This document describes how to install TDengine in a Docker container and perform queries and inserts. To get started with TDengine in a non-containerized environment, see [Quick Install](../../get-started/package). If you want to view the source code, build TDengine yourself, or contribute to the project, see the [TDengine GitHub repository](https://github.com/taosdata/TDengine).
This document describes how to install TDengine in a Docker container and perform queries and inserts.
- To get started with TDengine in a non-containerized environment, see [Quick Install from Package](../../get-started/package).
- For a fully managed solution, see the [TDengine Cloud documentation](/cloud/).
- If you want to view the source code, build TDengine yourself, or contribute to the project, see the [TDengine GitHub repository](https://github.com/taosdata/TDengine).
For information about installing TDengine on Docker, see [Quick Install on Docker](../../get-started/docker). If you want to view the source code, build TDengine yourself, or contribute to the project, see the [TDengine GitHub repository](https://github.com/taosdata/TDengine).
This document describes how to install TDengine on Linux and Windows and perform queries and inserts.
- To get started with TDengine on Docker, see [Quick Install on Docker](../../get-started/docker).
- For a fully managed solution, see the [TDengine Cloud documentation](/cloud/).
- If you want to view the source code, build TDengine yourself, or contribute to the project, see the [TDengine GitHub repository](https://github.com/taosdata/TDengine).
The full package of TDengine includes the TDengine Server (`taosd`), TDengine Client (`taosc`), taosAdapter for connecting with third-party systems and providing a RESTful interface, a command-line interface (CLI, taos), and some tools. Note that taosAdapter supports Linux only. In addition to connectors for multiple languages, TDengine also provides a [REST API](../../reference/rest-api) through [taosAdapter](../../reference/taosadapter).
description:This article describes how to install TDengine and test its performance.
---
The full package of TDengine includes the TDengine Server (`taosd`), TDengine Client (`taosc`), taosAdapter for connecting with third-party systems and providing a RESTful interface, a command-line interface, and some tools. In addition to connectors for multiple languages, TDengine also provides a [RESTful interface](/reference/rest-api) through [taosAdapter](/reference/taosadapter).
You can install and run TDengine on Linux and Windows machines as well as Docker containers. You can also deploy TDengine as a managed service with TDengine Cloud.
You can install and run TDengine on Linux and Windows machines as well as Docker containers.
The full package of TDengine includes the TDengine Server (`taosd`), TDengine Client (`taosc`), taosAdapter for connecting with third-party systems and providing a RESTful interface, a command-line interface, and some tools. In addition to connectors for multiple languages, TDengine also provides a [RESTful interface](/reference/rest-api) through [taosAdapter](/reference/taosadapter).
4. The FILE clause inserts tags or data from a comma-separates values (CSV) file. Do not include headers in your CSV files.
5. A single INSERT statement can write data to multiple tables.
5. A single `INSERT ... VALUES` statement and `INSERT ... FILE` statement can write data to multiple tables.
6. The INSERT statement is fully parsed before being executed, so that if any element of the statement fails, the entire statement will fail. For example, the following statement will not create a table because the latter part of the statement is invalid:
...
...
@@ -47,6 +49,8 @@ INSERT INTO
7. However, an INSERT statement that writes data to multiple subtables can succeed for some tables and fail for others. This situation is caused because vnodes perform write operations independently of each other. One vnode failing to write data does not affect the ability of other vnodes to write successfully.
8. Data from TDengine can be inserted into a specified table using the `INSERT ... subquery` statement. Arbitrary query statements are supported. This syntax can only be used for subtables and normal tables, and does not support automatic table creation.
## Insert a Record
Single row or multiple rows specified with VALUES can be inserted into a specific table. A single row is inserted using the below statement.
@@ -46,7 +46,7 @@ The following restrictions apply:
### Other Rules
- The window clause must occur after the PARTITION BY clause and before the GROUP BY clause. It cannot be used with a GROUP BY clause.
- The window clause must occur after the PARTITION BY clause. It cannot be used with a GROUP BY clause.
- SELECT clauses on windows can contain only the following expressions:
- Constants
- Aggregate functions
...
...
@@ -78,7 +78,7 @@ These pseudocolumns occur after the aggregation clause.
1. A huge volume of interpolation output may be returned using `FILL`, so it's recommended to specify the time range when using `FILL`. The maximum number of interpolation values that can be returned in a single query is 10,000,000.
2. The result set is in ascending order of timestamp when you aggregate by time window.
3. If aggregate by window is used on STable, the aggregate function is performed on all the rows matching the filter conditions. If `PARTITION BY` is not used in the query, the result set will be returned in strict ascending order of timestamp; otherwise the result set is not exactly in the order of ascending timestamp in each group.
3. If aggregate by window is used on STable, the aggregate function is performed on all the rows matching the filter conditions. If `PARTITION BY` is not used in the query, the result set will be returned in strict ascending order of timestamp; otherwise the result set will be returned in the order of ascending timestamp in each group.
:::
...
...
@@ -120,6 +120,12 @@ In case of using integer, bool, or string to represent the status of a device at
SELECT COUNT(*), FIRST(ts), status FROM temp_tb_1 STATE_WINDOW(status);
```
Only care about the information of the status window when the status is 2. For example:
```
SELECT * FROM (SELECT COUNT(*) AS cnt, FIRST(ts) AS fst, status FROM temp_tb_1 STATE_WINDOW(status)) t WHERE status = 2;
```
### Session Window
The primary key, i.e. timestamp, is used to determine which session window a row belongs to. As shown in the figure below, if the limit of time interval for the session window is specified as 12 seconds, then the 6 rows in the figure constitutes 2 time windows, [2019-04-28 14:22:10,2019-04-28 14:22:30] and [2019-04-28 14:23:10,2019-04-28 14:23:30] because the time difference between 2019-04-28 14:22:30 and 2019-04-28 14:23:10 is 40 seconds, which exceeds the time interval limit of 12 seconds.