | sub_status | BINARY(1000) | Subquery status |
| 13 | sql | BINARY(1024) | SQL statement |
## PERF_TOPICS
| # | **Column** | **Data Type** | **Description** |
| --- | :---------: | ------------ | ------------------------------ |
| 1 | topic_name | BINARY(192) | Topic name |
| 2 | db_name | BINARY(64) | Database for the topic |
| 3 | create_time | TIMESTAMP | Creation time |
| 4 | sql | BINARY(1024) | SQL statement used to create the topic |
## PERF_CONSUMERS
| # | **Column** | **Data Type** | **Description** |
......@@ -83,15 +74,6 @@ Provides information about SQL queries currently running. Similar to SHOW QUERIE
| 7 | subscribe_time | TIMESTAMP | Time of first subscription |
| 8 | rebalance_time | TIMESTAMP | Time of first rebalance triggering |
## PERF_SUBSCRIPTIONS
| # | **Column** | **Data Type** | **Description** |
| --- | :------------: | ------------ | ------------------------ |
| 1 | topic_name | BINARY(204) | Subscribed topic |
| 2 | consumer_group | BINARY(193) | Subscribed consumer group |
| 3 | vgroup_id | INT | Vgroup ID for the consumer |
| 4 | consumer_id | BIGINT | Consumer ID |
## PERF_TRANS
| # | **Column** | **Data Type** | **Description** |
......@@ -113,17 +95,3 @@ Provides information about SQL queries currently running. Similar to SHOW QUERIE
| 2 | create_time | TIMESTAMP | Creation time |
| 3 | stable_name | BINARY(192) | Supertable name |
| 4 | vgroup_id | INT | Dedicated vgroup name |
## PERF_STREAMS
| # | **Column** | **Data Type** | **Description** |
| --- | :----------: | ------------ | --------------------------------------- |
| 1 | stream_name | BINARY(64) | Stream name |
| 2 | create_time | TIMESTAMP | Creation time |
| 3 | sql | BINARY(1024) | SQL statement used to create the stream |
| 4 | status | BIANRY(20) | Current status |
| 5 | source_db | BINARY(64) | Source database |
| 6 | target_db | BIANRY(64) | Target database |
| 7 | target_table | BINARY(192) | Target table |
| 8 | watermark | BIGINT | Watermark (see stream processing documentation) |
| 9 | trigger | INT | Method of triggering the result push (see stream processing documentation) |
......@@ -3,17 +3,7 @@ sidebar_label: SHOW Statement
title: SHOW Statement for Metadata
---
In addition to running SELECT statements on INFORMATION_SCHEMA, you can also use SHOW to obtain system metadata, information, and status.
## SHOW ACCOUNTS
```sql
SHOW ACCOUNTS;
```
Shows information about tenants on the system.
Note: TDengine Enterprise Edition only.
`SHOW` command can be used to get brief system information. To get details about metatadata, information, and status in the system, please use `select` to query the tables in database `INFORMATION_SCHEMA`.
## SHOW APPS
......@@ -194,7 +184,7 @@ Shows information about streams in the system.
SHOW SUBSCRIPTIONS;
```
Shows all subscriptions in the current database.
Shows all subscriptions in the system.
## SHOW TABLES
......
---
sidebar_label: Permissions Management
title: Permissions Management
sidebar_label: Access Control
title: User and Access Control
description: Manage user and user's permission
---
This document describes how to manage permissions in TDengine.
......
---
title: TDengine SQL
description: "The syntax supported by TDengine SQL "
description: 'The syntax supported by TDengine SQL '
---
This section explains the syntax of SQL to perform operations on databases, tables and STables, insert data, select data and use functions. We also provide some tips that can be used in TDengine SQL. If you have previous experience with SQL this section will be fairly easy to understand. If you do not have previous experience with SQL, you'll come to appreciate the simplicity and power of SQL. TDengine SQL has been enhanced in version 3.0, and the query engine has been rearchitected. For information about how TDengine SQL has changed, see [Changes in TDengine 3.0](../taos-sql/changes).
......@@ -15,7 +15,7 @@ Syntax Specifications used in this chapter:
- | means one of a few options, excluding | itself.
- … means the item prior to it can be repeated multiple times.
To better demonstrate the syntax, usage and rules of TAOS SQL, hereinafter it's assumed that there is a data set of data from electric meters. Each meter collects 3 data measurements: current, voltage, phase. The data model is shown below:
To better demonstrate the syntax, usage and rules of TDengine SQL, hereinafter it's assumed that there is a data set of data from electric meters. Each meter collects 3 data measurements: current, voltage, phase. The data model is shown below:
```
taos> DESCRIBE meters;
......
......@@ -15,9 +15,41 @@ About details of installing TDenine, please refer to [Installation Guide](../../
## Uninstall
<Tabs>
<TabItem label="apt-get uninstall" value="aptremove">
<TabItem label="Uninstall apt-get" value="aptremove">
Apt-get package of TDengine can be uninstalled as below:
```bash
$ sudo apt-get remove tdengine
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages will be REMOVED:
tdengine
0 upgraded, 0 newly installed, 1 to remove and 18 not upgraded.
After this operation, 68.3 MB disk space will be freed.
Do you want to continue? [Y/n] y
(Reading database ... 135625 files and directories currently installed.)
Removing tdengine (3.0.0.0) ...
TDengine is removed successfully!
```
Apt-get package of taosTools can be uninstalled as below:
TBD
```
$ sudo apt remove taostools
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages will be REMOVED:
taostools
0 upgraded, 0 newly installed, 1 to remove and 0 not upgraded.
After this operation, 68.3 MB disk space will be freed.
Do you want to continue? [Y/n]
(Reading database ... 147973 files and directories currently installed.)
Removing taostools (2.1.2) ...
```
</TabItem>
<TabItem label="Uninstall Deb" value="debuninst">
......@@ -32,6 +64,14 @@ TDengine is removed successfully!
```
Deb package of taosTools can be uninstalled as below:
```
$ sudo dpkg -r taostools
(Reading database ... 147973 files and directories currently installed.)
Removing taostools (2.1.2) ...
```
</TabItem>
<TabItem label="Uninstall RPM" value="rpmuninst">
......@@ -43,6 +83,13 @@ $ sudo rpm -e tdengine
TDengine is removed successfully!
```
RPM package of taosTools can be uninstalled as below:
```
sudo rpm -e taostools
taosToole is removed successfully!
```
</TabItem>
<TabItem label="Uninstall tar.gz" value="taruninst">
......@@ -54,6 +101,15 @@ $ rmtaos
TDengine is removed successfully!
```
tar.gz package of taosTools can be uninstalled as below:
```
$ rmtaostools
Start to uninstall taos tools ...
taos tools is uninstalled successfully!
```
</TabItem>
<TabItem label="Windows uninstall" value="windows">
Run C:\TDengine\unins000.exe to uninstall TDengine on a Windows system.
......
......@@ -27,4 +27,4 @@ The number of dnodes in a TDengine cluster must NOT be lower than the number of
As long as the dnodes of a TDengine cluster are deployed on different physical machines and the replica number is higher than 1, high availability can be achieved without any other assistance. For disaster recovery, dnodes of a TDengine cluster should be deployed in geographically different data centers.
Alternatively, you can use taosX to synchronize the data from one TDengine cluster to another cluster in a remote location. For more information, see [taosX](../../reference/taosX).
Alternatively, you can use taosX to synchronize the data from one TDengine cluster to another cluster in a remote location. However, taosX is only available in TDengine enterprise version, for more information please contact tdengine.com.
......@@ -10,7 +10,7 @@ One difference from the native connector is that the REST interface is stateless
## Installation
The REST interface does not rely on any TDengine native library, so the client application does not need to install any TDengine libraries. The client application's development language only needs to support the HTTP protocol.
The REST interface does not rely on any TDengine native library, so the client application does not need to install any TDengine libraries. The client application's development language only needs to support the HTTP protocol. The REST interface is provided by [taosAdapter](../taosadapter), to use REST interface you need to make sure `taosAdapter` is running properly.
## Verification
......@@ -18,12 +18,12 @@ If the TDengine server is already installed, it can be verified as follows:
The following example is in an Ubuntu environment and uses the `curl` tool to verify that the REST interface is working. Note that the `curl` tool may need to be installed in your environment.
The following example lists all databases on the host h1.taosdata.com. To use it in your environment, replace `h1.taosdata.com` and `6041` (the default port) with the actual running TDengine service FQDN and port number.
The following example lists all databases on the host h1.tdengine.com. To use it in your environment, replace `h1.tdengine.com` and `6041` (the default port) with the actual running TDengine service FQDN and port number.
```bash
curl -L -H "Authorization: Basic cm9vdDp0YW9zZGF0YQ==" \
-d "select name, ntables, status from information_schema.ins_databases;" \
h1.taosdata.com:6041/rest/sql
h1.tdengine.com:6041/rest/sql
```
The following return value results indicate that the verification passed.
......
---
sidebar_position: 1
sidebar_label: C/C++
title: C/C++ Connector
---
......
---
toc_max_heading_level: 4
sidebar_position: 2
sidebar_label: Java
title: TDengine Java Connector
description: The TDengine Java Connector is implemented on the standard JDBC API and provides native and REST connectors.
......@@ -134,8 +133,6 @@ The configuration parameters in the URL are as follows:
- batchfetch: true: pulls result sets in batches when executing queries; false: pulls result sets row by row. The default value is true. Enabling batch pulling and obtaining a batch of data can improve query performance when the query data volume is large.
- batchErrorIgnore:true: When executing statement executeBatch, if there is a SQL execution failure in the middle, the following SQL will continue to be executed. false: No more statements after the failed SQL are executed. The default value is: false.
For more information about JDBC native connections, see [Video Tutorial](https://www.taosdata.com/blog/2020/11/11/1955.html).
**Connect using the TDengine client-driven configuration file **
When you use a JDBC native connection to connect to a TDengine cluster, you can use the TDengine client driver configuration file to specify parameters such as `firstEp` and `secondEp` of the cluster in the configuration file as below:
......
---
toc_max_heading_level: 4
sidebar_position: 4
sidebar_label: Go
title: TDengine Go Connector
---
......@@ -8,7 +7,7 @@ title: TDengine Go Connector
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
import Preparition from "./_preparition.mdx"
import Preparition from "./_preparation.mdx"
import GoInsert from "../../07-develop/03-insert-data/_go_sql.mdx"
import GoInfluxLine from "../../07-develop/03-insert-data/_go_line.mdx"
import GoOpenTSDBTelnet from "../../07-develop/03-insert-data/_go_opts_telnet.mdx"
......
---
toc_max_heading_level: 4
sidebar_position: 5
sidebar_label: Rust
title: TDengine Rust Connector
---
......@@ -8,7 +7,7 @@ title: TDengine Rust Connector
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
import Preparition from "./_preparition.mdx"
import Preparition from "./_preparation.mdx"
import RustInsert from "../../07-develop/03-insert-data/_rust_sql.mdx"
import RustBind from "../../07-develop/03-insert-data/_rust_stmt.mdx"
import RustQuery from "../../07-develop/04-query-data/_rust.mdx"
......
---
sidebar_position: 3
sidebar_label: Python
title: TDengine Python Connector
description: "taospy is the official Python connector for TDengine. taospy provides a rich API that makes it easy for Python applications to use TDengine. tasopy wraps both the native and REST interfaces of TDengine, corresponding to the two submodules of tasopy: taos and taosrest. In addition to wrapping the native and REST interfaces, taospy also provides a programming interface that conforms to the Python Data Access Specification (PEP 249), making it easy to integrate taospy with many third-party tools, such as SQLAlchemy and pandas."
......@@ -8,7 +7,7 @@ description: "taospy is the official Python connector for TDengine. taospy provi
import Tabs from "@theme/Tabs";
import TabItem from "@theme/TabItem";
`taospy is the official Python connector for TDengine. taospy provides a rich API that makes it easy for Python applications to use TDengine. `taospy` wraps both the [native interface](/reference/connector/cpp) and [REST interface](/reference/rest-api) of TDengine, which correspond to the `taos` and `taosrest` modules of the `taospy` package, respectively.
`taospy` is the official Python connector for TDengine. taospy provides a rich API that makes it easy for Python applications to use TDengine. `taospy` wraps both the [native interface](/reference/connector/cpp) and [REST interface](/reference/rest-api) of TDengine, which correspond to the `taos` and `taosrest` modules of the `taospy` package, respectively.
In addition to wrapping the native and REST interfaces, `taospy` also provides a set of programming interfaces that conforms to the [Python Data Access Specification (PEP 249)](https://peps.python.org/pep-0249/). It is easy to integrate `taospy` with many third-party tools, such as [SQLAlchemy](https://www.sqlalchemy.org/) and [pandas](https://pandas.pydata.org/).
The direct connection to the server using the native interface provided by the client driver is referred to hereinafter as a "native connection"; the connection to the server using the REST interface provided by taosAdapter is referred to hereinafter as a "REST connection".
......@@ -150,10 +149,19 @@ If the test is successful, it will output the server version information, e.g.
```json
{
"status": "succ",
"head": ["server_version()"],
"column_meta": [["server_version()", 8, 8]],
"data": [["2.4.0.16"]],
"code": 0,
"column_meta": [
[
"server_version()",
"VARCHAR",
7
]
],
"data": [
[
"3.0.0.0"
]
],
"rows": 1
}
```
......
---
toc_max_heading_level: 4
sidebar_position: 6
sidebar_label: Node.js
title: TDengine Node.js Connector
---
......@@ -8,7 +7,7 @@ title: TDengine Node.js Connector
import Tabs from "@theme/Tabs";
import TabItem from "@theme/TabItem";
import Preparition from "./_preparition.mdx";
import Preparition from "./_preparation.mdx";
import NodeInsert from "../../07-develop/03-insert-data/_js_sql.mdx";
import NodeInfluxLine from "../../07-develop/03-insert-data/_js_line.mdx";
import NodeOpenTSDBTelnet from "../../07-develop/03-insert-data/_js_opts_telnet.mdx";
......
---
toc_max_heading_level: 4
sidebar_position: 7
sidebar_label: C#
title: C# Connector
---
......@@ -8,7 +7,7 @@ title: C# Connector
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
import Preparition from "./_preparition.mdx"
import Preparition from "./_preparation.mdx"
import CSInsert from "../../07-develop/03-insert-data/_cs_sql.mdx"
import CSInfluxLine from "../../07-develop/03-insert-data/_cs_line.mdx"
import CSOpenTSDBTelnet from "../../07-develop/03-insert-data/_cs_opts_telnet.mdx"
......@@ -173,7 +172,6 @@ namespace TDengineExample
`Taos` is an ADO.NET connector for TDengine, supporting Linux and Windows platforms. Community contributor `Maikebing@@maikebing contributes the connector`. Please refer to:
* Interface download:<https://github.com/maikebing/Maikebing.EntityFrameworkCore.Taos>
* Usage notes:<https://www.taosdata.com/blog/2020/11/02/1901.html>
## Frequently Asked Questions
......
......@@ -2,7 +2,7 @@
:::info
Since the TDengine client driver is written in C, using the native connection requires loading the client driver shared library file, which is usually included in the TDengine installer. You can install either standard TDengine server installation package or [TDengine client installation package](/get-started/). For Windows development, you need to install the corresponding [Windows client](https://www.taosdata.com/cn/all-downloads/#TDengine-Windows-Client) for TDengine.
Since the TDengine client driver is written in C, using the native connection requires loading the client driver shared library file, which is usually included in the TDengine installer. You can install either standard TDengine server installation package or [TDengine client installation package](/get-started/). For Windows development, you need to install the corresponding Windows client, please refer to [Install TDengine](../../get-started/package).
- libtaos.so: After successful installation of TDengine on a Linux system, the dependent Linux version of the client driver `libtaos.so` file will be automatically linked to `/usr/lib/libtaos.so`, which is included in the Linux scannable path and does not need to be specified separately.
- taos.dll: After installing the client on Windows, the dependent Windows version of the client driver taos.dll file will be automatically copied to the system default search path C:/Windows/System32, again without the need to specify it separately.
......
......@@ -329,4 +329,4 @@ In TDengine server 2.2.x.x or earlier, the TDengine server process (taosd) conta
| 3 | telegrafUseFieldNum | See the taosAdapter telegraf configuration method | |
| 4 | restfulRowLimit | restfulRowLimit | Embedded httpd outputs 10240 rows of data by default, the maximum allowed is 102400. taosAdapter also provides restfulRowLimit but it is not limited by default. You can configure it according to the actual scenario.
| 5 | httpDebugFlag | Not applicable | httpdDebugFlag does not work for taosAdapter |
| 6 | httpDBNameMandatory | N/A | taosAdapter requires the database name to be specified in the URL |
\ No newline at end of file
| 6 | httpDBNameMandatory | N/A | taosAdapter requires the database name to be specified in the URL |
......@@ -116,5 +116,4 @@ Usage: taosdump [OPTION...] dbname [tbname ...]
Mandatory or optional arguments to long options are also mandatory or optional
for any corresponding short options.
Report bugs to <support@taosdata.com>.
```
......@@ -263,7 +263,7 @@ Once the import is complete, the full page view of TDinsight is shown below.
## TDinsight dashboard details
The TDinsight dashboard is designed to provide the usage and status of TDengine-related resources [dnodes, mnodes, vnodes](https://www.taosdata.com/cn/documentation/architecture#cluster) or databases.
The TDinsight dashboard is designed to provide the usage and status of TDengine-related resources [dnodes, mnodes, vnodes](../../taos-sql/node/) or databases.
Details of the metrics are as follows.
......
......@@ -72,7 +72,7 @@ Next, ensure the hostname "tdengine" is resolvable in `/etc/hosts`.
echo 127.0.0.1 tdengine |sudo tee -a /etc/hosts
```
Finally, the TDengine service can be accessed from the taos shell or any connector with "tdengine" as the server address.
Finally, the TDengine service can be accessed from the TDengine CLI or any connector with "tdengine" as the server address.
```shell
taos -h tdengine -P 6030
......@@ -115,8 +115,8 @@ If you want to start your application in a container, you need to add the corres
```docker
FROM ubuntu:20.04
RUN apt-get update && apt-get install -y wget
ENV TDENGINE_VERSION=2.4.0.0
RUN wget -c https://www.taosdata.com/assets-download/TDengine-client-${TDENGINE_VERSION}-Linux-x64.tar.gz \
ENV TDENGINE_VERSION=3.0.0.0
RUN wget -c https://www.taosdata.com/assets-download/3.0/TDengine-client-${TDENGINE_VERSION}-Linux-x64.tar.gz \
&& tar xvf TDengine-client-${TDENGINE_VERSION}-Linux-x64.tar.gz \
&& cd TDengine-client-${TDENGINE_VERSION} \
&& ./install_client.sh \
......@@ -216,8 +216,8 @@ Here is the full Dockerfile:
```docker
FROM golang:1.17.6-buster as builder
ENV TDENGINE_VERSION=2.4.0.0
RUN wget -c https://www.taosdata.com/assets-download/TDengine-client-${TDENGINE_VERSION}-Linux-x64.tar.gz \
ENV TDENGINE_VERSION=3.0.0.0
RUN wget -c https://www.taosdata.com/assets-download/3.0/TDengine-client-${TDENGINE_VERSION}-Linux-x64.tar.gz \
&& tar xvf TDengine-client-${TDENGINE_VERSION}-Linux-x64.tar.gz \
&& cd TDengine-client-${TDENGINE_VERSION} \
&& ./install_client.sh \
......@@ -232,8 +232,8 @@ RUN go build
FROM ubuntu:20.04
RUN apt-get update && apt-get install -y wget
ENV TDENGINE_VERSION=2.4.0.0
RUN wget -c https://www.taosdata.com/assets-download/TDengine-client-${TDENGINE_VERSION}-Linux-x64.tar.gz \
ENV TDENGINE_VERSION=3.0.0.0
RUN wget -c https://www.taosdata.com/assets-download/3.0/TDengine-client-${TDENGINE_VERSION}-Linux-x64.tar.gz \
&& tar xvf TDengine-client-${TDENGINE_VERSION}-Linux-x64.tar.gz \
&& cd TDengine-client-${TDENGINE_VERSION} \
&& ./install_client.sh \
......@@ -320,7 +320,7 @@ password: taosdata
2. Start the cluster
```shell
$ VERSION=2.4.0.0 docker-compose up -d
$ VERSION=3.0.0.0 docker-compose up -d
Creating network "test_default" with the default driver
Creating volume "test_taosdata-td1" with default driver
Creating volume "test_taoslog-td1" with default driver
......@@ -457,7 +457,7 @@ If you want to deploy a container-based TDengine cluster on multiple hosts, you
The docker-compose file can refer to the previous section. Here is the command to start TDengine with docker swarm:
```shell
$ VERSION=2.4.0 docker stack deploy -c docker-compose.yml taos
$ VERSION=3.0.0.0 docker stack deploy -c docker-compose.yml taos
Creating network taos_inter
Creating network taos_api
Creating service taos_arbitrator
......@@ -473,20 +473,20 @@ Checking status:
$ docker stack ps taos
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS
79ni8temw59n taos_nginx.1 nginx:latest TM1701 Running Running about a minute ago
3e94u72msiyg taos_adapter.1 tdengine/tdengine:2.4.0 TM1702 Running Running 56 seconds ago
100amjkwzsc6 taos_td-2.1 tdengine/tdengine:2.4.0 TM1703 Running Running about a minute ago
pkjehr2vvaaa taos_td-1.1 tdengine/tdengine:2.4.0 TM1704 Running Running 2 minutes ago
tpzvgpsr1qkt taos_arbitrator.1 tdengine/tdengine:2.4.0 TM1705 Running Running 2 minutes ago
rvss3g5yg6fa taos_adapter.2 tdengine/tdengine:2.4.0 TM1706 Running Running 56 seconds ago
i2augxamfllf taos_adapter.3 tdengine/tdengine:2.4.0 TM1707 Running Running 56 seconds ago
lmjyhzccpvpg taos_adapter.4 tdengine/tdengine:2.4.0 TM1708 Running Running 56 seconds ago
3e94u72msiyg taos_adapter.1 tdengine/tdengine:3.0.0.0 TM1702 Running Running 56 seconds ago
100amjkwzsc6 taos_td-2.1 tdengine/tdengine:3.0.0.0 TM1703 Running Running about a minute ago
pkjehr2vvaaa taos_td-1.1 tdengine/tdengine:3.0.0.0 TM1704 Running Running 2 minutes ago
tpzvgpsr1qkt taos_arbitrator.1 tdengine/tdengine:3.0.0.0 TM1705 Running Running 2 minutes ago
rvss3g5yg6fa taos_adapter.2 tdengine/tdengine:3.0.0.0 TM1706 Running Running 56 seconds ago
i2augxamfllf taos_adapter.3 tdengine/tdengine:3.0.0.0 TM1707 Running Running 56 seconds ago
lmjyhzccpvpg taos_adapter.4 tdengine/tdengine:3.0.0.0 TM1708 Running Running 56 seconds ago
$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
561t4lu6nfw6 taos_adapter replicated 4/4 tdengine/tdengine:2.4.0
3hk5ct3q90sm taos_arbitrator replicated 1/1 tdengine/tdengine:2.4.0
561t4lu6nfw6 taos_adapter replicated 4/4 tdengine/tdengine:3.0.0.0
3hk5ct3q90sm taos_arbitrator replicated 1/1 tdengine/tdengine:3.0.0.0
d8qr52envqzu taos_nginx replicated 1/1 nginx:latest *:6041->6041/tcp, *:6044->6044/udp
2isssfvjk747 taos_td-1 replicated 1/1 tdengine/tdengine:2.4.0
9pzw7u02ichv taos_td-2 replicated 1/1 tdengine/tdengine:2.4.0
2isssfvjk747 taos_td-1 replicated 1/1 tdengine/tdengine:3.0.0.0
9pzw7u02ichv taos_td-2 replicated 1/1 tdengine/tdengine:3.0.0.0
```
From the above output, you can see two dnodes, two taosAdapters, and one Nginx reverse proxy service.
......@@ -502,5 +502,5 @@ verify: Service converged
$ docker service ls -f name=taos_adapter
ID NAME MODE REPLICAS IMAGE PORTS
561t4lu6nfw6 taos_adapter replicated 1/1 tdengine/tdengine:2.4.0
561t4lu6nfw6 taos_adapter replicated 1/1 tdengine/tdengine:3.0.0.0
```
......@@ -82,13 +82,12 @@ The parameters described in this document by the effect that they have on the sy
| Protocol | Default Port | Description | How to configure |
| :------- | :----------- | :----------------------------------------------- | :--------------------------------------------------------------------------------------------- |
| TCP | 6030 | Communication between client and server. In a multi-node cluster, communication between nodes. serverPort |
| TCP | 6041 | REST connection between client and server | refer to [taosAdapter](../taosadapter/) |
| TCP | 6041 | REST connection between client and server | Prior to 2.4.0.0: serverPort+11; After 2.4.0.0 refer to [taosAdapter](/reference/taosadapter/) |
| TCP | 6043 | Service Port of TaosKeeper | The parameter of TaosKeeper |
| TCP | 6044 | Data access port for StatsD | Configurable through taosAdapter parameters.
| UDP | 6045 | Data access for statsd | Configurable through taosAdapter parameters.
| TCP | 6060 | Port of Monitoring Service in Enterprise version | |
### maxShellConns
| Attribute | Description |
......@@ -345,7 +344,7 @@ The charset that takes effect is UTF-8.
| Attribute | Description |
| -------- | --------------------------------- |
| Applicable | Server and Client |
| Meaning | The interval for taos shell to send heartbeat to mnode |
| Meaning | The interval for TDengine CLI to send heartbeat to mnode |
| Unit | second |
| Value Range | 1-120 |
| Default Value | 3 |
......
---
title: Schemaless Writing
description: "The Schemaless write method eliminates the need to create super tables/sub tables in advance and automatically creates the storage structure corresponding to the data, as it is written to the interface."
description: 'The Schemaless write method eliminates the need to create super tables/sub tables in advance and automatically creates the storage structure corresponding to the data, as it is written to the interface.'
---
In IoT applications, data is collected for many purposes such as intelligent control, business analysis, device monitoring and so on. Due to changes in business or functional requirements or changes in device hardware, the application logic and even the data collected may change. Schemaless writing automatically creates storage structures for your data as it is being written to TDengine, so that you do not need to create supertables in advance. When necessary, schemaless writing
......@@ -25,7 +25,7 @@ where:
- measurement will be used as the data table name. It will be separated from tag_set by a comma.
- `tag_set` will be used as tags, with format like `<tag_key>=<tag_value>,<tag_key>=<tag_value>` Enter a space between `tag_set` and `field_set`.
- `field_set`will be used as data columns, with format like `<field_key>=<field_value>,<field_key>=<field_value>` Enter a space between `field_set` and `timestamp`.
- `timestamp` is the primary key timestamp corresponding to this row of data
- `timestamp` is the primary key timestamp corresponding to this row of data
All data in tag_set is automatically converted to the NCHAR data type and does not require double quotes (").
......@@ -36,14 +36,14 @@ In the schemaless writing data line protocol, each data item in the field_set ne
- Spaces, equal signs (=), commas (,), and double quotes (") need to be escaped with a backslash (\\) in front. (All refer to the ASCII character)
- Numeric types will be distinguished from data types by the suffix.
| **Serial number** | **Postfix** | **Mapping type** | **Size (bytes)** |
| -------- | -------- | ------------ | -------------- |
| 1 | None or f64 | double | 8 |
| 2 | f32 | float | 4 |
| 3 | i8/u8 | TinyInt/UTinyInt | 1 |
| 4 | i16/u16 | SmallInt/USmallInt | 2 |
| 5 | i32/u32 | Int/UInt | 4 |
| 6 | i64/i/u64/u | BigInt/BigInt/UBigInt/UBigInt | 8 |
| **Serial number** | **Postfix** | **Mapping type** | **Size (bytes)** |
| ----------------- | ----------- | ----------------------------- | ---------------- |
| 1 | None or f64 | double | 8 |
| 2 | f32 | float | 4 |
| 3 | i8/u8 | TinyInt/UTinyInt | 1 |
| 4 | i16/u16 | SmallInt/USmallInt | 2 |
| 5 | i32/u32 | Int/UInt | 4 |
| 6 | i64/i/u64/u | BigInt/BigInt/UBigInt/UBigInt | 8 |
- `t`, `T`, `true`, `True`, `TRUE`, `f`, `F`, `false`, and `False` will be handled directly as BOOL types.
......@@ -61,7 +61,7 @@ Note that if the wrong case is used when describing the data type suffix, or if
Schemaless writes process row data according to the following principles.
1. You can use the following rules to generate the subtable names: first, combine the measurement name and the key and value of the label into the next string:
1. You can use the following rules to generate the subtable names: first, combine the measurement name and the key and value of the label into the next string:
```json
"measurement,tag_key1=tag_value1,tag_key2=tag_value2"
......@@ -82,7 +82,7 @@ You can configure smlChildTableName to specify table names, for example, `smlChi
:::tip
All processing logic of schemaless will still follow TDengine's underlying restrictions on data structures, such as the total length of each row of data cannot exceed
16KB. See [TAOS SQL Boundary Limits](/taos-sql/limit) for specific constraints in this area.
16KB. See [TDengine SQL Boundary Limits](/taos-sql/limit) for specific constraints in this area.
:::
......@@ -90,23 +90,23 @@ All processing logic of schemaless will still follow TDengine's underlying restr
Three specified modes are supported in the schemaless writing process, as follows:
| **Serial** | **Value** | **Description** |
| -------- | ------------------- | ------------------------------- |
| 1 | SML_LINE_PROTOCOL | InfluxDB Line Protocol |
| 2 | SML_TELNET_PROTOCOL | OpenTSDB file protocol |
| 3 | SML_JSON_PROTOCOL | OpenTSDB JSON protocol |
| **Serial** | **Value** | **Description** |
| ---------- | ------------------- | ---------------------- |
| 1 | SML_LINE_PROTOCOL | InfluxDB Line Protocol |
| 2 | SML_TELNET_PROTOCOL | OpenTSDB file protocol |
| 3 | SML_JSON_PROTOCOL | OpenTSDB JSON protocol |
In InfluxDB line protocol mode, you must specify the precision of the input timestamp. Valid precisions are described in the following table.
| **No.** | **Precision** | **Description** |
| -------- | --------------------------------- | -------------- |
| 1 | TSDB_SML_TIMESTAMP_NOT_CONFIGURED | Not defined (invalid) |
| 2 | TSDB_SML_TIMESTAMP_HOURS | Hours |
| 3 | TSDB_SML_TIMESTAMP_MINUTES | Minutes |
| 4 | TSDB_SML_TIMESTAMP_SECONDS | Seconds |
| 5 | TSDB_SML_TIMESTAMP_MILLI_SECONDS | Milliseconds |
| 6 | TSDB_SML_TIMESTAMP_MICRO_SECONDS | Microseconds |
| 7 | TSDB_SML_TIMESTAMP_NANO_SECONDS | Nanoseconds |
| **No.** | **Precision** | **Description** |
| ------- | --------------------------------- | --------------------- |
| 1 | TSDB_SML_TIMESTAMP_NOT_CONFIGURED | Not defined (invalid) |
| 2 | TSDB_SML_TIMESTAMP_HOURS | Hours |
| 3 | TSDB_SML_TIMESTAMP_MINUTES | Minutes |
| 4 | TSDB_SML_TIMESTAMP_SECONDS | Seconds |
| 5 | TSDB_SML_TIMESTAMP_MILLI_SECONDS | Milliseconds |
| 6 | TSDB_SML_TIMESTAMP_MICRO_SECONDS | Microseconds |
| 7 | TSDB_SML_TIMESTAMP_NANO_SECONDS | Nanoseconds |
In OpenTSDB file and JSON protocol modes, the precision of the timestamp is determined from its length in the standard OpenTSDB manner. User input is ignored.
......
---
sidebar_label: taosKeeper
title: taosKeeper
description: Instructions and tips for using taosKeeper
description: exports TDengine monitoring metrics.
---
## Introduction
......@@ -22,26 +22,35 @@ You can compile taosKeeper separately and install it. Please refer to the [taosK
### Configuration and running methods
<!-- taosKeeper needs to be executed on the terminal of the operating system, it supports two configuration methods: [Command-line arguments](#command-line-arguments-in-detail) and [configuration file](#configuration-file-parameters-in-detail). Command-line arguments take precedence over values in the configuration file. -->
taosKeeper needs to be executed on the terminal of the operating system. To run taosKeeper, see [configuration file](#configuration-file-parameters-in-detail).
taosKeeper needs to be executed on the terminal of the operating system, it supports three configuration methods: [Command-line arguments](#command-line-arguments-in-detail), [environment variable](#environment-variable-in-detail) and [configuration file](#configuration-file-parameters-in-detail). The precedence of those is Command-line, environment variable and configuration file.
**Make sure that the TDengine cluster is running correctly before running taosKeeper. ** Ensure that the monitoring service in TDengine has been started. For more information, see [TDengine Monitoring Configuration](../config/#monitoring).
<!--
### Command-Line Parameters
You can use command-line parameters to run taosBenchmark and control its behavior:
You can use command-line parameters to run taosKeeper and control its behavior:
```shell
taosKeeper
$ taosKeeper
```
-->
### Environment variable
You can use Environment variable to run taosKeeper and control its behavior:
```shell
$ export TAOS_KEEPER_TDENGINE_HOST=192.168.64.3
$ taoskeeper
```
you can run `taoskeeper -h` for more detail.
### Configuration File
You can quickly launch taosKeeper with the following commands. If you do not specify a configuration file, `/etc/taos/keeper.toml` is used by default. If this file does not specify configurations, the default values are used.
```shell
taoskeeper -c <keeper config file>
$ taoskeeper -c <keeper config file>
```
**Sample configuration files**
......@@ -110,7 +119,7 @@ Query OK, 1 rows in database (0.036162s)
#### Export Monitoring Metrics
```shell
curl http://127.0.0.1:6043/metrics
$ curl http://127.0.0.1:6043/metrics
```
Sample result set (excerpt):
......
......@@ -9,7 +9,7 @@ MQTT is a popular IoT data transfer protocol. [EMQX](https://github.com/emqx/emq
The following preparations are required for EMQX to add TDengine data sources correctly.
- The TDengine cluster is deployed and working properly
- taosAdapter is installed and running properly. Please refer to the [taosAdapter manual](/reference/taosadapter) for details.
- taosAdapter is installed and running properly. Please refer to the [taosAdapter manual](../../reference/taosadapter) for details.
- If you use the emulated writers described later, you need to install the appropriate version of Node.js. V12 is recommended.
## Install and start EMQX
......@@ -28,8 +28,6 @@ USE test;
CREATE TABLE sensor_data (ts TIMESTAMP, temperature FLOAT, humidity FLOAT, volume FLOAT, pm10 FLOAT, pm25 FLOAT, so2 FLOAT, no2 FLOAT, co FLOAT, sensor_id NCHAR(255), area TINYINT, coll_time TIMESTAMP);
```
Note: The table schema is based on the blog [(In Chinese) Data Transfer, Storage, Presentation, EMQX + TDengine Build MQTT IoT Data Visualization Platform](https://www.taosdata.com/blog/2020/08/04/1722.html) as an example. Subsequent operations are carried out with this blog scenario too. Please modify it according to your actual application scenario.
## Configuring EMQX Rules
Since the configuration interface of EMQX differs from version to version, here is v4.4.5 as an example. For other versions, please refer to the corresponding official documentation.
......@@ -137,5 +135,5 @@ Use the TDengine CLI program to log in and query the appropriate databases and t
![TDengine Database EMQX result in taos](./emqx/check-result-in-taos.webp)
Please refer to the [TDengine official documentation](https://docs.taosdata.com/) for more details on how to use TDengine.
Please refer to the [TDengine official documentation](https://docs.tdengine.com/) for more details on how to use TDengine.
EMQX Please refer to the [EMQX official documentation](https://www.emqx.io/docs/en/v4.4/rule/rule-engine.html) for details on how to use EMQX.
---
sidebar_label: Google Data Studio
title: Use Google Data Studio to access TDengine
---
Data Studio is a powerful tool for reporting and visualization, offering a wide variety of charts and connectors and making it easy to generate reports based on predefined templates. Its ease of use and robust ecosystem have made it one of the first choices for people working in data analysis.
TDengine is a high-performance, scalable time-series database that supports SQL. Many businesses and developers in fields spanning from IoT and Industry Internet to IT and finance are using TDengine as their time-series database management solution.
The TDengine team immediately saw the benefits of using TDengine to process time-series data with Data Studio to analyze it, and they got to work to create a connector for Data Studio.
With the release of the TDengine connector in Data Studio, you can now get even more out of your data. To obtain the connector, first go to the Data Studio Connector Gallery, click Connect to Data, and search for “TDengine”.
![02](gds/gds-02.png.webp)
Select the TDengine connector and click Authorize.
![03](gds/gds-03.png.webp)
Then sign in to your Google Account and click Allow to enable the connection to TDengine.
![04](gds/gds-04.png.webp)
In the Enter URL field, type the hostname and port of the server running the TDengine REST service. In the following fields, type your username, password, database name, table name, and the start and end times of your query range. Then, click Connect.
![05](gds/gds-05.png.webp)
After the connection is established, you can use Data Studio to process your data and create reports.
![06](gds/gds-06.png.webp)
In Data Studio, TDengine timestamps and tags are considered dimensions, and all other items are considered metrics. You can create all kinds of custom charts with your data – some examples are shown below.
![07](gds/gds-07.png.webp)
With the ability to process petabytes of data per day and provide monitoring and alerting in real time, TDengine is a great solution for time-series data management. Now, with the Data Studio connector, we’re sure you’ll be able to gain new insights and obtain even more value from your data.
......@@ -12,6 +12,7 @@ The design of TDengine is based on the assumption that any hardware or software
Logical structure diagram of TDengine's distributed architecture is as follows:
![TDengine Database architecture diagram](structure.webp)
<center> Figure 1: TDengine architecture diagram </center>
A complete TDengine system runs on one or more physical nodes. Logically, it includes data node (dnode), TDengine client driver (TAOSC) and application (app). There are one or more data nodes in the system, which form a cluster. The application interacts with the TDengine cluster through TAOSC's API. The following is a brief introduction to each logical unit.
......@@ -38,15 +39,16 @@ A complete TDengine system runs on one or more physical nodes. Logically, it inc
**Cluster external connection**: TDengine cluster can accommodate a single, multiple or even thousands of data nodes. The application only needs to initiate a connection to any data node in the cluster. The network parameter required for connection is the End Point (FQDN plus configured port number) of a data node. When starting the application taos through CLI, the FQDN of the data node can be specified through the option `-h`, and the configured port number can be specified through `-p`. If the port is not configured, the system configuration parameter “serverPort” of TDengine will be adopted.
**Inter-cluster communication**: Data nodes connect with each other through TCP/UDP. When a data node starts, it will obtain the EP information of the dnode where the mnode is located, and then establish a connection with the mnode in the system to exchange information. There are three steps to obtain EP information of the mnode:
**Inter-cluster communication**: Data nodes connect with each other through TCP/UDP. When a data node starts, it will obtain the EP information of the dnode where the mnode is located, and then establish a connection with the mnode in the system to exchange information. There are three steps to obtain EP information of the mnode:
1. Check whether the mnodeEpList file exists, if it does not exist or cannot be opened normally to obtain EP information of the mnode, skip to the second step;
1. Check whether the mnodeEpList file exists, if it does not exist or cannot be opened normally to obtain EP information of the mnode, skip to the second step;
2. Check the system configuration file taos.cfg to obtain node configuration parameters “firstEp” and “secondEp” (the node specified by these two parameters can be a normal node without mnode, in this case, the node will try to redirect to the mnode node when connected). If these two configuration parameters do not exist or do not exist in taos.cfg, or are invalid, skip to the third step;
3. Set your own EP as a mnode EP and run it independently. After obtaining the mnode EP list, the data node initiates the connection. It will successfully join the working cluster after connection. If not successful, it will try the next item in the mnode EP list. If all attempts are made, but the connection still fails, sleep for a few seconds before trying again.
**The choice of MNODE**: TDengine logically has a management node, but there is no separate execution code. The server-side only has one set of execution code, taosd. So which data node will be the management node? This is determined automatically by the system without any manual intervention. The principle is as follows: when a data node starts, it will check its End Point and compare it with the obtained mnode EP List. If its EP exists in it, the data node shall start the mnode module and become a mnode. If your own EP is not in the mnode EP List, the mnode module will not start. During the system operation, due to load balancing, downtime and other reasons, mnode may migrate to the new dnode, totally transparently and without manual intervention. The modification of configuration parameters is the decision made by mnode itself according to resources usage.
**Add new data nodes:** After the system has a data node, it has become a working system. There are two steps to add a new node into the cluster.
**Add new data nodes:** After the system has a data node, it has become a working system. There are two steps to add a new node into the cluster.
- Step1: Connect to the existing working data node using TDengine CLI, and then add the End Point of the new data node with the command "create dnode"
- Step 2: In the system configuration parameter file taos.cfg of the new data node, set the “firstEp” and “secondEp” parameters to the EP of any two data nodes in the existing cluster. Please refer to the user tutorial for detailed steps. In this way, the cluster will be established step by step.
......@@ -57,6 +59,7 @@ A complete TDengine system runs on one or more physical nodes. Logically, it inc
To explain the relationship between vnode, mnode, TAOSC and application and their respective roles, the following is an analysis of a typical data writing process.
![typical process of TDengine Database](message.webp)
<center> Figure 2: Typical process of TDengine </center>
1. Application initiates a request to insert data through JDBC, ODBC, or other APIs.
......@@ -121,16 +124,17 @@ The load balancing process does not require any manual intervention, and it is t
If a database has N replicas, a virtual node group has N virtual nodes. But only one is the Leader and all others are slaves. When the application writes a new record to system, only the Leader vnode can accept the writing request. If a follower vnode receives a writing request, the system will notifies TAOSC to redirect.
### Leader vnode Writing Process
### Leader vnode Writing Process
Leader Vnode uses a writing process as follows:
![TDengine Database Leader Writing Process](write_master.webp)
<center> Figure 3: TDengine Leader writing process </center>
1. Leader vnode receives the application data insertion request, verifies, and moves to next step;
2. If the system configuration parameter `“walLevel”` is greater than 0, vnode will write the original request packet into database log file WAL. If walLevel is set to 2 and fsync is set to 0, TDengine will make WAL data written immediately to ensure that even system goes down, all data can be recovered from database log file;
3. If there are multiple replicas, vnode will forward data packet to follower vnodes in the same virtual node group, and the forwarded packet has a version number with data;
3. If there are multiple replicas, vnode will forward data packet to follower vnodes in the same virtual node group, and the forwarded packet has a version number with data;
4. Write into memory and add the record to “skip list”;
5. Leader vnode returns a confirmation message to the application, indicating a successful write.
6. If any of Step 2, 3 or 4 fails, the error will directly return to the application.
......@@ -140,6 +144,7 @@ Leader Vnode uses a writing process as follows:
For a follower vnode, the write process as follows:
![TDengine Database Follower Writing Process](write_slave.webp)
<center> Figure 4: TDengine Follower Writing Process </center>
1. Follower vnode receives a data insertion request forwarded by Leader vnode;
......@@ -212,6 +217,7 @@ When data is written to disk, the system decideswhether to compress the data bas
By default, TDengine saves all data in /var/lib/taos directory, and the data files of each vnode are saved in a different directory under this directory. In order to expand the storage space, minimize the bottleneck of file reading and improve the data throughput rate, TDengine can configure the system parameter “dataDir” to allow multiple mounted hard disks to be used by system at the same time. In addition, TDengine also provides the function of tiered data storage, i.e. storage on different storage media according to the time stamps of data files. For example, the latest data is stored on SSD, the data older than a week is stored on local hard disk, and data older than four weeks is stored on network storage device. This reduces storage costs and ensures efficient data access. The movement of data on different storage media is automatically done by the system and is completely transparent to applications. Tiered storage of data is also configured through the system parameter “dataDir”.
dataDir format is as follows:
```
dataDir data_path [tier_level]
```
......@@ -270,6 +276,7 @@ For the data collected by device D1001, the number of records per hour is counte
TDengine creates a separate table for each data collection point, but in practical applications, it is often necessary to aggregate data from different data collection points. In order to perform aggregation operations efficiently, TDengine introduces the concept of STable (super table). STable is used to represent a specific type of data collection point. It is a table set containing multiple tables. The schema of each table in the set is the same, but each table has its own static tag. There can be multiple tags which can be added, deleted and modified at any time. Applications can aggregate or statistically operate on all or a subset of tables under a STABLE by specifying tag filters. This greatly simplifies the development of applications. The process is shown in the following figure:
![TDengine Database Diagram of multi-table aggregation query](multi_tables.webp)
<center> Figure 5: Diagram of multi-table aggregation query </center>
1. Application sends a query condition to system;
......@@ -279,9 +286,8 @@ TDengine creates a separate table for each data collection point, but in practic
5. Each vnode first finds the set of tables within its own node that meet the tag filters from memory, then scans the stored time-series data, completes corresponding aggregation calculations, and returns result to TAOSC;
6. TAOSC finally aggregates the results returned by multiple data nodes and send them back to application.
Since TDengine stores tag data and time-series data separately in vnode, by filtering tag data in memory, the set of tables that need to participate in aggregation operation is first found, which reduces the volume of data to be scanned and improves aggregation speed. At the same time, because the data is distributed in multiple vnodes/dnodes, the aggregation operation is carried out concurrently in multiple vnodes, which further improves the aggregation speed. Aggregation functions for ordinary tables and most operations are applicable to STables. The syntax is exactly the same. Please see TAOS SQL for details.
Since TDengine stores tag data and time-series data separately in vnode, by filtering tag data in memory, the set of tables that need to participate in aggregation operation is first found, which reduces the volume of data to be scanned and improves aggregation speed. At the same time, because the data is distributed in multiple vnodes/dnodes, the aggregation operation is carried out concurrently in multiple vnodes, which further improves the aggregation speed. Aggregation functions for ordinary tables and most operations are applicable to STables. The syntax is exactly the same. Please see TDengine SQL for details.
### Precomputation
In order to effectively improve the performance of query processing, based-on the unchangeable feature of IoT data, statistical information of data stored in data block is recorded in the head of data block, including max value, min value, and sum. We call it a precomputing unit. If the query processing involves all the data of a whole data block, the pre-calculated results are directly used, and no need to read the data block contents at all. Since the amount of pre-calculated data is much smaller than the actual size of data block stored on disk, for query processing with disk IO as bottleneck, the use of pre-calculated results can greatly reduce the pressure of reading IO and accelerate the query process. The precomputation mechanism is similar to the BRIN (Block Range Index) of PostgreSQL.
......@@ -34,7 +34,7 @@ Please refer to the [official documentation](https://grafana.com/grafana/downloa
### TDengine
Download the latest TDengine-server 2.4.0.x or above from the [Downloads](http://taosdata.com/cn/all-downloads/) page on the TAOSData website and install it.
Download the latest TDengine-server from the [Downloads](http://tdengine.com/en/all-downloads/) page on the TAOSData website and install it.
## Data Connection Setup
......@@ -79,5 +79,5 @@ Click on the plus icon on the left and select `Import` to get the data from `htt
## Wrap-up
The above demonstrates how to quickly build a IT DevOps visualization system. Thanks to the new schemaless protocol parsing feature in TDengine version 2.4.0.0 and ability to integrate easily with a large software ecosystem, users can build an efficient and easy-to-use IT DevOps visualization system in just a few minutes.
The above demonstrates how to quickly build a IT DevOps visualization system. Thanks to the schemaless protocol parsing feature in TDengine and ability to integrate easily with a large software ecosystem, users can build an efficient and easy-to-use IT DevOps visualization system in just a few minutes.
Please refer to the official documentation and product implementation cases for other features.
......@@ -37,7 +37,7 @@ Please refer to the [official documentation](https://grafana.com/grafana/downloa
### Install TDengine
Download the latest TDengine-server 2.4.0.x or above from the [Downloads](http://taosdata.com/cn/all-downloads/) page on the TAOSData website and install it.
Download the latest TDengine-server from the [Downloads](http://tdengine.com/en/all-downloads/) page on the TAOSData website and install it.
## Data Connection Setup
......@@ -99,6 +99,6 @@ Download the dashboard json from `https://github.com/taosdata/grafanaplugin/blob
## Wrap-up
TDengine, as an emerging time-series big data platform, has the advantages of high performance, high reliability, easy management and easy maintenance. Thanks to the new schemaless protocol parsing feature in TDengine version 2.4.0.0 and ability to integrate easily with a large software ecosystem, users can build an efficient and easy-to-use IT DevOps visualization system, or adapt an existing system, in just a few minutes.
TDengine, as an emerging time-series big data platform, has the advantages of high performance, high reliability, easy management and easy maintenance. Thanks to the new schemaless protocol parsing feature in TDengine and ability to integrate easily with a large software ecosystem, users can build an efficient and easy-to-use IT DevOps visualization system, or adapt an existing system, in just a few minutes.
For TDengine's powerful data writing and querying performance and other features, please refer to the official documentation and successful product implementation cases.
......@@ -41,7 +41,7 @@ The agents deployed in the application nodes are responsible for providing opera
- **TDengine installation and deployment**
First of all, please install TDengine. Download the latest stable version of TDengine from the official website and install it. For help with using various installation packages, please refer to the blog ["Installation and Uninstallation of TDengine Multiple Installation Packages"](https://www.taosdata.com/blog/2019/08/09/566.html).
First of all, please install TDengine. Download the latest stable version of TDengine from the official website and install it. For help with using various installation packages, please refer to [Install TDengine](../../get-started/package)
Note that once the installation is complete, do not start the `taosd` service before properly configuring the parameters.
......@@ -51,7 +51,7 @@ TDengine version 2.4 and later version includes `taosAdapter`. taosAdapter is a
Users can flexibly deploy taosAdapter instances, based on their requirements, to improve data writing throughput and provide guarantees for data writes in different application scenarios.
Through taosAdapter, users can directly write the data collected by `collectd` or `StatsD` to TDengine to achieve easy, convenient and seamless migration in application scenarios. taosAdapter also supports Telegraf, Icinga, TCollector, and node_exporter data. For more details, please refer to [taosAdapter](/reference/taosadapter/).
Through taosAdapter, users can directly write the data collected by `collectd` or `StatsD` to TDengine to achieve easy, convenient and seamless migration in application scenarios. taosAdapter also supports Telegraf, Icinga, TCollector, and node_exporter data. For more details, please refer to [taosAdapter](../../reference/taosadapter/).
If using collectd, modify the configuration file in its default location `/etc/collectd/collectd.conf` to point to the IP address and port of the node where to deploy taosAdapter. For example, assuming the taosAdapter IP address is 192.168.1.130 and port 6046, configure it as follows.
......@@ -411,7 +411,7 @@ TDengine provides a wealth of help documents to explain many aspects of cluster
### Cluster Deployment
The first is TDengine installation. Download the latest stable version of TDengine from the official website, and install it. Please refer to the blog ["Installation and Uninstallation of Various Installation Packages of TDengine"](https://www.taosdata.com/blog/2019/08/09/566.html) for the various installation package formats.
The first is TDengine installation. Download the latest stable version of TDengine from the official website, and install it. Please refer to [Install TDengine](../../get-started/package) for more details.
Note that once the installation is complete, do not immediately start the `taosd` service, but start it after correctly configuring the parameters.
......
......@@ -16,14 +16,14 @@ public class RestInsertExample {
private static List<String> getRawData() {
return Arrays.asList(
"d1001,2018-10-03 14:38:05.000,10.30000,219,0.31000,California.SanFrancisco,2",
"d1001,2018-10-03 14:38:15.000,12.60000,218,0.33000,California.SanFrancisco,2",
"d1001,2018-10-03 14:38:16.800,12.30000,221,0.31000,California.SanFrancisco,2",
"d1002,2018-10-03 14:38:16.650,10.30000,218,0.25000,California.SanFrancisco,3",
"d1003,2018-10-03 14:38:05.500,11.80000,221,0.28000,California.LosAngeles,2",
"d1003,2018-10-03 14:38:16.600,13.40000,223,0.29000,California.LosAngeles,2",
"d1004,2018-10-03 14:38:05.000,10.80000,223,0.29000,California.LosAngeles,3",
"d1004,2018-10-03 14:38:06.500,11.50000,221,0.35000,California.LosAngeles,3"
"d1001,2018-10-03 14:38:05.000,10.30000,219,0.31000,'California.SanFrancisco',2",
"d1001,2018-10-03 14:38:15.000,12.60000,218,0.33000,'California.SanFrancisco',2",
"d1001,2018-10-03 14:38:16.800,12.30000,221,0.31000,'California.SanFrancisco',2",
"d1002,2018-10-03 14:38:16.650,10.30000,218,0.25000,'California.SanFrancisco',3",
"d1003,2018-10-03 14:38:05.500,11.80000,221,0.28000,'California.LosAngeles',2",
"d1003,2018-10-03 14:38:16.600,13.40000,223,0.29000,'California.LosAngeles',2",
"d1004,2018-10-03 14:38:05.000,10.80000,223,0.29000,'California.LosAngeles',3",
"d1004,2018-10-03 14:38:06.500,11.50000,221,0.35000,'California.LosAngeles',3"
);
}
......
......@@ -57,7 +57,7 @@ public class SubscribeDemo {
properties.setProperty(TMQConstants.ENABLE_AUTO_COMMIT, "true");
properties.setProperty(TMQConstants.GROUP_ID, "test");
properties.setProperty(TMQConstants.VALUE_DESERIALIZER,
"com.taosdata.jdbc.MetersDeserializer");
"com.taos.example.MetersDeserializer");
// poll data
try (TaosConsumer<Meters> consumer = new TaosConsumer<>(properties)) {
......
package com.taos.example.highvolume;
import java.sql.*;
/**
* Prepare target database.
* Count total records in database periodically so that we can estimate the writing speed.
*/
public class DataBaseMonitor {
private Connection conn;
private Statement stmt;
public DataBaseMonitor init() throws SQLException {
if (conn == null) {
String jdbcURL = System.getenv("TDENGINE_JDBC_URL");
conn = DriverManager.getConnection(jdbcURL);
stmt = conn.createStatement();
}
return this;
}
public void close() {
try {
stmt.close();
} catch (SQLException e) {
}
try {
conn.close();
} catch (SQLException e) {
}
}
public void prepareDatabase() throws SQLException {
stmt.execute("DROP DATABASE IF EXISTS test");
stmt.execute("CREATE DATABASE test");
stmt.execute("CREATE STABLE test.meters (ts TIMESTAMP, current FLOAT, voltage INT, phase FLOAT) TAGS (location BINARY(64), groupId INT)");
}
public Long count() throws SQLException {
if (!stmt.isClosed()) {
ResultSet result = stmt.executeQuery("SELECT count(*) from test.meters");
result.next();
return result.getLong(1);
}
return null;
}
/**
* show test.stables;
*
* name | created_time | columns | tags | tables |
* ============================================================================================
* meters | 2022-07-20 08:39:30.902 | 4 | 2 | 620000 |
*/
public Long getTableCount() throws SQLException {
if (!stmt.isClosed()) {
ResultSet result = stmt.executeQuery("show test.stables");
result.next();
return result.getLong(5);
}
return null;
}
}
\ No newline at end of file
package com.taos.example.highvolume;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.sql.*;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
public class FastWriteExample {
final static Logger logger = LoggerFactory.getLogger(FastWriteExample.class);
final static int taskQueueCapacity = 1000000;
final static List<BlockingQueue<String>> taskQueues = new ArrayList<>();
final static List<ReadTask> readTasks = new ArrayList<>();
final static List<WriteTask> writeTasks = new ArrayList<>();
final static DataBaseMonitor databaseMonitor = new DataBaseMonitor();
public static void stopAll() {
logger.info("shutting down");
readTasks.forEach(task -> task.stop());
writeTasks.forEach(task -> task.stop());
databaseMonitor.close();
}
public static void main(String[] args) throws InterruptedException, SQLException {
int readTaskCount = args.length > 0 ? Integer.parseInt(args[0]) : 1;
int writeTaskCount = args.length > 1 ? Integer.parseInt(args[1]) : 3;
int tableCount = args.length > 2 ? Integer.parseInt(args[2]) : 1000;
int maxBatchSize = args.length > 3 ? Integer.parseInt(args[3]) : 3000;
logger.info("readTaskCount={}, writeTaskCount={} tableCount={} maxBatchSize={}",
readTaskCount, writeTaskCount, tableCount, maxBatchSize);
databaseMonitor.init().prepareDatabase();
// Create task queues, whiting tasks and start writing threads.
for (int i = 0; i < writeTaskCount; ++i) {
BlockingQueue<String> queue = new ArrayBlockingQueue<>(taskQueueCapacity);
taskQueues.add(queue);
WriteTask task = new WriteTask(queue, maxBatchSize);
Thread t = new Thread(task);
t.setName("WriteThread-" + i);
t.start();
}
// create reading tasks and start reading threads
int tableCountPerTask = tableCount / readTaskCount;
for (int i = 0; i < readTaskCount; ++i) {
ReadTask task = new ReadTask(i, taskQueues, tableCountPerTask);
Thread t = new Thread(task);
t.setName("ReadThread-" + i);
t.start();
}
Runtime.getRuntime().addShutdownHook(new Thread(FastWriteExample::stopAll));
long lastCount = 0;
while (true) {
Thread.sleep(10000);
long numberOfTable = databaseMonitor.getTableCount();
long count = databaseMonitor.count();
logger.info("numberOfTable={} count={} speed={}", numberOfTable, count, (count - lastCount) / 10);
lastCount = count;
}
}
}
\ No newline at end of file
package com.taos.example.highvolume;
import java.util.Iterator;
/**
* Generate test data
*/
class MockDataSource implements Iterator {
private String tbNamePrefix;
private int tableCount;
private long maxRowsPerTable = 1000000000L;
// 100 milliseconds between two neighbouring rows.
long startMs = System.currentTimeMillis() - maxRowsPerTable * 100;
private int currentRow = 0;
private int currentTbId = -1;
// mock values
String[] location = {"LosAngeles", "SanDiego", "Hollywood", "Compton", "San Francisco"};
float[] current = {8.8f, 10.7f, 9.9f, 8.9f, 9.4f};
int[] voltage = {119, 116, 111, 113, 118};
float[] phase = {0.32f, 0.34f, 0.33f, 0.329f, 0.141f};
public MockDataSource(String tbNamePrefix, int tableCount) {
this.tbNamePrefix = tbNamePrefix;
this.tableCount = tableCount;
}
@Override
public boolean hasNext() {
currentTbId += 1;
if (currentTbId == tableCount) {
currentTbId = 0;
currentRow += 1;
}
return currentRow < maxRowsPerTable;
}
@Override
public String next() {
long ts = startMs + 100 * currentRow;
int groupId = currentTbId % 5 == 0 ? currentTbId / 5 : currentTbId / 5 + 1;
StringBuilder sb = new StringBuilder(tbNamePrefix + "_" + currentTbId + ","); // tbName
sb.append(ts).append(','); // ts
sb.append(current[currentRow % 5]).append(','); // current
sb.append(voltage[currentRow % 5]).append(','); // voltage
sb.append(phase[currentRow % 5]).append(','); // phase
sb.append(location[currentRow % 5]).append(','); // location
sb.append(groupId); // groupID
return sb.toString();
}
}
\ No newline at end of file
package com.taos.example.highvolume;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.BlockingQueue;
class ReadTask implements Runnable {
private final static Logger logger = LoggerFactory.getLogger(ReadTask.class);
private final int taskId;
private final List<BlockingQueue<String>> taskQueues;
private final int queueCount;
private final int tableCount;
private boolean active = true;
public ReadTask(int readTaskId, List<BlockingQueue<String>> queues, int tableCount) {
this.taskId = readTaskId;
this.taskQueues = queues;
this.queueCount = queues.size();
this.tableCount = tableCount;
}
/**
* Assign data received to different queues.
* Here we use the suffix number in table name.
* You are expected to define your own rule in practice.
*
* @param line record received
* @return which queue to use
*/
public int getQueueId(String line) {
String tbName = line.substring(0, line.indexOf(',')); // For example: tb1_101
String suffixNumber = tbName.split("_")[1];
return Integer.parseInt(suffixNumber) % this.queueCount;
}
@Override
public void run() {
logger.info("started");
Iterator<String> it = new MockDataSource("tb" + this.taskId, tableCount);
try {
while (it.hasNext() && active) {
String line = it.next();
int queueId = getQueueId(line);
taskQueues.get(queueId).put(line);
}
} catch (Exception e) {
logger.error("Read Task Error", e);
}
}
public void stop() {
logger.info("stop");
this.active = false;
}
}
\ No newline at end of file
package com.taos.example.highvolume;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.sql.*;
import java.util.HashMap;
import java.util.Map;
/**
* A helper class encapsulate the logic of writing using SQL.
* <p>
* The main interfaces are two methods:
* <ol>
* <li>{@link SQLWriter#processLine}, which receive raw lines from WriteTask and group them by table names.</li>
* <li>{@link SQLWriter#flush}, which assemble INSERT statement and execute it.</li>
* </ol>
* <p>
* There is a technical skill worth mentioning: we create table as needed when "table does not exist" error occur instead of creating table automatically using syntax "INSET INTO tb USING stb".
* This ensure that checking table existence is a one-time-only operation.
* </p>
*
* </p>
*/
public class SQLWriter {
final static Logger logger = LoggerFactory.getLogger(SQLWriter.class);
private Connection conn;
private Statement stmt;
/**
* current number of buffered records
*/
private int bufferedCount = 0;
/**
* Maximum number of buffered records.
* Flush action will be triggered if bufferedCount reached this value,
*/
private int maxBatchSize;
/**
* Maximum SQL length.
*/
private int maxSQLLength;
/**
* Map from table name to column values. For example:
* "tb001" -> "(1648432611249,2.1,114,0.09) (1648432611250,2.2,135,0.2)"
*/
private Map<String, String> tbValues = new HashMap<>();
/**
* Map from table name to tag values in the same order as creating stable.
* Used for creating table.
*/
private Map<String, String> tbTags = new HashMap<>();
public SQLWriter(int maxBatchSize) {
this.maxBatchSize = maxBatchSize;
}
/**
* Get Database Connection
*
* @return Connection
* @throws SQLException
*/
private static Connection getConnection() throws SQLException {
String jdbcURL = System.getenv("TDENGINE_JDBC_URL");
return DriverManager.getConnection(jdbcURL);
}
/**
* Create Connection and Statement
*
* @throws SQLException
*/
public void init() throws SQLException {
conn = getConnection();
stmt = conn.createStatement();
stmt.execute("use test");
ResultSet rs = stmt.executeQuery("show variables");
while (rs.next()) {
String configName = rs.getString(1);
if ("maxSQLLength".equals(configName)) {
maxSQLLength = Integer.parseInt(rs.getString(2));
logger.info("maxSQLLength={}", maxSQLLength);
}
}
}
/**
* Convert raw data to SQL fragments, group them by table name and cache them in a HashMap.
* Trigger writing when number of buffered records reached maxBachSize.
*
* @param line raw data get from task queue in format: tbName,ts,current,voltage,phase,location,groupId
*/
public void processLine(String line) throws SQLException {
bufferedCount += 1;
int firstComma = line.indexOf(',');
String tbName = line.substring(0, firstComma);
int lastComma = line.lastIndexOf(',');
int secondLastComma = line.lastIndexOf(',', lastComma - 1);
String value = "(" + line.substring(firstComma + 1, secondLastComma) + ") ";
if (tbValues.containsKey(tbName)) {
tbValues.put(tbName, tbValues.get(tbName) + value);
} else {
tbValues.put(tbName, value);
}
if (!tbTags.containsKey(tbName)) {
String location = line.substring(secondLastComma + 1, lastComma);
String groupId = line.substring(lastComma + 1);
String tagValues = "('" + location + "'," + groupId + ')';
tbTags.put(tbName, tagValues);
}
if (bufferedCount == maxBatchSize) {
flush();
}
}
/**
* Assemble INSERT statement using buffered SQL fragments in Map {@link SQLWriter#tbValues} and execute it.
* In case of "Table does not exit" exception, create all tables in the sql and retry the sql.
*/
public void flush() throws SQLException {
StringBuilder sb = new StringBuilder("INSERT INTO ");
for (Map.Entry<String, String> entry : tbValues.entrySet()) {
String tableName = entry.getKey();
String values = entry.getValue();
String q = tableName + " values " + values + " ";
if (sb.length() + q.length() > maxSQLLength) {
executeSQL(sb.toString());
logger.warn("increase maxSQLLength or decrease maxBatchSize to gain better performance");
sb = new StringBuilder("INSERT INTO ");
}
sb.append(q);
}
executeSQL(sb.toString());
tbValues.clear();
bufferedCount = 0;
}
private void executeSQL(String sql) throws SQLException {
try {
stmt.executeUpdate(sql);
} catch (SQLException e) {
// convert to error code defined in taoserror.h
int errorCode = e.getErrorCode() & 0xffff;
if (errorCode == 0x362 || errorCode == 0x218) {
// Table does not exist
createTables();
executeSQL(sql);
} else {
logger.error("Execute SQL: {}", sql);
throw e;
}
} catch (Throwable throwable) {
logger.error("Execute SQL: {}", sql);
throw throwable;
}
}
/**
* Create tables in batch using syntax:
* <p>
* CREATE TABLE [IF NOT EXISTS] tb_name1 USING stb_name TAGS (tag_value1, ...) [IF NOT EXISTS] tb_name2 USING stb_name TAGS (tag_value2, ...) ...;
* </p>
*/
private void createTables() throws SQLException {
StringBuilder sb = new StringBuilder("CREATE TABLE ");
for (String tbName : tbValues.keySet()) {
String tagValues = tbTags.get(tbName);
sb.append("IF NOT EXISTS ").append(tbName).append(" USING meters TAGS ").append(tagValues).append(" ");
}
String sql = sb.toString();
try {
stmt.executeUpdate(sql);
} catch (Throwable throwable) {
logger.error("Execute SQL: {}", sql);
throw throwable;
}
}
public boolean hasBufferedValues() {
return bufferedCount > 0;
}
public int getBufferedCount() {
return bufferedCount;
}
public void close() {
try {
stmt.close();
} catch (SQLException e) {
}
try {
conn.close();
} catch (SQLException e) {
}
}
}
\ No newline at end of file
package com.taos.example.highvolume;
public class StmtWriter {
}
package com.taos.example.highvolume;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.concurrent.BlockingQueue;
class WriteTask implements Runnable {
private final static Logger logger = LoggerFactory.getLogger(WriteTask.class);
private final int maxBatchSize;
// the queue from which this writing task get raw data.
private final BlockingQueue<String> queue;
// A flag indicate whether to continue.
private boolean active = true;
public WriteTask(BlockingQueue<String> taskQueue, int maxBatchSize) {
this.queue = taskQueue;
this.maxBatchSize = maxBatchSize;
}
@Override
public void run() {
logger.info("started");
String line = null; // data getting from the queue just now.
SQLWriter writer = new SQLWriter(maxBatchSize);
try {
writer.init();
while (active) {
line = queue.poll();
if (line != null) {
// parse raw data and buffer the data.
writer.processLine(line);
} else if (writer.hasBufferedValues()) {
// write data immediately if no more data in the queue
writer.flush();
} else {
// sleep a while to avoid high CPU usage if no more data in the queue and no buffered records, .
Thread.sleep(100);
}
}
if (writer.hasBufferedValues()) {
writer.flush();
}
} catch (Exception e) {
String msg = String.format("line=%s, bufferedCount=%s", line, writer.getBufferedCount());
logger.error(msg, e);
} finally {
writer.close();
}
}
public void stop() {
logger.info("stop");
this.active = false;
}
}
\ No newline at end of file
......@@ -23,16 +23,16 @@ public class TestAll {
String jdbcUrl = "jdbc:TAOS://localhost:6030?user=root&password=taosdata";
try (Connection conn = DriverManager.getConnection(jdbcUrl)) {
try (Statement stmt = conn.createStatement()) {
String sql = "INSERT INTO power.d1001 USING power.meters TAGS(California.SanFrancisco, 2) VALUES('2018-10-03 14:38:05.000',10.30000,219,0.31000)\n" +
" power.d1001 USING power.meters TAGS(California.SanFrancisco, 2) VALUES('2018-10-03 15:38:15.000',12.60000,218,0.33000)\n" +
" power.d1001 USING power.meters TAGS(California.SanFrancisco, 2) VALUES('2018-10-03 15:38:16.800',12.30000,221,0.31000)\n" +
" power.d1002 USING power.meters TAGS(California.SanFrancisco, 3) VALUES('2018-10-03 15:38:16.650',10.30000,218,0.25000)\n" +
" power.d1003 USING power.meters TAGS(California.LosAngeles, 2) VALUES('2018-10-03 15:38:05.500',11.80000,221,0.28000)\n" +
" power.d1003 USING power.meters TAGS(California.LosAngeles, 2) VALUES('2018-10-03 15:38:16.600',13.40000,223,0.29000)\n" +
" power.d1004 USING power.meters TAGS(California.LosAngeles, 3) VALUES('2018-10-03 15:38:05.000',10.80000,223,0.29000)\n" +
" power.d1004 USING power.meters TAGS(California.LosAngeles, 3) VALUES('2018-10-03 15:38:06.000',10.80000,223,0.29000)\n" +
" power.d1004 USING power.meters TAGS(California.LosAngeles, 3) VALUES('2018-10-03 15:38:07.000',10.80000,223,0.29000)\n" +
" power.d1004 USING power.meters TAGS(California.LosAngeles, 3) VALUES('2018-10-03 15:38:08.500',11.50000,221,0.35000)";
String sql = "INSERT INTO power.d1001 USING power.meters TAGS('California.SanFrancisco', 2) VALUES('2018-10-03 14:38:05.000',10.30000,219,0.31000)\n" +
" power.d1001 USING power.meters TAGS('California.SanFrancisco', 2) VALUES('2018-10-03 15:38:15.000',12.60000,218,0.33000)\n" +
" power.d1001 USING power.meters TAGS('California.SanFrancisco', 2) VALUES('2018-10-03 15:38:16.800',12.30000,221,0.31000)\n" +
" power.d1002 USING power.meters TAGS('California.SanFrancisco', 3) VALUES('2018-10-03 15:38:16.650',10.30000,218,0.25000)\n" +
" power.d1003 USING power.meters TAGS('California.LosAngeles', 2) VALUES('2018-10-03 15:38:05.500',11.80000,221,0.28000)\n" +
" power.d1003 USING power.meters TAGS('California.LosAngeles', 2) VALUES('2018-10-03 15:38:16.600',13.40000,223,0.29000)\n" +
" power.d1004 USING power.meters TAGS('California.LosAngeles', 3) VALUES('2018-10-03 15:38:05.000',10.80000,223,0.29000)\n" +
" power.d1004 USING power.meters TAGS('California.LosAngeles', 3) VALUES('2018-10-03 15:38:06.000',10.80000,223,0.29000)\n" +
" power.d1004 USING power.meters TAGS('California.LosAngeles', 3) VALUES('2018-10-03 15:38:07.000',10.80000,223,0.29000)\n" +
" power.d1004 USING power.meters TAGS('California.LosAngeles', 3) VALUES('2018-10-03 15:38:08.500',11.50000,221,0.35000)";
stmt.execute(sql);
}
......
......@@ -11,10 +11,10 @@ conn: taos.TaosConnection = taos.connect(host="localhost",
server_version = conn.server_info
print("server_version", server_version)
client_version = conn.client_info
print("client_version", client_version) # 2.4.0.16
print("client_version", client_version) # 3.0.0.0
conn.close()
# possible output:
# 2.4.0.16
# 2.4.0.16
# 3.0.0.0
# 3.0.0.0
# install dependencies:
# recommend python >= 3.8
# pip3 install faster-fifo
#
import logging
import math
import sys
import time
import os
from multiprocessing import Process
from faster_fifo import Queue
from mockdatasource import MockDataSource
from queue import Empty
from typing import List
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG, format="%(asctime)s [%(name)s] - %(message)s")
READ_TASK_COUNT = 1
WRITE_TASK_COUNT = 1
TABLE_COUNT = 1000
QUEUE_SIZE = 1000000
MAX_BATCH_SIZE = 3000
read_processes = []
write_processes = []
def get_connection():
"""
If variable TDENGINE_FIRST_EP is provided then it will be used. If not, firstEP in /etc/taos/taos.cfg will be used.
You can also override the default username and password by supply variable TDENGINE_USER and TDENGINE_PASSWORD
"""
import taos
firstEP = os.environ.get("TDENGINE_FIRST_EP")
if firstEP:
host, port = firstEP.split(":")
else:
host, port = None, 0
user = os.environ.get("TDENGINE_USER", "root")
password = os.environ.get("TDENGINE_PASSWORD", "taosdata")
return taos.connect(host=host, port=int(port), user=user, password=password)
# ANCHOR: read
def run_read_task(task_id: int, task_queues: List[Queue]):
table_count_per_task = TABLE_COUNT // READ_TASK_COUNT
data_source = MockDataSource(f"tb{task_id}", table_count_per_task)
try:
for batch in data_source:
for table_id, rows in batch:
# hash data to different queue
i = table_id % len(task_queues)
# block putting forever when the queue is full
task_queues[i].put_many(rows, block=True, timeout=-1)
except KeyboardInterrupt:
pass
# ANCHOR_END: read
# ANCHOR: write
def run_write_task(task_id: int, queue: Queue):
from sql_writer import SQLWriter
log = logging.getLogger(f"WriteTask-{task_id}")
writer = SQLWriter(get_connection)
lines = None
try:
while True:
try:
# get as many as possible
lines = queue.get_many(block=False, max_messages_to_get=MAX_BATCH_SIZE)
writer.process_lines(lines)
except Empty:
time.sleep(0.01)
except KeyboardInterrupt:
pass
except BaseException as e:
log.debug(f"lines={lines}")
raise e
# ANCHOR_END: write
def set_global_config():
argc = len(sys.argv)
if argc > 1:
global READ_TASK_COUNT
READ_TASK_COUNT = int(sys.argv[1])
if argc > 2:
global WRITE_TASK_COUNT
WRITE_TASK_COUNT = int(sys.argv[2])
if argc > 3:
global TABLE_COUNT
TABLE_COUNT = int(sys.argv[3])
if argc > 4:
global QUEUE_SIZE
QUEUE_SIZE = int(sys.argv[4])
if argc > 5:
global MAX_BATCH_SIZE
MAX_BATCH_SIZE = int(sys.argv[5])
# ANCHOR: monitor
def run_monitor_process():
log = logging.getLogger("DataBaseMonitor")
conn = get_connection()
conn.execute("DROP DATABASE IF EXISTS test")
conn.execute("CREATE DATABASE test")
conn.execute("CREATE STABLE test.meters (ts TIMESTAMP, current FLOAT, voltage INT, phase FLOAT) "
"TAGS (location BINARY(64), groupId INT)")
def get_count():
res = conn.query("SELECT count(*) FROM test.meters")
rows = res.fetch_all()
return rows[0][0] if rows else 0
last_count = 0
while True:
time.sleep(10)
count = get_count()
log.info(f"count={count} speed={(count - last_count) / 10}")
last_count = count
# ANCHOR_END: monitor
# ANCHOR: main
def main():
set_global_config()
logging.info(f"READ_TASK_COUNT={READ_TASK_COUNT}, WRITE_TASK_COUNT={WRITE_TASK_COUNT}, "
f"TABLE_COUNT={TABLE_COUNT}, QUEUE_SIZE={QUEUE_SIZE}, MAX_BATCH_SIZE={MAX_BATCH_SIZE}")
monitor_process = Process(target=run_monitor_process)
monitor_process.start()
time.sleep(3) # waiting for database ready.
task_queues: List[Queue] = []
# create task queues
for i in range(WRITE_TASK_COUNT):
queue = Queue(max_size_bytes=QUEUE_SIZE)
task_queues.append(queue)
# create write processes
for i in range(WRITE_TASK_COUNT):
p = Process(target=run_write_task, args=(i, task_queues[i]))
p.start()
logging.debug(f"WriteTask-{i} started with pid {p.pid}")
write_processes.append(p)
# create read processes
for i in range(READ_TASK_COUNT):
queues = assign_queues(i, task_queues)
p = Process(target=run_read_task, args=(i, queues))
p.start()
logging.debug(f"ReadTask-{i} started with pid {p.pid}")
read_processes.append(p)
try:
monitor_process.join()
except KeyboardInterrupt:
monitor_process.terminate()
[p.terminate() for p in read_processes]
[p.terminate() for p in write_processes]
[q.close() for q in task_queues]
def assign_queues(read_task_id, task_queues):
"""
Compute target queues for a specific read task.
"""
ratio = WRITE_TASK_COUNT / READ_TASK_COUNT
from_index = math.floor(read_task_id * ratio)
end_index = math.ceil((read_task_id + 1) * ratio)
return task_queues[from_index:end_index]
if __name__ == '__main__':
main()
# ANCHOR_END: main
import time
class MockDataSource:
samples = [
"8.8,119,0.32,LosAngeles,0",
"10.7,116,0.34,SanDiego,1",
"9.9,111,0.33,Hollywood,2",
"8.9,113,0.329,Compton,3",
"9.4,118,0.141,San Francisco,4"
]
def __init__(self, tb_name_prefix, table_count):
self.table_name_prefix = tb_name_prefix + "_"
self.table_count = table_count
self.max_rows = 10000000
self.current_ts = round(time.time() * 1000) - self.max_rows * 100
# [(tableId, tableName, values),]
self.data = self._init_data()
def _init_data(self):
lines = self.samples * (self.table_count // 5 + 1)
data = []
for i in range(self.table_count):
table_name = self.table_name_prefix + str(i)
data.append((i, table_name, lines[i])) # tableId, row
return data
def __iter__(self):
self.row = 0
return self
def __next__(self):
"""
next 1000 rows for each table.
return: {tableId:[row,...]}
"""
# generate 1000 timestamps
ts = []
for _ in range(1000):
self.current_ts += 100
ts.append(str(self.current_ts))
# add timestamp to each row
# [(tableId, ["tableName,ts,current,voltage,phase,location,groupId"])]
result = []
for table_id, table_name, values in self.data:
rows = [table_name + ',' + t + ',' + values for t in ts]
result.append((table_id, rows))
return result
import logging
import taos
class SQLWriter:
log = logging.getLogger("SQLWriter")
def __init__(self, get_connection_func):
self._tb_values = {}
self._tb_tags = {}
self._conn = get_connection_func()
self._max_sql_length = self.get_max_sql_length()
self._conn.execute("USE test")
def get_max_sql_length(self):
rows = self._conn.query("SHOW variables").fetch_all()
for r in rows:
name = r[0]
if name == "maxSQLLength":
return int(r[1])
return 1024 * 1024
def process_lines(self, lines: str):
"""
:param lines: [[tbName,ts,current,voltage,phase,location,groupId]]
"""
for line in lines:
ps = line.split(",")
table_name = ps[0]
value = '(' + ",".join(ps[1:-2]) + ') '
if table_name in self._tb_values:
self._tb_values[table_name] += value
else:
self._tb_values[table_name] = value
if table_name not in self._tb_tags:
location = ps[-2]
group_id = ps[-1]
tag_value = f"('{location}',{group_id})"
self._tb_tags[table_name] = tag_value
self.flush()
def flush(self):
"""
Assemble INSERT statement and execute it.
When the sql length grows close to MAX_SQL_LENGTH, the sql will be executed immediately, and a new INSERT statement will be created.
In case of "Table does not exit" exception, tables in the sql will be created and the sql will be re-executed.
"""
sql = "INSERT INTO "
sql_len = len(sql)
buf = []
for tb_name, values in self._tb_values.items():
q = tb_name + " VALUES " + values
if sql_len + len(q) >= self._max_sql_length:
sql += " ".join(buf)
self.execute_sql(sql)
sql = "INSERT INTO "
sql_len = len(sql)
buf = []
buf.append(q)
sql_len += len(q)
sql += " ".join(buf)
self.execute_sql(sql)
self._tb_values.clear()
def execute_sql(self, sql):
try:
self._conn.execute(sql)
except taos.Error as e:
error_code = e.errno & 0xffff
# Table does not exit
if error_code == 9731:
self.create_tables()
else:
self.log.error("Execute SQL: %s", sql)
raise e
except BaseException as baseException:
self.log.error("Execute SQL: %s", sql)
raise baseException
def create_tables(self):
sql = "CREATE TABLE "
for tb in self._tb_values.keys():
tag_values = self._tb_tags[tb]
sql += "IF NOT EXISTS " + tb + " USING meters TAGS " + tag_values + " "
try:
self._conn.execute(sql)
except BaseException as e:
self.log.error("Execute SQL: %s", sql)
raise e
......@@ -4,22 +4,22 @@ sidebar_label: 文档首页
slug: /
---
TDengine是一款[开源](https://www.taosdata.com/tdengine/open_source_time-series_database)[高性能](https://www.taosdata.com/fast)[云原生](https://www.taosdata.com/tdengine/cloud_native_time-series_database)<a href="https://www.taosdata.com/" data-internallinksmanager029f6b8e52c="2" title="时序数据库" target="_blank" rel="noopener">时序数据库</a><a href="https://www.taosdata.com/time-series-database" data-internallinksmanager029f6b8e52c="9" title="Time Series DataBase" target="_blank" rel="noopener">Time Series Database</a>, <a href="https://www.taosdata.com/tsdb" data-internallinksmanager029f6b8e52c="8" title="TSDB" target="_blank" rel="noopener">TSDB</a>), 它专为物联网、工业互联网、金融等场景优化设计。同时它还带有内建的缓存、流式计算、数据订阅等系统功能,能大幅减少系统设计的复杂度,降低研发和运营成本,是一极简的时序数据处理平台。本文档是 TDengine 用户手册,主要是介绍 TDengine 的基本概念、安装、使用、功能、开发接口、运营维护、TDengine 内核设计等等,它主要是面向架构师、开发者与系统管理员的。
TDengine 是一款[开源](https://www.taosdata.com/tdengine/open_source_time-series_database)[高性能](https://www.taosdata.com/fast)[云原生](https://www.taosdata.com/tdengine/cloud_native_time-series_database)<a href="https://www.taosdata.com/" data-internallinksmanager029f6b8e52c="2" title="时序数据库" target="_blank" rel="noopener">时序数据库</a><a href="https://www.taosdata.com/time-series-database" data-internallinksmanager029f6b8e52c="9" title="Time Series DataBase" target="_blank" rel="noopener">Time Series Database</a>, <a href="https://www.taosdata.com/tsdb" data-internallinksmanager029f6b8e52c="8" title="TSDB" target="_blank" rel="noopener">TSDB</a>), 它专为物联网、车联网、工业互联网、金融、IT 运维等场景优化设计。同时它还带有内建的缓存、流式计算、数据订阅等系统功能,能大幅减少系统设计的复杂度,降低研发和运营成本,是一款极简的时序数据处理平台。本文档是 TDengine 的用户手册,主要是介绍 TDengine 的基本概念、安装、使用、功能、开发接口、运营维护、TDengine 内核设计等等,它主要是面向架构师、开发工程师与系统管理员的。
TDengine 充分利用了时序数据的特点,提出了“一个数据采集点一张表”与“超级表”的概念,设计了创新的存储引擎,让数据的写入、查询和存储效率都得到极大的提升。为正确理解并使用TDengine, 无论如何,请您仔细阅读[基本概念](./concept)一章。
TDengine 充分利用了时序数据的特点,提出了“一个数据采集点一张表”与“超级表”的概念,设计了创新的存储引擎,让数据的写入、查询和存储效率都得到极大的提升。为正确理解并使用 TDengine,无论如何,请您仔细阅读[基本概念](./concept)一章。
如果你是开发者,请一定仔细阅读[开发指南](./develop)一章,该部分对数据库连接、建模、插入数据、查询、流式计算、缓存、数据订阅、用户自定义函数等功能都做了详细介绍,并配有各种编程语言的示例代码。大部分情况下,你只要把示例代码拷贝粘贴,针对自己的应用稍作改动,就能跑起来。
如果你是开发工程师,请一定仔细阅读[开发指南](./develop)一章,该部分对数据库连接、建模、插入数据、查询、流式计算、缓存、数据订阅、用户自定义函数等功能都做了详细介绍,并配有各种编程语言的示例代码。大部分情况下,你只要复制粘贴示例代码,针对自己的应用稍作改动,就能跑起来。
我们已经生活在大数据的时代,纵向扩展已经无法满足日益增长的业务需求,任何系统都必须具有水平扩展的能力,集群成为大数据以及 database 系统的不可缺失功能。TDengine 团队不仅实现了集群功能,而且将这一重要核心功能开源。怎么部署、管理和维护 TDengine 集群,请参考[部署集群](./deployment)一章。
我们已经生活在大数据时代,纵向扩展已经无法满足日益增长的业务需求,任何系统都必须具有水平扩展的能力,集群成为大数据以及 Database 系统的不可缺失功能。TDengine 团队不仅实现了集群功能,而且将这一重要核心功能开源。怎么部署、管理和维护 TDengine 集群,请仔细参考[部署集群](./deployment)一章。
TDengine 采用 SQL 作为查询语言,大大降低学习成本、降低迁移成本,但同时针对时序数据场景,又做了一些扩展,以支持插值、降采样、时间加权平均等操作。[SQL 手册](./taos-sql)一章详细描述了 SQL 语法、详细列出了各种支持的命令和函数。
TDengine 采用 SQL 作为查询语言,大大降低学习成本、降低迁移成本,但同时针对时序数据场景,又做了一些扩展,以支持插值、降采样、时间加权平均等操作。[SQL 手册](./taos-sql)一章详细描述了 SQL 语法、详细列出了各种支持的命令和函数。
如果你是系统管理员,关心安装、升级、容错灾备、关心数据导入、导出,配置参数,怎么监测 TDengine 是否健康运行,怎么提升系统运行的性能,那么请仔细参考[运维指南](./operation)一章。
如果你是系统管理员,关心安装、升级、容错灾备、关心数据导入、导出、配置参数,如何监测 TDengine 是否健康运行,如何提升系统运行的性能,请仔细参考[运维指南](./operation)一章。
如果你对 TDengine 外围工具,REST API, 各种编程语言的连接器想做更多详细了解,请看[参考指南](./reference)一章。
如果你对 TDengine 的外围工具、REST API、各种编程语言的连接器(Connector)想做更多详细了解,请看[参考指南](./reference)一章。
如果你对 TDengine 内部的架构设计很有兴趣,欢迎仔细阅读[技术内幕](./tdinternal)一章,里面对集群的设计、数据分区、分片、写入、读出、查询、聚合查询的流程都做了详细的介绍。如果你想研读 TDengine 代码甚至贡献代码,请一定仔细读完这一章。
如果你对 TDengine 的内部架构设计很有兴趣,欢迎仔细阅读[技术内幕](./tdinternal)一章,里面对集群的设计、数据分区、分片、写入、读出、查询、聚合查询的流程都做了详细的介绍。如果你想研读 TDengine 代码甚至贡献代码,请一定仔细读完这一章。
最后,作为一个开源软件,欢迎大家的参与。如果发现文档的任何错误,描述不清晰的地方,都请在每个页面的最下方,点击“编辑本文档“直接进行修改。
最后,作为一个开源软件,欢迎大家的参与。如果发现文档有任何错误、描述不清晰的地方,请在每个页面的最下方,点击“编辑本文档”直接进行修改。
Together, we make a difference!
---
title: 产品简介
description: 简要介绍 TDengine 的主要功能
toc_max_heading_level: 2
---
TDengine 是一款[开源](https://www.taosdata.com/tdengine/open_source_time-series_database)[高性能](https://www.taosdata.com/tdengine/fast)[云原生](https://www.taosdata.com/tdengine/cloud_native_time-series_database)<a href="https://www.taosdata.com/" data-internallinksmanager029f6b8e52c="2" title="时序数据库" target="_blank" rel="noopener">时序数据库</a><a href="https://www.taosdata.com/time-series-database" data-internallinksmanager029f6b8e52c="9" title="Time Series DataBase" target="_blank" rel="noopener">Time Series Database</a>, <a href="https://www.taosdata.com/tsdb" data-internallinksmanager029f6b8e52c="8" title="TSDB" target="_blank" rel="noopener">TSDB</a>)。TDengine 能被广泛运用于物联网、工业互联网、车联网、IT 运维、金融等领域。除核心的时序数据库功能外,TDengine 还提供[缓存](../develop/cache/)[数据订阅](../develop/tmq)[流式计算](../develop/stream)等功能,是一极简的时序数据处理平台,最大程度的减小系统设计的复杂度,降低研发和运营成本。
TDengine 是一款开源、高性能、云原生的[时序数据库](https://tdengine.com/tsdb/),且针对物联网、车联网、工业互联网、金融、IT 运维等场景进行了优化。TDengine 的代码,包括集群功能,都在 GNU AGPL v3.0 下开源。除核心的时序数据库功能外,TDengine 还提供[缓存](../develop/cache/)[数据订阅](../develop/tmq)[流式计算](../develop/stream)等其它功能以降低系统复杂度及研发和运维成本。
本章节介绍TDengine的主要功能、竞争优势、适用场景、与其他数据库的对比测试等等,让大家对TDengine有个整体的了解。
本章节介绍 TDengine 的主要功能、竞争优势、适用场景、与其他数据库的对比测试等等,让大家对 TDengine 有个整体的了解。
## 主要功能
TDengine的主要功能如下:
1. 高速数据写入,除 [SQL 写入](../develop/insert-data/sql-writing)外,还支持 [Schemaless 写入](../reference/schemaless/),支持 [InfluxDB LINE 协议](../develop/insert-data/influxdb-line)[OpenTSDB Telnet](../develop/insert-data/opentsdb-telnet), [OpenTSDB JSON ](../develop/insert-data/opentsdb-json)等协议写入;
2. 第三方数据采集工具 [Telegraf](../third-party/telegraf)[Prometheus](../third-party/prometheus)[StatsD](../third-party/statsd)[collectd](../third-party/collectd)[icinga2](../third-party/icinga2), [TCollector](../third-party/tcollector), [EMQ](../third-party/emq-broker), [HiveMQ](../third-party/hive-mq-broker) 等都可以进行配置后,不用任何代码,即可将数据写入;
3. 支持[各种查询](../develop/query-data),包括聚合查询、嵌套查询、降采样查询、插值等
4. 支持[用户自定义函数](../develop/udf)
5. 支持[缓存](../develop/cache),将每张表的最后一条记录缓存起来,这样无需 Redis
6. 支持[流式计算](../develop/stream)(Stream Processing)
7. 支持[数据订阅](../develop/tmq),而且可以指定过滤条件
8. 支持[集群](../deployment/),可以通过多节点进行水平扩展,并通过多副本实现高可靠
9. 提供[命令行程序](../reference/taos-shell),便于管理集群,检查系统状态,做即席查询
10. 提供多种数据的[导入](../operation/import)[导出](../operation/export)
11. 支持对[TDengine 集群本身的监控](../operation/monitor)
12. 提供 [C/C++](../reference/connector/cpp), [Java](../reference/connector/java), [Python](../reference/connector/python), [Go](../reference/connector/go), [Rust](../reference/connector/rust), [Node.js](../reference/connector/node) 等多种编程语言的[连接器](../reference/connector/)
13. 支持 [REST 接口](../reference/rest-api/)
14. 支持与[ Grafana 无缝集成](../third-party/grafana)
15. 支持与 Google Data Studio 无缝集成
16. 支持 [Kubernetes 部署](../deployment/k8s)
更多细小的功能,请阅读整个文档。
TDengine 的主要功能如下:
1. 写入数据,支持
- [SQL 写入](../develop/insert-data/sql-writing)
- [无模式(Schemaless)写入](../reference/schemaless/),支持多种标准写入协议
- [InfluxDB Line 协议](../develop/insert-data/influxdb-line)
- [OpenTSDB Telnet 协议](../develop/insert-data/opentsdb-telnet)
- [OpenTSDB JSON 协议](../develop/insert-data/opentsdb-json)
- 与多种第三方工具的无缝集成,它们都可以仅通过配置而无需任何代码即可将数据写入 TDengine
- [Telegraf](../third-party/telegraf)
- [Prometheus](../third-party/prometheus)
- [StatsD](../third-party/statsd)
- [collectd](../third-party/collectd)
- [Icinga2](../third-party/icinga2)
- [TCollector](../third-party/tcollector)
- [EMQX](../third-party/emq-broker)
- [HiveMQ](../third-party/hive-mq-broker)
2. 查询数据,支持
- [标准 SQL](../taos-sql),含嵌套查询
- [时序数据特色函数](../taos-sql/function/#time-series-extensions)
- [时序数据特色查询](../taos-sql/distinguished),例如降采样、插值、累加和、时间加权平均、状态窗口、会话窗口等
- [用户自定义函数(UDF)](../taos-sql/udf)
3. [缓存](../develop/cache),将每张表的最后一条记录缓存起来,这样无需 Redis 就能对时序数据进行高效处理
4. [流式计算(Stream Processing)](../develop/stream),TDengine 不仅支持连续查询,还支持事件驱动的流式计算,这样在处理时序数据时就无需 Flink 或 Spark 这样流式计算组件
5. [数据订阅](../develop/tmq),应用程序可以订阅一张表或一组表的数据,提供与 Kafka 相同的 API,而且可以指定过滤条件
6. 可视化
- 支持与 [Grafana](../third-party/grafana/) 的无缝集成
- 支持与 Google Data Studio 的无缝集成
7. 集群
- [集群部署](../deployment/),可以通过增加节点进行水平扩展以提升处理能力
- 可以通过 [Kubernetes 部署 TDengine](../deployment/k8s/)
- 通过多副本提供高可用能力
8. 管理
- [监控](../operation/monitor)运行中的 TDengine 实例
- 多种[数据导入](../operation/import)方式
- 多种[数据导出](../operation/export)方式
9. 工具
- 提供[交互式命令行程序(CLI)](../reference/taos-shell),便于管理集群,检查系统状态,做即席查询
- 提供压力测试工具[taosBenchmark](../reference/taosbenchmark),用于测试 TDengine 的性能
10. 编程
- 提供各种语言的[连接器(Connector)](../connector): 如 [C/C++](../connector/cpp)[Java](../connector/java)[Go](../connector/go)[Node.js](../connector/node)[Rust](../connector/rust)[Python](../connector/python)[C#](../connector/csharp)
- 支持 [REST 接口](../connector/rest-api/)
更多细节功能,请阅读整个文档。
## 竞争优势
由于 TDengine 充分利用了[时序数据特点](https://www.taosdata.com/blog/2019/07/09/105.html),比如结构化、无需事务、很少删除或更新、写多读少等等,设计了全新的针对时序数据的存储引擎和计算引擎,因此与其他时序数据库相比,TDengine 有以下特点:
由于 TDengine 充分利用了[时序数据特点](https://www.taosdata.com/blog/2019/07/09/105.html),比如结构化、无需事务、很少删除或更新、写多读少等等,因此与其他时序数据库相比,TDengine 有以下特点:
- **[高性能](https://www.taosdata.com/tdengine/fast)**通过创新的存储引擎设计,无论是数据写入还是查询,TDengine 的性能比通用数据库快 10 倍以上,也远超其他时序数据库,存储空间不及通用数据库的1/10
- **[高性能](https://www.taosdata.com/tdengine/fast)**TDengine 是唯一一个解决了时序数据存储的高基数难题的时序数据库,支持上亿数据采集点,并在数据插入、查询和数据压缩上远胜其它时序数据库
- **[云原生](https://www.taosdata.com/tdengine/cloud_native_time-series_database)**:通过原生分布式的设计,充分利用云平台的优势,TDengine 提供了水平扩展能力,具备弹性、韧性和可观测性,支持k8s部署,可运行在公有云、私有云和混合云上
- **[极简时序数据平台](https://www.taosdata.com/tdengine/simplified_solution_for_time-series_data_processing)**:TDengine 内建缓存、流式计算和数据订阅等功能,为时序数据的处理提供了极简的解决方案,从而大幅降低了业务系统的设计复杂度和运维成本
- **[极简时序数据平台](https://www.taosdata.com/tdengine/simplified_solution_for_time-series_data_processing)**:TDengine 内建消息队列、缓存、流式计算等功能,应用无需再集成 Kafka/Redis/HBase/Spark 等软件,大幅降低系统的复杂度,降低应用开发和运营成本
- **[云原生](https://www.taosdata.com/tdengine/cloud_native_time-series_database)**:通过原生的分布式设计、数据分片和分区、存算分离、RAFT 协议、Kubernetes 部署和完整的可观测性,TDengine 是一款云原生时序数据库并且能够部署在公有云、私有云和混合云上
- **[分析能力](https://www.taosdata.com/tdengine/easy_data_analytics)**:支持 SQL,同时为时序数据特有的分析提供SQL扩展。通过超级表、存储计算分离、分区分片、预计算、自定义函数等技术,TDengine 具备强大的分析能力。
- **[简单易用](https://www.taosdata.com/tdengine/ease_of_use)**:对系统管理员来说,TDengine 大幅降低了管理和维护的代价。对开发者来说, TDengine 提供了简单的接口、极简的解决方案和与第三方工具的无缝集成。对数据分析专家来说,TDengine 提供了便捷的数据访问能力。
- **[简单易用](https://www.taosdata.com/tdengine/ease_of_use)**:无任何依赖,安装、集群几秒搞定;提供REST以及各种语言连接器,与众多第三方工具无缝集成;提供命令行程序,便于管理和即席查询;提供各种运维工具
- **[分析能力](https://www.taosdata.com/tdengine/easy_data_analytics)**:通过超级表、存储计算分离、分区分片、预计算和其它技术,TDengine 能够高效地浏览、格式化和访问数据
- **[核心开源](https://www.taosdata.com/tdengine/open_source_time-series_database)**:TDengine 的核心代码包括集群功能全部开源,截止到2022年8月1日,全球超过 135.9k 个运行实例,GitHub Star 18.7k,Fork 4.4k,社区活跃。
- **[核心开源](https://www.taosdata.com/tdengine/open_source_time-series_database)**:TDengine 的核心代码包括集群功能全部在开源协议下公开。全球超过 140k 个运行实例,GitHub Star 19k,且拥有一个活跃的开发者社区。
采用 TDengine,可将典型的物联网、车联网、工业互联网大数据平台的总拥有成本大幅降低。表现在几个方面:
1. 由于其超强性能,它能将系统需要的计算资源和存储资源大幅降低
1. 由于其超强性能,它能将系统所需的计算资源和存储资源大幅降低
2. 因为支持 SQL,能与众多第三方软件无缝集成,学习迁移成本大幅下降
3. 因为是一极简的时序数据平台,系统复杂度、研发和运营成本大幅降低
4. 因为维护简单,运营维护成本能大幅降低
3. 因为是一款极简的时序数据平台,系统复杂度、研发和运营成本大幅降低
## 技术生态
在整个时序大数据平台中,TDengine 在其中扮演的角色如下:
在整个时序大数据平台中,TDengine 扮演的角色如下:
<figure>
![TDengine Database 技术生态图](eco_system.webp)
<center><figcaption>图 1. TDengine 技术生态图</figcaption></center>
</figure>
<center>图 1. TDengine技术生态图</center>
上图中,左侧是各种数据采集或消息队列,包括 OPC-UA、MQTT、Telegraf、也包括 Kafka, 他们的数据将被源源不断的写入到 TDengine。右侧则是可视化、BI 工具、组态软件、应用程序。下侧则是 TDengine 自身提供的命令行程序 (CLI) 以及可视化管理管理
上图中,左侧是各种数据采集或消息队列,包括 OPC-UA、MQTT、Telegraf、也包括 Kafka,他们的数据将被源源不断的写入到 TDengine。右侧则是可视化、BI 工具、组态软件、应用程序。下侧则是 TDengine 自身提供的命令行程序(CLI)以及可视化管理工具
## 总体适用场景
## 典型适用场景
作为一个高性能、分布式、支持 SQL 的时序数据库 (Database),TDengine 的典型适用场景包括但不限于 IoT、工业互联网、车联网、IT 运维、能源、金融证券等领域。需要指出的是,TDengine 是针对时序数据场景设计的专用数据库和专用大数据处理工具,因充分利用了时序大数据的特点,它无法用来处理网络爬虫、微博、微信、电商、ERP、CRM 等通用型数据。本文对适用场景做更多详细的分析。
作为一个高性能、分布式、支持 SQL 的时序数据库(Database),TDengine 的典型适用场景包括但不限于 IoT、工业互联网、车联网、IT 运维、能源、金融证券等领域。需要指出的是,TDengine 是针对时序数据场景设计的专用数据库和专用大数据处理工具,因其充分利用了时序大数据的特点,它无法用来处理网络爬虫、微博、微信、电商、ERP、CRM 等通用型数据。下面本文将对适用场景做更多详细的分析。
### 数据源特点和需求
......@@ -90,18 +114,18 @@ TDengine的主要功能如下:
### 系统功能需求
| 系统功能需求 | 不适用 | 可能适用 | 非常适用 | 简单说明 |
| -------------------------- | ------ | -------- | -------- | --------------------------------------------------------------------------------------------------------------------- |
| 要求完整的内置数据处理算法 | | √ | | TDengine 的实现了通用的数据处理算法,但是还没有做到妥善处理各行各业的所有要求,因此特殊类型的处理还需要应用层面处理。 |
| 需要大量的交叉查询处理 | | √ | | 这种类型的处理更多应该用关系型数据系统处理,或者应该考虑 TDengine 和关系型数据系统配合实现系统功能。 |
| 系统功能需求 | 不适用 | 可能适用 | 非常适用 | 简单说明 |
| -------------------------- | ------ | -------- | -------- | ------------------------------------------------------------------------------------------------------------------------- |
| 要求完整的内置数据处理算法 | | √ | | TDengine 实现了通用的数据处理算法,但是还没有做到妥善处理各行各业的所有需求,因此特殊类型的处理需求还需要在应用层面解决。 |
| 需要大量的交叉查询处理 | | √ | | 这种类型的处理更多应该用关系型数据库处理,或者应该考虑 TDengine 和关系型数据库配合实现系统功能。 |
### 系统性能需求
| 系统性能需求 | 不适用 | 可能适用 | 非常适用 | 简单说明 |
| ---------------------- | ------ | -------- | -------- | ------------------------------------------------------------------------------------------------------ |
| 要求较大的总体处理能力 | | | √ | TDengine 的集群功能可以轻松地让多服务器配合达成处理能力的提升。 |
| 要求高速处理数据 | | | √ | TDengine 的专门为 IoT 优化的存储和数据处理的设计,一般可以让系统得到超出同类产品多倍数的处理速度提升。 |
| 要求快速处理小粒度数据 | | | √ | 这方面 TDengine 性能可以完全对标关系型和 NoSQL 型数据处理系统。 |
| 系统性能需求 | 不适用 | 可能适用 | 非常适用 | 简单说明 |
| ---------------------- | ------ | -------- | -------- | -------------------------------------------------------------------------------------------------- |
| 要求较大的总体处理能力 | | | √ | TDengine 的集群功能可以轻松地让多服务器配合达成处理能力的提升。 |
| 要求高速处理数据 | | | √ | TDengine 专门为 IoT 优化的存储和数据处理设计,一般可以让系统得到超出同类产品多倍数的处理速度提升。 |
| 要求快速处理小粒度数据 | | | √ | 这方面 TDengine 性能可以完全对标关系型和 NoSQL 型数据处理系统。 |
### 系统维护需求
......
---
sidebar_label: 基本概念
title: 数据模型和基本概念
description: TDengine 的数据模型和基本概念
---
为了便于解释基本概念,便于撰写示例程序,整个 TDengine 文档以智能电表作为典型时序数据场景。假设每个智能电表采集电流、电压、相位三个量,有多个智能电表,每个电表有位置 location 和分组 group ID 的静态属性. 其采集的数据类似如下的表格:
......@@ -104,15 +106,15 @@ title: 数据模型和基本概念
## 采集量 (Metric)
采集量是指传感器、设备或其他类型采集点采集的物理量,比如电流、电压、温度、压力、GPS 位置等,是随时间变化的,数据类型可以是整型、浮点型、布尔型,也可是字符串。随着时间的推移,存储的采集量的数据量越来越大。
采集量是指传感器、设备或其他类型采集点采集的物理量,比如电流、电压、温度、压力、GPS 位置等,是随时间变化的,数据类型可以是整型、浮点型、布尔型,也可是字符串。随着时间的推移,存储的采集量的数据量越来越大。智能电表示例中的电流、电压、相位就是采集量。
## 标签 (Label/Tag)
标签是指传感器、设备或其他类型采集点的静态属性,不是随时间变化的,比如设备型号、颜色、设备的所在地等,数据类型可以是任何类型。虽然是静态的,但 TDengine 容许用户修改、删除或增加标签值。与采集量不一样的是,随时间的推移,存储的标签的数据量不会有什么变化。
标签是指传感器、设备或其他类型采集点的静态属性,不是随时间变化的,比如设备型号、颜色、设备的所在地等,数据类型可以是任何类型。虽然是静态的,但 TDengine 容许用户修改、删除或增加标签值。与采集量不一样的是,随时间的推移,存储的标签的数据量不会有什么变化。智能电表示例中的location与groupId就是标签。
## 数据采集点 (Data Collection Point)
数据采集点是指按照预设时间周期或受事件触发采集物理量的硬件或软件。一个数据采集点可以采集一个或多个采集量,**但这些采集量都是同一时刻采集的,具有相同的时间戳**。对于复杂的设备,往往有多个数据采集点,每个数据采集点采集的周期都可能不一样,而且完全独立,不同步。比如对于一台汽车,有数据采集点专门采集 GPS 位置,有数据采集点专门采集发动机状态,有数据采集点专门采集车内的环境,这样一台汽车就有三个数据采集点。
数据采集点是指按照预设时间周期或受事件触发采集物理量的硬件或软件。一个数据采集点可以采集一个或多个采集量,**但这些采集量都是同一时刻采集的,具有相同的时间戳**。对于复杂的设备,往往有多个数据采集点,每个数据采集点采集的周期都可能不一样,而且完全独立,不同步。比如对于一台汽车,有数据采集点专门采集 GPS 位置,有数据采集点专门采集发动机状态,有数据采集点专门采集车内的环境,这样一台汽车就有三个数据采集点。智能电表示例中的d1001, d1002, d1003, d1004等就是数据采集点。
## 表 (Table)
......@@ -131,13 +133,14 @@ TDengine 建议用数据采集点的名字(如上表中的 D1001)来做表
对于复杂的设备,比如汽车,它有多个数据采集点,那么就需要为一台汽车建立多张表。
## 超级表 (STable)
由于一个数据采集点一张表,导致表的数量巨增,难以管理,而且应用经常需要做采集点之间的聚合操作,聚合的操作也变得复杂起来。为解决这个问题,TDengine 引入超级表(Super Table,简称为 STable)的概念。
超级表是指某一特定类型的数据采集点的集合。同一类型的数据采集点,其表的结构是完全一样的,但每个表(数据采集点)的静态属性(标签)是不一样的。描述一个超级表(某一特定类型的数据采集点的集合),除需要定义采集量的表结构之外,还需要定义其标签的 schema,标签的数据类型可以是整数、浮点数、字符串,标签可以有多个,可以事后增加、删除或修改。如果整个系统有 N 个不同类型的数据采集点,就需要建立 N 个超级表。
在 TDengine 的设计里,**表用来代表一个具体的数据采集点,超级表用来代表一组相同类型的数据采集点集合**
在 TDengine 的设计里,**表用来代表一个具体的数据采集点,超级表用来代表一组相同类型的数据采集点集合**智能电表示例中,我们可以创建一个超级表meters.
## 子表 (Subtable)
......@@ -156,7 +159,9 @@ TDengine 建议用数据采集点的名字(如上表中的 D1001)来做表
查询既可以在表上进行,也可以在超级表上进行。针对超级表的查询,TDengine 将把所有子表中的数据视为一个整体数据集进行处理,会先把满足标签过滤条件的表从超级表中找出来,然后再扫描这些表的时序数据,进行聚合操作,这样需要扫描的数据集会大幅减少,从而显著提高查询的性能。本质上,TDengine 通过对超级表查询的支持,实现了多个同类数据采集点的高效聚合。
TDengine系统建议给一个数据采集点建表,需要通过超级表建表,而不是建普通表。
TDengine系统建议给一个数据采集点建表,需要通过超级表建表,而不是建普通表。在智能电表的示例中,我们可以通过超级表meters创建子表d1001, d1002, d1003, d1004等。
为了更好地理解超级与子表的关系,可以参考下面关于智能电表数据模型的示意图。 ![智能电表数据模型示意图](./supertable.webp)
## 库 (database)
......
---
sidebar_label: Docker
title: 通过 Docker 快速体验 TDengine
description: 使用 Docker 快速体验 TDengine 的高效写入和查询
---
本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用[安装包的方式快速体验](../../get-started/package/)。如果您希望为 TDengine 贡献代码或对内部技术实现感兴趣,请参考 [TDengine GitHub 主页](https://github.com/taosdata/TDengine) 下载源码构建和安装.
......
---
sidebar_label: 安装包
title: 使用安装包立即开始
description: 使用安装包快速体验 TDengine
---
import Tabs from "@theme/Tabs";
......@@ -9,7 +10,7 @@ import PkgListV3 from "/components/PkgListV3";
您可以[用 Docker 立即体验](../../get-started/docker/) TDengine。如果您希望对 TDengine 贡献代码或对内部实现感兴趣,请参考我们的 [TDengine GitHub 主页](https://github.com/taosdata/TDengine) 下载源码构建和安装.
TDengine 完整的软件包包括服务端(taosd)、用于与第三方系统对接并提供 RESTful 接口的 taosAdapter、应用驱动(taosc)、命令行程序 (CLI,taos) 和一些工具软件。目前 taosAdapter 仅在 Linux 系统上安装和运行,后续将支持 Windows、macOS 等系统。TDengine 除了提供多种语言的连接器之外,还通过 [taosAdapter](../../reference/taosadapter/) 提供 [RESTful 接口](../../reference/rest-api/)
TDengine 完整的软件包包括服务端(taosd)、用于与第三方系统对接并提供 RESTful 接口的 taosAdapter、应用驱动(taosc)、命令行程序 (CLI,taos) 和一些工具软件。目前 taosAdapter 仅在 Linux 系统上安装和运行,后续将支持 Windows、macOS 等系统。TDengine 除了提供多种语言的连接器之外,还通过 [taosAdapter](../../reference/taosadapter/) 提供 [RESTful 接口](../../connector/rest-api/)
为方便使用,标准的服务端安装包包含了 taosd、taosAdapter、taosc、taos、taosdump、taosBenchmark、TDinsight 安装脚本和示例代码;如果您只需要用到服务端程序和客户端连接的 C/C++ 语言支持,也可以仅下载 lite 版本的安装包。
......@@ -67,13 +68,6 @@ install.sh 安装脚本在执行过程中,会通过命令行交互界面询问
</TabItem>
<TabItem label="Windows 安装" value="windows">
1. 从列表中下载获得 exe 安装程序;
<PkgListV3 type={3}/>
2. 运行可执行程序来安装 TDengine。
</TabItem>
<TabItem value="apt-get" label="apt-get">
可以使用 apt-get 工具从官方仓库安装。
......@@ -102,11 +96,20 @@ sudo apt-get install tdengine
:::tip
apt-get 方式只适用于 Debian 或 Ubuntu 系统
::::
</TabItem>
<TabItem label="Windows 安装" value="windows">
注意:目前 TDengine 在 Windows 平台上只支持 Windows server 2016/2019 和 Windows 10/11 系统版本。
1. 从列表中下载获得 exe 安装程序;
<PkgListV3 type={3}/>
2. 运行可执行程序来安装 TDengine。
</TabItem>
</Tabs>
:::info
下载其他组件、最新 Beta 版及之前版本的安装包,请点击[发布历史页面](../../releases)
下载其他组件、最新 Beta 版及之前版本的安装包,请点击[发布历史页面](../../releases/tdengine)
:::
:::note
......
import PkgList from "/components/PkgList";
TDengine 的安装非常简单,从下载到安装成功仅仅只要几秒钟。
为方便使用,从 2.4.0.10 开始,标准的服务端安装包包含了 taos、taosd、taosAdapter、taosdump、taosBenchmark、TDinsight 安装脚本和示例代码;如果您只需要用到服务端程序和客户端连接的 C/C++ 语言支持,也可以仅下载 lite 版本的安装包。
在安装包格式上,我们提供 tar.gz, rpm 和 deb 格式,为企业客户提供 tar.gz 格式安装包,以方便在特定操作系统上使用。需要注意的是,rpm 和 deb 包不含 taosdump、taosBenchmark 和 TDinsight 安装脚本,这些工具需要通过安装 taosTool 包获得。
发布版本包括稳定版和 Beta 版,Beta 版含有更多新功能。正式上线或测试建议安装稳定版。您可以根据需要选择下载:
<PkgList type={0}/>
具体的安装方法,请参见[安装包的安装和卸载](/operation/pkg-install)。
下载其他组件、最新 Beta 版及之前版本的安装包,请点击[这里](https://www.taosdata.com/all-downloads)
查看 Release Notes, 请点击[这里](https://github.com/taosdata/TDengine/releases)
......@@ -3,7 +3,7 @@ title: 立即开始
description: '快速设置 TDengine 环境并体验其高效写入和查询'
---
TDengine 完整的软件包包括服务端(taosd)、用于与第三方系统对接并提供 RESTful 接口的 taosAdapter、应用驱动(taosc)、命令行程序 (CLI,taos) 和一些工具软件。TDengine 除了提供多种语言的连接器之外,还通过 [taosAdapter](/reference/taosadapter) 提供 [RESTful 接口](/reference/rest-api)
TDengine 完整的软件包包括服务端(taosd)、用于与第三方系统对接并提供 RESTful 接口的 taosAdapter、应用驱动(taosc)、命令行程序 (CLI,taos) 和一些工具软件。TDengine 除了提供多种语言的连接器之外,还通过 [taosAdapter](../reference/taosadapter) 提供 [RESTful 接口](../connector/rest-api)
本章主要介绍如何利用 Docker 或者安装包快速设置 TDengine 环境并体验其高效写入和查询。
......
......@@ -12,4 +12,4 @@
{{#include docs/examples/java/src/main/java/com/taos/example/WSConnectExample.java:main}}
```
更多连接参数配置,参考[Java 连接器](/reference/connector/java)
更多连接参数配置,参考[Java 连接器](../../connector/java)
---
title: 建立连接
description: "本节介绍如何使用连接器建立与 TDengine 的连接,给出连接器安装、连接的简单说明。"
description: 使用连接器建立与 TDengine 的连接,以及连接器的安装和连接
---
import Tabs from "@theme/Tabs";
......@@ -14,10 +14,10 @@ import ConnCSNative from "./_connect_cs.mdx";
import ConnC from "./_connect_c.mdx";
import ConnR from "./_connect_r.mdx";
import ConnPHP from "./_connect_php.mdx";
import InstallOnWindows from "../../14-reference/03-connector/_linux_install.mdx";
import InstallOnLinux from "../../14-reference/03-connector/_windows_install.mdx";
import VerifyLinux from "../../14-reference/03-connector/_verify_linux.mdx";
import VerifyWindows from "../../14-reference/03-connector/_verify_windows.mdx";
import InstallOnWindows from "../../08-connector/_linux_install.mdx";
import InstallOnLinux from "../../08-connector/_windows_install.mdx";
import VerifyLinux from "../../08-connector/_verify_linux.mdx";
import VerifyWindows from "../../08-connector/_verify_windows.mdx";
TDengine 提供了丰富的应用程序开发接口,为了便于用户快速开发自己的应用,TDengine 支持了多种编程语言的连接器,其中官方连接器包括支持 C/C++、Java、Python、Go、Node.js、C#、Rust、Lua(社区贡献)和 PHP (社区贡献)的连接器。这些连接器支持使用原生接口(taosc)和 REST 接口(部分语言暂不支持)连接 TDengine 集群。社区开发者也贡献了多个非官方连接器,例如 ADO.NET 连接器、Lua 连接器和 PHP 连接器。
......@@ -33,7 +33,7 @@ TDengine 提供了丰富的应用程序开发接口,为了便于用户快速
关键不同点在于:
1. 使用 REST 连接,用户无需安装客户端驱动程序 taosc,具有跨平台易用的优势,但性能要下降 30%左右。
2. 使用原生连接可以体验 TDengine 的全部功能,如[参数绑定接口](/reference/connector/cpp#参数绑定-api)[订阅](/reference/connector/cpp#订阅和消费-api)等等。
2. 使用原生连接可以体验 TDengine 的全部功能,如[参数绑定接口](../../connector/cpp/#参数绑定-api)[订阅](../../connector/cpp/#订阅和消费-api)等等。
## 安装客户端驱动 taosc
......@@ -223,7 +223,7 @@ phpize && ./configure && make -j && make install
**手动指定 TDengine 目录:**
```shell
phpize && ./configure --with-tdengine-dir=/usr/local/Cellar/tdengine/2.4.0.0 && make -j && make install
phpize && ./configure --with-tdengine-dir=/usr/local/Cellar/tdengine/3.0.0.0 && make -j && make install
```
> `--with-tdengine-dir=` 后跟上 TDengine 目录。
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册