未验证 提交 3a7b460a 编写于 作者: C Chait Diwadkar 提交者: GitHub

Several changes proposed (#10461)

Table headings made consistent with section headings.
Phrasing, grammar and spelling changes in places.
上级 c116cdce
......@@ -2,17 +2,17 @@
## <a class="anchor" id="intro"></a> About TDengine
TDengine is a high-performance, scalable time-series database with SQL support. Its code including cluster feature is open source under GNU AGPL v3.0. Besides the database, it provides caching, stream processing, data data subscription and other functionalities to reduce the complexity and cost of development and operation. TDengine differentiates itself from other TSDBs with the following advanatages.
TDengine is a high-performance, scalable time-series database with SQL support. Its code, including its cluster feature is open source under GNU AGPL v3.0. Besides the database engine, it provides caching, stream processing, data subscription and other functionalities to reduce the complexity and cost of development and operation. TDengine differentiates itself from other TSDBs with the following advantages.
- **High Peroformance**: TDengine outperforms other time series databases in data ingestion and querying while significantly reducing storage cost and compute costs, with an innovatively designed and purpose-built storage engine.
- **High Performance**: TDengine outperforms other time series databases in data ingestion and querying while significantly reducing storage cost and compute costs, with an innovatively designed and purpose-built storage engine.
- **Scalable**: TDengine provides out-of-box scalability and high-availability through its native distributed design. Nodes can be added through simple configuration to achieve greater data processing power. In addition, this feature is open source.
- **SQL Support**: TDengine uses SQL as the query language, thereby reducing learning and migration costs, while adding SQL extensions to handle time-series data better, and supporting convenient and flexible schemaless data ingestion.
- **All in One**: TDengine has built-in caching, stream processing and data subscription functions, it is no longer necessary to integrate Kafka/Redis/HBase/Spark or other software in some scenarios. It makes the system architecture much simpler and easy to maintain.
- **All in One**: TDengine has built-in caching, stream processing and data subscription functions. It is no longer necessary to integrate Kafka/Redis/HBase/Spark or other software in some scenarios. It makes the system architecture much simpler, cost-effective and easier to maintain.
- **Seamless Integration**: Without a single line of code, TDengine provide seamless integration with third-party tools such as Telegraf, Grafana, EMQ X, Prometheus, StatsD, collectd, etc. More will be integrated.
- **Seamless Integration**: Without a single line of code, TDengine provide seamless, configurable integration with third-party tools such as Telegraf, Grafana, EMQ X, Prometheus, StatsD, collectd, etc. More third-party tools are being integrated.
- **Zero Management**: Installation and cluster setup can be done in seconds. Data partitioning and sharding are executed automatically. TDengine’s running status can be monitored via Grafana or other DevOps tools.
......@@ -20,7 +20,7 @@ TDengine is a high-performance, scalable time-series database with SQL support.
- **Interactive Console**: TDengine provides convenient console access to the database to run ad hoc queries, maintain the database, or manage the cluster without any programming.
TDengine can be widely applied to Internet of Things (IoT), Connected Vehicles, Industrial IoT, DevOps, energy, finance and many other scenarios. With TDengine, the total cost of ownership of time-series data platforms can be greatly reduced. However, since it makes full use of the characteristics of time-series data, TDengine cannot be used to process general data from web crawlers, microblogs, WeChat, e-commerce, ERP, CRM, and other sources.
With TDengine, the total cost of ownership of typical IoT, Connected Vehicles, Industrial Internet, Energy, Financial, DevOps and other Big Data applications can be greatly reduced. Note that because TDengine makes full use of the characteristics of IoT time-series data and is highly optimized for it, TDengine cannot be used as a general purpose database engine to process general data from web crawlers, microblogs, WeChat, e-commerce, ERP, CRM, and other sources.
![TDengine Technology Ecosystem](../images/eco_system.png)
<center>Figure 1. TDengine Ecosystem</center>
......@@ -28,45 +28,45 @@ TDengine can be widely applied to Internet of Things (IoT), Connected Vehicles,
## <a class="anchor" id="scenes"></a>Overall Scenarios of TDengine
As a time-series data platform, the typical application scenarios of TDengine are mainly presented in the IoT, connected vehicles, DevOps and Industrial Internet categories, with users having a certain amount of data. The following sections of this document are mainly aimed at IoT-relevant systems. Other systems, such as CRM, ERP, etc., are beyond the scope of this article.
As an IoT time-series Big Data platform, TDengine is optimal for application scenarios with the requirements described below. Therefore the following sections of this document are mainly aimed at IoT-relevant systems. Other systems, such as CRM, ERP, etc., are beyond the scope of this article.
### Characteristics and Requirements of Data Sources
From the perspective of data sources, designers can analyze the applicability of TDengine in target application systems as following.
From the perspective of data sources, designers can analyze the applicability of TDengine in target application systems as follows.
| **Data Source Characteristics and Requirements** | **Not Applicable** | **Might Be Applicable** | **Very Applicable** | **Description** |
| -------------------------------------------------------- | ------------------ | ----------------------- | ------------------- | :----------------------------------------------------------- |
| A huge amount of total data | | | √ | TDengine provides excellent scale-out functions in terms of capacity, and has a storage structure matching high compression ratio to achieve the best storage efficiency in the industry. |
| Data input velocity is occasionally or continuously huge | | | √ | TDengine's performance is much higher than other similar products. It can continuously process a large amount of input data in the same hardware environment, and provide a performance evaluation tool that can easily run in the user environment. |
| A huge amount of data sources | | | √ | TDengine is designed to include optimizations specifically for a huge amount of data sources, such as data writing and querying, which is especially suitable for efficiently processing massive (tens of millions or more) data sources. |
| A massive amount of total data | | | √ | TDengine provides excellent scale-out functions in terms of capacity, and has a storage structure with matching high compression ratio to achieve the best storage efficiency in the industry.|
| Data input velocity is extremely high | | | √ | TDengine's performance is much higher than that of other similar products. It can continuously process larger amounts of input data in the same hardware environment, and provides a performance evaluation tool that can easily run in the user environment. |
| A huge number of data sources | | | √ | TDengine is optimized specifically for a huge number of data sources. It is especially suitable for efficiently ingesting, writing and querying data from billions of data sources. |
### System Architecture Requirements
| **System Architecture Requirements** | **Not Applicable** | **Might Be Applicable** | **Very Applicable** | **Description** |
| ------------------------------------------------- | ------------------ | ----------------------- | ------------------- | ------------------------------------------------------------ |
| Require a simple and reliable system architecture | | | √ | TDengine's system architecture is very simple and reliable, with its own message queue, cache, stream computing, monitoring and other functions, and no need to integrate any additional third-party products. |
| Require fault-tolerance and high-reliability | | | √ | TDengine has cluster functions to automatically provide high-reliability functions such as fault tolerance and disaster recovery. |
| Standardization specifications | | | √ | TDengine uses standard SQL language to provide main functions and follow standardization specifications. |
| A simple and reliable system architecture | | | √ | TDengine's system architecture is very simple and reliable, with its own message queue, cache, stream computing, monitoring and other functions. There is no need to integrate any additional third-party products. |
| Fault-tolerance and high-reliability | | | √ | TDengine has cluster functions to automatically provide high-reliability and high-availability functions such as fault tolerance and disaster recovery. |
| Standardization support | | | √ | TDengine supports standard SQL and also provides extensions specifically to analyze time-series data. |
### System Function Requirements
| **System Architecture Requirements** | **Not Applicable** | **Might Be Applicable** | **Very Applicable** | **Description** |
| **System Function Requirements** | **Not Applicable** | **Might Be Applicable** | **Very Applicable** | **Description** |
| ------------------------------------------------- | ------------------ | ----------------------- | ------------------- | ------------------------------------------------------------ |
| Require completed data processing algorithms built-in | | √ | | TDengine implements various general data processing algorithms, but has not properly handled all requirements of different industries, so special types of processing shall be processed at the application level. |
| Require a huge amount of crosstab queries | | √ | | This type of processing should be handled more by relational database systems, or TDengine and relational database systems should fit together to implement system functions. |
| Complete data processing algorithms built-in | | √ | | While TDengine implements various general data processing algorithms, industry specific algorithms and special types of processing will need to be implemented at the application level.|
| A large number of crosstab queries | | √ | | This type of processing is better handled by general purpose relational database systems but TDengine can work in concert with relational database systems to provide more complete solutions. |
### System Performance Requirements
| **System Architecture Requirements** | **Not Applicable** | **Might Be Applicable** | **Very Applicable** | **Description** |
| **System Performance Requirements** | **Not Applicable** | **Might Be Applicable** | **Very Applicable** | **Description** |
| ------------------------------------------------- | ------------------ | ----------------------- | ------------------- | ------------------------------------------------------------ |
| Require larger total processing capacity | | | √ | TDengine’s cluster functions can easily improve processing capacity via multi-server-cooperating. |
| Require high-speed data processing | | | √ | TDengine’s storage and data processing are designed to be optimized for IoT, can generally improve the processing speed by multiple times than other similar products. |
| Require fast processing of fine-grained data | | | √ | TDengine has achieved the same level of performance with relational and NoSQL data processing systems. |
| Very large total processing capacity | | | √ | TDengine’s cluster functions can easily improve processing capacity via multi-server coordination. |
| Extremely high-speed data processing | | | √ | TDengine’s storage and data processing are optimized for IoT, and can process data many times faster than similar products.|
| Extremely fast processing of fine-grained data | | | √ | TDengine has achieved the same or better performance than other relational and NoSQL data processing systems. |
### System Maintenance Requirements
| **System Architecture Requirements** | **Not Applicable** | **Might Be Applicable** | **Very Applicable** | **Description** |
| **System Maintenance Requirements** | **Not Applicable** | **Might Be Applicable** | **Very Applicable** | **Description** |
| ------------------------------------------------- | ------------------ | ----------------------- | ------------------- | ------------------------------------------------------------ |
| Require system with high-reliability | | | √ | TDengine has a very robust and reliable system architecture to implement simple and convenient daily operation with streamlined experiences for operators, thus human errors and accidents are eliminated to the greatest extent. |
| Require controllable operation learning cost | | | √ | As above. |
| Require abundant talent supply | √ | | | As a new-generation product, it’s still difficult to find talents with TDengine experiences from the market. However, the learning cost is low. As the vendor, we also provide extensive operation training and counseling services. |
| Native high-reliability | | | √ | TDengine has a very robust, reliable and easily configurable system architecture to simplify routine operation. Human errors and accidents are eliminated to the greatest extent, with a streamlined experience for operators. |
| Minimize learning and maintenance costs | | | √ | In addition to being easily configurable, standard SQL support and the Taos shell for ad hoc queries makes maintenance simpler, allows reuse and reduces learning costs.|
| Abundant talent supply | √ | | | Given the above, and given the extensive training and professional services provided by TDengine, it is easy to migrate from existing solutions or create a new and lasting solution based on TDengine.|
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册