[](https://bestpractices.coreinfrastructure.org/projects/4201)
[](https://bestpractices.coreinfrastructure.org/projects/4201)
English | [简体中文](README-CN.md) | [Learn more about TSDB](https://tdengine.com/tsdb/)
English | [简体中文](README-CN.md) | [TDengine Cloud](https://cloud.tdengine.com) | [Learn more about TSDB](https://tdengine.com/tsdb/)
# What is TDengine?
# What is TDengine?
...
@@ -33,7 +33,7 @@ TDengine is an open source, high-performance, cloud native [time-series database
...
@@ -33,7 +33,7 @@ TDengine is an open source, high-performance, cloud native [time-series database
-**[Open Source](https://tdengine.com/tdengine/open-source-time-series-database/)**: TDengine’s core modules, including cluster feature, are all available under open source licenses. It has gathered 18.8k stars on GitHub. There is an active developer community, and over 139k running instances worldwide.
-**[Open Source](https://tdengine.com/tdengine/open-source-time-series-database/)**: TDengine’s core modules, including cluster feature, are all available under open source licenses. It has gathered 18.8k stars on GitHub. There is an active developer community, and over 139k running instances worldwide.
For a full list of TDengine competitive advantages, please [check here](https://tdengine.com/tdengine/)
For a full list of TDengine competitive advantages, please [check here](https://tdengine.com/tdengine/). The easiest way to experience TDengine is through [TDengine Cloud](https://cloud.tdengine.com).
This document describes how to install TDengine in a Docker container and perform queries and inserts.
This document describes how to install TDengine in a Docker container and perform queries and inserts.
- The easiest way to explore TDengine is through [TDengine Cloud](http://cloud.tdengine.com).
- The easiest way to explore TDengine is through [TDengine Cloud](http://cloud.tdengine.com).
- To get started with TDengine in a non-containerized environment, see [Quick Install from Package](../../get-started/package).
- To get started with TDengine in a non-containerized environment, see [Quick Install from Package](../../get-started/package).
- If you want to view the source code, build TDengine yourself, or contribute to the project, see the [TDengine GitHub repository](https://github.com/taosdata/TDengine).
- If you want to view the source code, build TDengine yourself, or contribute to the project, see the [TDengine GitHub repository](https://github.com/taosdata/TDengine).
## Run TDengine
## Run TDengine
If Docker is already installed on your computer, run the following command:
If Docker is already installed on your computer, pull the latest TDengine Docker container image:
- `INTERP` is used to get the value that matches the specified time slice from a column. If no such value exists an interpolation value will be returned based on `FILL` parameter.
- `INTERP` is used to get the value that matches the specified time slice from a column. If no such value exists an interpolation value will be returned based on `FILL` parameter.
- The input data of `INTERP` is the value of the specified column and a `where` clause can be used to filter the original data. If no `where` condition is specified then all original data is the input.
- The input data of `INTERP` is the value of the specified column and a `where` clause can be used to filter the original data. If no `where` condition is specified then all original data is the input.
- The output time range of `INTERP` is specified by `RANGE(timestamp1,timestamp2)` parameter, with timestamp1<=timestamp2. timestamp1 is the starting point of the output time range and must be specified. timestamp2 is the ending point of the output time range and must be specified.
- The output time range of `INTERP` is specified by `RANGE(timestamp1,timestamp2)` parameter, with timestamp1<=timestamp2. timestamp1 is the starting point of the output time range and must be specified. timestamp2 is the ending point of the output time range and must be specified.
- The number of rows in the result set of `INTERP` is determined by the parameter `EVERY`. Starting from timestamp1, one interpolation is performed for every time interval specified `EVERY` parameter.
- The number of rows in the result set of `INTERP` is determined by the parameter `EVERY`. Starting from timestamp1, one interpolation is performed for every time interval specified `EVERY` parameter. The parameter `EVERY` must be an integer, with no quotes, with a time unit of: b(nanosecond), u(microsecond), a(millisecond)), s(second), m(minute), h(hour), d(day), or w(week). For example, `EVERY(500a)` will interpolate every 500 milliseconds.
- Interpolation is performed based on `FILL` parameter.
- Interpolation is performed based on `FILL` parameter.
- `INTERP` can only be used to interpolate in single timeline. So it must be used with `partition by tbname` when it's used on a STable.
- `INTERP` can only be used to interpolate in single timeline. So it must be used with `partition by tbname` when it's used on a STable.
- Pseudo column `_irowts` can be used along with `INTERP` to return the timestamps associated with interpolation points(support after version 3.0.1.4).
- Pseudo column `_irowts` can be used along with `INTERP` to return the timestamps associated with interpolation points(support after version 3.0.1.4).
@@ -23,7 +23,7 @@ There are two ways to install taosBenchmark:
...
@@ -23,7 +23,7 @@ There are two ways to install taosBenchmark:
TaosBenchmark needs to be executed on the terminal of the operating system, it supports two configuration methods: [Command-line arguments](#command-line-arguments-in-detail) and [JSON configuration file](#configuration-file-parameters-in-detail). These two methods are mutually exclusive. Users can use `-f <json file>` to specify a configuration file. When running taosBenchmark with command-line arguments to control its behavior, users should use other parameters for configuration, but not the `-f` parameter. In addition, taosBenchmark offers a special way of running without parameters.
TaosBenchmark needs to be executed on the terminal of the operating system, it supports two configuration methods: [Command-line arguments](#command-line-arguments-in-detail) and [JSON configuration file](#configuration-file-parameters-in-detail). These two methods are mutually exclusive. Users can use `-f <json file>` to specify a configuration file. When running taosBenchmark with command-line arguments to control its behavior, users should use other parameters for configuration, but not the `-f` parameter. In addition, taosBenchmark offers a special way of running without parameters.
taosBenchmark supports the complete performance testing of TDengine by providing functionally to write, query, and subscribe. These three functions are mutually exclusive, users can only select one of them each time taosBenchmark runs. The query and subscribe functionalities are only configurable using a json configuration file by specifying the parameter `filetype`, while write can be performed through both the command-line and a configuration file. If you want to test the performance of queries or data subscriptionm configure taosBenchmark with the configuration file. You can modify the value of the `filetype` parameter to specify the function that you want to test.
taosBenchmark supports the complete performance testing of TDengine by providing functionally to write, query, and subscribe. These three functions are mutually exclusive, users can only select one of them each time taosBenchmark runs. The query and subscribe functionalities are only configurable using a json configuration file by specifying the parameter `filetype`, while write can be performed through both the command-line and a configuration file. If you want to test the performance of queries or data subscription configure taosBenchmark with the configuration file. You can modify the value of the `filetype` parameter to specify the function that you want to test.
**Make sure that the TDengine cluster is running correctly before running taosBenchmark. **
**Make sure that the TDengine cluster is running correctly before running taosBenchmark. **
...
@@ -340,7 +340,7 @@ The configuration parameters for specifying super table tag columns and data col
...
@@ -340,7 +340,7 @@ The configuration parameters for specifying super table tag columns and data col
-**values**: The value field of the nchar/binary column/label, which will be chosen randomly from the values.
-**values**: The value field of the nchar/binary column/label, which will be chosen randomly from the values.
-**sma**: Insert the column into the BSMA. Enter `yes` or `no`. The default is `no`.
-**sma**: Insert the column into the SMA. Enter `yes` or `no`. The default is `no`.