TightDataPointStorageF.c 12.4 KB
Newer Older
A
Alex Duan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
/**
 *  @file TightPointDataStorageF.c
 *  @author Sheng Di and Dingwen Tao
 *  @date Aug, 2016
 *  @brief The functions used to construct the tightPointDataStorage element for storing compressed bytes.
 *  (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
 *      See COPYRIGHT in top-level directory.
 */

#include <stdlib.h> 
#include <stdio.h>
#include <string.h>
#include "TightDataPointStorageF.h"
#include "sz.h"
#include "defines.h"
#include "Huffman.h"

void new_TightDataPointStorageF_Empty(TightDataPointStorageF **this)
{
	TightDataPointStorageF* tdpf = (TightDataPointStorageF*)malloc(sizeof(TightDataPointStorageF));
	memset(tdpf, 0, sizeof(TightDataPointStorageF));
    *this = tdpf;
}

int new_TightDataPointStorageF_fromFlatBytes(TightDataPointStorageF **this, unsigned char* flatBytes, size_t flatBytesLength, sz_exedata* pde_exe, sz_params* pde_params)
{
	new_TightDataPointStorageF_Empty(this);
	size_t i, index = 0;

	//
	// parse tdps
	//

	// 1 version(1)
	unsigned char version = flatBytes[index++]; //1
	unsigned char sameRByte = flatBytes[index++]; //1

    // parse data format
	switch (version)
	{
	case DATA_FROMAT_VER1:
		break;
	default:
	    printf(" error, float compressed data format can not be recognised. ver=%d\n ", version);
		return SZ_ABS;
	}	
	
	// 2 same(1)														      //note that 1000,0000 is reserved for regression tag.
	int same = sameRByte & 0x01; 											//0000,0001
	(*this)->isLossless = (sameRByte & 0x10)>>4; 							//0001,0000								//0010,0000
	pde_exe->SZ_SIZE_TYPE = ((sameRByte & 0x40)>>6)==1?8:4; 				//0100,0000	
	int errorBoundMode = SZ_ABS;
    // 3 meta(2)   
	convertBytesToSZParams(&(flatBytes[index]), pde_params, pde_exe);
	index += MetaDataByteLength;
    // 4 element count(4)
	unsigned char dsLengthBytes[8];
	for (i = 0; i < pde_exe->SZ_SIZE_TYPE; i++)
		dsLengthBytes[i] = flatBytes[index++];
	(*this)->dataSeriesLength = bytesToSize(dsLengthBytes, pde_exe->SZ_SIZE_TYPE);// 4 or 8		
	if((*this)->isLossless==1)
	{
		//(*this)->exactMidBytes = flatBytes+8;
		return errorBoundMode;
	}
	else if(same==1)
	{
		(*this)->allSameData = 1;
		(*this)->exactMidBytes = &(flatBytes[index]);
		return errorBoundMode;
	}
	else
		(*this)->allSameData = 0;
    // regression  
    int isRegression = (sameRByte >> 7) & 0x01;
	if(isRegression == 1)
	{
		(*this)->raBytes_size = flatBytesLength - 1 - 1 - MetaDataByteLength - pde_exe->SZ_SIZE_TYPE;
		(*this)->raBytes = &(flatBytes[index]);
		return errorBoundMode;
	}			
    // 5 quant intervals(4)   
	unsigned char byteBuf[8];
	for (i = 0; i < 4; i++)
		byteBuf[i] = flatBytes[index++];
	int max_quant_intervals = bytesToInt_bigEndian(byteBuf);// 4	
	pde_params->maxRangeRadius = max_quant_intervals/2;
    // 6 intervals
	for (i = 0; i < 4; i++)
		byteBuf[i] = flatBytes[index++];
	(*this)->intervals = bytesToInt_bigEndian(byteBuf);// 4	
    // 7 median
	for (i = 0; i < 4; i++)
		byteBuf[i] = flatBytes[index++];
	(*this)->medianValue = bytesToFloat(byteBuf); //4
	// 8 reqLength
	(*this)->reqLength = flatBytes[index++]; //1
	// 9 realPrecision(8)
	for (i = 0; i < 8; i++)
		byteBuf[i] = flatBytes[index++];
	(*this)->realPrecision = bytesToDouble(byteBuf);//8
	// 10 typeArray_size
	for (i = 0; i < pde_exe->SZ_SIZE_TYPE; i++)
		byteBuf[i] = flatBytes[index++];
	(*this)->typeArray_size = bytesToSize(byteBuf, pde_exe->SZ_SIZE_TYPE);// 4		
    // 11 exactNum
	for (i = 0; i < pde_exe->SZ_SIZE_TYPE; i++)
		byteBuf[i] = flatBytes[index++];    
	(*this)->exactDataNum = bytesToSize(byteBuf, pde_exe->SZ_SIZE_TYPE);// ST
    // 12 mid size
	for (i = 0; i < pde_exe->SZ_SIZE_TYPE; i++)
		byteBuf[i] = flatBytes[index++];
	(*this)->exactMidBytes_size = bytesToSize(byteBuf, pde_exe->SZ_SIZE_TYPE);// STqq
    
	// calc leadNumArray_size
	size_t logicLeadNumBitsNum = (*this)->exactDataNum * 2;
	if (logicLeadNumBitsNum % 8 == 0)
	{
		(*this)->leadNumArray_size = logicLeadNumBitsNum >> 3;
	}
	else
	{
		(*this)->leadNumArray_size = (logicLeadNumBitsNum >> 3) + 1;
	}	

    // 13 typeArray
	(*this)->typeArray = &flatBytes[index]; 
	//retrieve the number of states (i.e., stateNum)
	(*this)->allNodes = bytesToInt_bigEndian((*this)->typeArray); //the first 4 bytes store the stateNum
	(*this)->stateNum = ((*this)->allNodes+1)/2;	
	index+=(*this)->typeArray_size;

    // 14 leadNumArray
	(*this)->leadNumArray = &flatBytes[index];
	index += (*this)->leadNumArray_size;
	// 15 exactMidBytes
	(*this)->exactMidBytes = &flatBytes[index];
	index+=(*this)->exactMidBytes_size;
	// 16 residualMidBits
	(*this)->residualMidBits = &flatBytes[index];

    // calc residualMidBits_size
	(*this)->residualMidBits_size = flatBytesLength - 1 - 1 - MetaDataByteLength - pde_exe->SZ_SIZE_TYPE - 4 - 4 - 4 - 1 - 8 
			- pde_exe->SZ_SIZE_TYPE - pde_exe->SZ_SIZE_TYPE - pde_exe->SZ_SIZE_TYPE
			- (*this)->leadNumArray_size - (*this)->exactMidBytes_size - (*this)->typeArray_size;	
	
	
	return errorBoundMode;
}

/**
 *
 * type's length == dataSeriesLength
 * exactMidBytes's length == exactMidBytes_size
 * leadNumIntArray's length == exactDataNum
 * escBytes's length == escBytes_size
 * resiBitLength's length == resiBitLengthSize
 * */
void new_TightDataPointStorageF(TightDataPointStorageF **this,
		size_t dataSeriesLength, size_t exactDataNum, 
		int* type, unsigned char* exactMidBytes, size_t exactMidBytes_size,
		unsigned char* leadNumIntArray,  //leadNumIntArray contains readable numbers....
		unsigned char* resiMidBits, size_t resiMidBits_size,
		unsigned char resiBitLength, 
		double realPrecision, float medianValue, char reqLength, unsigned int intervals, 
		unsigned char radExpo) {
	
	*this = (TightDataPointStorageF *)malloc(sizeof(TightDataPointStorageF));
	memset(*this, 0, sizeof(TightDataPointStorageF));
	(*this)->allSameData = 0;
	(*this)->realPrecision = realPrecision;
	(*this)->medianValue = medianValue;
	(*this)->reqLength = reqLength;

	(*this)->dataSeriesLength = dataSeriesLength;
	(*this)->exactDataNum = exactDataNum;

    // encode type with huffMan
	int stateNum = 2*intervals;
	HuffmanTree* huffmanTree = createHuffmanTree(stateNum);
	encode_withTree(huffmanTree, type, dataSeriesLength, &(*this)->typeArray, &(*this)->typeArray_size);
	SZ_ReleaseHuffman(huffmanTree);

	(*this)->exactMidBytes = exactMidBytes;
	(*this)->exactMidBytes_size = exactMidBytes_size;

	(*this)->leadNumArray_size = convertIntArray2ByteArray_fast_2b(leadNumIntArray, exactDataNum, &((*this)->leadNumArray));

	(*this)->residualMidBits_size = convertIntArray2ByteArray_fast_dynamic(resiMidBits, resiBitLength, exactDataNum, &((*this)->residualMidBits));
	
	(*this)->intervals = intervals;
	
	(*this)->isLossless = 0;
	
	(*this)->radExpo = radExpo;
}

void convertTDPStoBytes_float(TightDataPointStorageF* tdps, unsigned char* bytes, unsigned char* dsLengthBytes, unsigned char sameByte)
{
	size_t i, k = 0;
	unsigned char intervalsBytes[4];
	unsigned char typeArrayLengthBytes[8];
	unsigned char exactLengthBytes[8];
	unsigned char exactMidBytesLength[8];
	unsigned char realPrecisionBytes[8];
	unsigned char medianValueBytes[4];
	unsigned char max_quant_intervals_Bytes[4];
	
	// 1 version
	bytes[k++] = versionNumber;
	// 2 same
	bytes[k++] = sameByte;	//1	byte
	// 3 meta
	convertSZParamsToBytes(confparams_cpr, &(bytes[k]), exe_params->optQuantMode);
	k = k + MetaDataByteLength;
	// 4 element count
	for(i = 0; i < exe_params->SZ_SIZE_TYPE; i++)//ST: 4 or 8 bytes
		bytes[k++] = dsLengthBytes[i];	
	intToBytes_bigEndian(max_quant_intervals_Bytes, confparams_cpr->max_quant_intervals);
	// 5 max_quant_intervals length
	for(i = 0;i<4;i++)//4
		bytes[k++] = max_quant_intervals_Bytes[i];			
	// 6 intervals
	intToBytes_bigEndian(intervalsBytes, tdps->intervals);
	for(i = 0;i<4;i++)//4
		bytes[k++] = intervalsBytes[i];				
	// 7 median
	floatToBytes(medianValueBytes, tdps->medianValue);
	for (i = 0; i < 4; i++)// 4
		bytes[k++] = medianValueBytes[i];		
    // 8 reqLength
	bytes[k++] = tdps->reqLength; //1 byte
    // 9 realPrecision
	doubleToBytes(realPrecisionBytes, tdps->realPrecision);
	for (i = 0; i < 8; i++)// 8
		bytes[k++] = realPrecisionBytes[i];		
   // 10 typeArray size
	sizeToBytes(typeArrayLengthBytes, tdps->typeArray_size, exe_params->SZ_SIZE_TYPE);
	for(i = 0;i<exe_params->SZ_SIZE_TYPE;i++)//ST
		bytes[k++] = typeArrayLengthBytes[i];			
    // 11 exactDataNum  leadNum calc by this , so not save leadNum
	sizeToBytes(exactLengthBytes, tdps->exactDataNum, exe_params->SZ_SIZE_TYPE);
	for(i = 0;i<exe_params->SZ_SIZE_TYPE;i++)//ST
		bytes[k++] = exactLengthBytes[i];
    // 12 Mid size
	sizeToBytes(exactMidBytesLength, tdps->exactMidBytes_size, exe_params->SZ_SIZE_TYPE);
	for(i = 0;i<exe_params->SZ_SIZE_TYPE;i++)//ST
		bytes[k++] = exactMidBytesLength[i];
	// 13 typeArray	
	memcpy(&(bytes[k]), tdps->typeArray, tdps->typeArray_size);
	k += tdps->typeArray_size;		
    // 14 leadNumArray_size
	memcpy(&(bytes[k]), tdps->leadNumArray, tdps->leadNumArray_size);
	k += tdps->leadNumArray_size;
	// 15 mid data
	memcpy(&(bytes[k]), tdps->exactMidBytes, tdps->exactMidBytes_size);
	k += tdps->exactMidBytes_size;	
    // 16 residualMidBits 
	if(tdps->residualMidBits!=NULL)
	{
		memcpy(&(bytes[k]), tdps->residualMidBits, tdps->residualMidBits_size);
		k += tdps->residualMidBits_size;
	}	
}

//convert TightDataPointStorageD to bytes...
bool convertTDPStoFlatBytes_float(TightDataPointStorageF *tdps, unsigned char* bytes, size_t *size)
{
	size_t i, k = 0; 
	unsigned char dsLengthBytes[8];
	
	if(exe_params->SZ_SIZE_TYPE==4)
		intToBytes_bigEndian(dsLengthBytes, tdps->dataSeriesLength);//4
	else
		longToBytes_bigEndian(dsLengthBytes, tdps->dataSeriesLength);//8
		
	unsigned char sameByte = tdps->allSameData==1?(unsigned char)1:(unsigned char)0; //0000,0001
	//sameByte = sameByte | (confparams_cpr->szMode << 1);  //0000,0110 (no need because of convertSZParamsToBytes
	if(tdps->isLossless)
		sameByte = (unsigned char) (sameByte | 0x10);  // 0001,0000
	if(confparams_cpr->errorBoundMode>=PW_REL)
		sameByte = (unsigned char) (sameByte | 0x20); // 0010,0000, the 5th bit
	if(exe_params->SZ_SIZE_TYPE==8)
		sameByte = (unsigned char) (sameByte | 0x40); // 0100,0000, the 6th bit
	if(confparams_cpr->errorBoundMode == PW_REL && confparams_cpr->accelerate_pw_rel_compression)
		sameByte = (unsigned char) (sameByte | 0x08); //0000,1000
	//if(confparams_cpr->protectValueRange)
	//	sameByte = (unsigned char) (sameByte | 0x04); //0000,0100
	
	if(tdps->allSameData == 1 )
	{
		//
		// same format
		//
		size_t totalByteLength = 1 + 1 + MetaDataByteLength + exe_params->SZ_SIZE_TYPE + tdps->exactMidBytes_size;
		//*bytes = (unsigned char *)malloc(sizeof(unsigned char)*totalByteLength); // not need malloc comment by tickduan
		// check output buffer enough
		if(totalByteLength >=  tdps->dataSeriesLength * sizeof(float) )
		{
			*size = 0;
			return false;
		}
		
		// 1 version 1 byte
	    bytes[k++] = versionNumber;
		// 2 same flag 1 bytes
		bytes[k++] = sameByte;
		// 3 metaData 26 bytes
		convertSZParamsToBytes(confparams_cpr, &(bytes[k]), exe_params->optQuantMode);
		k = k + MetaDataByteLength;
		// 4 data Length 4 or 8 bytes	
		for (i = 0; i < exe_params->SZ_SIZE_TYPE; i++)
			bytes[k++] = dsLengthBytes[i];
		// 5 exactMidBytes exactMidBytes_size bytes
		for (i = 0; i < tdps->exactMidBytes_size; i++)
			bytes[k++] = tdps->exactMidBytes[i];

		*size = totalByteLength;
	}
	else
	{
		//
		// not same format
		//
		size_t residualMidBitsLength = tdps->residualMidBits == NULL ? 0 : tdps->residualMidBits_size;

        // version(1) + samebyte(1) 
		size_t totalByteLength = 1 + 1 + MetaDataByteLength + exe_params->SZ_SIZE_TYPE + 4 + 4 + 4 + 1 + 8 
				+ exe_params->SZ_SIZE_TYPE + exe_params->SZ_SIZE_TYPE + exe_params->SZ_SIZE_TYPE
			    + tdps->typeArray_size
				+ tdps->leadNumArray_size 
				+ tdps->exactMidBytes_size 
				+ residualMidBitsLength;		

		//*bytes = (unsigned char *)malloc(sizeof(unsigned char)*totalByteLength);  // comment by tickduan
		if(totalByteLength >= tdps->dataSeriesLength * sizeof(float))
		{
			*size = 0;
			return false;
		}

		convertTDPStoBytes_float(tdps, bytes, dsLengthBytes, sameByte);
		*size = totalByteLength;
		return true;
	}

	return true;
}

/**
 * to free the memory used in the compression
 * */
void free_TightDataPointStorageF(TightDataPointStorageF *tdps)
{
	if(tdps->leadNumArray!=NULL)
		free(tdps->leadNumArray);
	if(tdps->exactMidBytes!=NULL)
		free(tdps->exactMidBytes);
	if(tdps->residualMidBits!=NULL)
		free(tdps->residualMidBits);
	if(tdps->typeArray)
	    free(tdps->typeArray);
	free(tdps);
}

/**
 * to free the memory used in the decompression
 * */
void free_TightDataPointStorageF2(TightDataPointStorageF *tdps)
{			
	free(tdps);
}