To achieve the purpose of high performance data writing and querying, TDengine employs a lot of caching technologies in both server side and client side.
## Write Cache
The cache management policy in TDengine is First-In-First-Out (FIFO). FIFO is also known as insert driven cache management policy and it is different from read driven cache management, which is more commonly known as Least-Recently-Used (LRU). FIFO simply stores the latest data in cache and flushes the oldest data in cache to disk, when the cache usage reaches a threshold. In IoT use cases, it is the current state i.e. the latest or most recent data that is important. The cache policy in TDengine, like much of the design and architecture of TDengine, is based on the nature of IoT data.
Caching the latest data provides the capability of retrieving data in milliseconds. With this capability, TDengine can be configured properly to be used as a caching system without deploying another separate caching system. This simplifies the system architecture and minimizes operational costs. The cache is emptied after TDengine is restarted. TDengine does not reload data from disk into cache, like a key-value caching system.
The memory space used by each vnode as write cache is determined when creating a database. Parameter `vgroups` and `buffer` can be used to specify the number of vnode and the size of write cache for each vnode when creating the database. Then, the total size of write cache for this database is `vgroups * buffer`.
```sql
createdatabasedb0vgroups100buffer16MB
```
The above statement creates a database of 100 vnodes while each vnode has a write cache of 16MB.
Even though in theory it's always better to have a larger cache, the extra effect would be very minor once the size of cache grows beyond a threshold. So normally it's enough to use the default value of `buffer` parameter.
## Read Cache
The memory space used by the TDengine cache is fixed in size and configurable. It should be allocated based on application requirements and system resources. An independent memory pool is allocated for and managed by each vnode (virtual node) in TDengine. There is no sharing of memory pools between vnodes. All the tables belonging to a vnode share all the cache memory of the vnode.
When creating a database, it's also possible to specify whether to cache the latest data of each sub table, using parameter `cachelast`. There are 3 cases:
- 0: No cache for latest data
- 1: The last row of each table is cached, `last_row` function can benefit significantly from it
- 2: The latest non-NULL value of each column for each table is cached, `last` function can benefit very much when there is no `where`, `group by`, `order by` or `interval` clause
- 3: Bot hthe last row and the latest non-NULL value of each column for each table are cached, identical to the behavior of both 1 and 2 are set together
The memory pool is divided into blocks and data is stored in row format in memory and each block follows FIFO policy. The size of each block is determined by configuration parameter `cache` and the number of blocks for each vnode is determined by the parameter `blocks`. For each vnode, the total cache size is `cache * blocks`. A cache block needs to ensure that each table can store at least dozens of records, to be efficient.
`last_row` function can be used to retrieve the last row of a table or a STable to quickly show the current state of devices on monitoring screen. For example the below SQL statement retrieves the latest voltage of all meters in San Francisco, California.
## Meta Cache
To process data writing and querying efficiently, each vnode caches the metadata that's already retrieved. Parameters `pages` and `pagesize` are used to specify the size of metadata cache for each vnode.
The above statement will create a database db0 each of whose vnode is allocated a meta cache of `128 * 16 KB = 2 MB` .
## File System Cache
TDengine utilizes WAL to provide basic reliability. The essential of WAL is to append data in a disk file, so the file system cache also plays an important role in the writing performance. Parameter `wal` can be used to specify the policy of writing WAL, there are 2 cases:
- 1: Write data to WAL without calling fsync, the data is actually written to the file system cache without flushing immediately, in this way you can get better write performance
- 2: Write data to WAL and invoke fsync, the data is immediately flushed to disk, in this way you can get higher reliability
## Client Cache
To improve the overall efficiency of processing data, besides the above caches, the core library `libtaos.so` (also referred to as `taosc`) which all client programs depend on also has its own cache. `taosc` caches the metadata of the databases, super tables, tables that the invoking client has accessed, plus other critical metadata such as the cluster topology.
When multiple client programs are accessing a TDengine cluster, if one of the clients modifies some metadata, the cache may become invalid in other clients. If this case happens, the client programs need to "reset query cache" to invalidate the whole cache so that `taosc` is enforced to repull the metadata it needs to rebuild the cache.
将新数据节点的 End Point 添加进集群的 EP 列表。“fqdn:port“需要用双引号引起来,否则出错。一个数据节点对外服务的 fqdn 和 port 可以通过配置文件 taos.cfg 进行配置,缺省是自动获取。【强烈不建议用自动获取方式来配置 FQDN,可能导致生成的数据节点的 End Point 不是所期望的】
示例如下:
```
taos> create dnode "localhost:7030";
Query OK, 0 of 0 row(s) in database (0.008203s)
taos> show dnodes;
id | end_point | vnodes | cores | status | role | create_time | offline reason |
vnode 的副本数是与 DB 关联的,一个集群里可以有多个 DB,根据运营的需求,每个 DB 可以配置不同的副本数。创建数据库时,通过参数 replica 指定副本数(缺省为 1)。如果副本数为 1,系统的可靠性无法保证,只要数据所在的节点宕机,就将无法提供服务。集群的节点数必须大于等于副本数,否则创建表时将返回错误“more dnodes are needed”。比如下面的命令将创建副本数为 3 的数据库 demo:
```sql
CREATEDATABASEdemoreplica3;
```
一个 DB 里的数据会被切片分到多个 vnode group,vnode group 里的 vnode 数目就是 DB 的副本数,同一个 vnode group 里各 vnode 的数据是完全一致的。为保证高可用性,vnode group 里的 vnode 一定要分布在不同的数据节点 dnode 里(实际部署时,需要在不同的物理机上),只要一个 vnode group 里超过半数的 vnode 处于工作状态,这个 vnode group 就能正常的对外服务。
一个数据节点 dnode 里可能有多个 DB 的数据,因此一个 dnode 离线时,可能会影响到多个 DB。如果一个 vnode group 里的一半或一半以上的 vnode 不工作,那么该 vnode group 就无法对外服务,无法插入或读取数据,这样会影响到它所属的 DB 的一部分表的读写操作。
vnode 的副本数是与 DB 关联的,一个集群里可以有多个 DB,根据运营的需求,每个 DB 可以配置不同的副本数。创建数据库时,通过参数 replica 指定副本数(缺省为 1)。如果副本数为 1,系统的可靠性无法保证,只要数据所在的节点宕机,就将无法提供服务。集群的节点数必须大于等于副本数,否则创建表时将返回错误“more dnodes are needed”。比如下面的命令将创建副本数为 3 的数据库 demo:
```sql
CREATEDATABASEdemoreplica3;
```
一个 DB 里的数据会被切片分到多个 vnode group,vnode group 里的 vnode 数目就是 DB 的副本数,同一个 vnode group 里各 vnode 的数据是完全一致的。为保证高可用性,vnode group 里的 vnode 一定要分布在不同的数据节点 dnode 里(实际部署时,需要在不同的物理机上),只要一个 vnode group 里超过半数的 vnode 处于工作状态,这个 vnode group 就能正常的对外服务。
一个数据节点 dnode 里可能有多个 DB 的数据,因此一个 dnode 离线时,可能会影响到多个 DB。如果一个 vnode group 里的一半或一半以上的 vnode 不工作,那么该 vnode group 就无法对外服务,无法插入或读取数据,这样会影响到它所属的 DB 的一部分表的读写操作。