manual.html 228.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<html>

<head>
<title>Lua 5.1 Reference Manual</title>
<link rel="stylesheet" href="lua.css">
</head>

<body bgcolor="#FFFFFF">

<hr></hr>
<h1>
<a href="http://www.lua.org/home.html"><img src="logo.gif" alt="[Lua logo]" border="0"></img></a>
Lua 5.1 Reference Manual
</h1>

by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes
<p>
<small>
<a href="http://www.lua.org/copyright.html">Copyright</a>
&copy; 2006 Lua.org, PUC-Rio.  All rights reserved.
</small>
<hr></hr>

<p>
<p>
<!-- ====================================================================== -->


<a name="1"></a><h1>1 - Introduction</h1>

<p>Lua is an extension programming language designed to support
general procedural programming with data description
facilities.
It also offers good support for object-oriented programming,
functional programming, and data-driven programming.
Lua is intended to be used as a powerful, light-weight
scripting language for any program that needs one.
Lua is implemented as a library, written in <em>clean</em> C
(that is, in the common subset of ANSI C and C++).

<p>Being an extension language, Lua has no notion of a "main" program:
it only works <em>embedded</em> in a host client,
called the <em>embedding program</em> or simply the <em>host</em>.
This host program can invoke functions to execute a piece of Lua code,
can write and read Lua variables,
and can register C functions to be called by Lua code.
Through the use of C functions, Lua can be augmented to cope with
a wide range of different domains,
thus creating customized programming languages sharing a syntactical framework.
The Lua distribution includes a sample host program called <code>lua</code>,
which uses the Lua library to offer a complete, stand-alone Lua interpreter.

<p>Lua is free software,
and is provided as usual with no guarantees,
as stated in its license.
The implementation described in this manual is available
at Lua's official web site, <code>www.lua.org</code>.

<p>Like any other reference manual,
this document is dry in places.
For a discussion of the decisions behind the design of Lua,
see the technical papers available at Lua's web site.
For a detailed introduction to programming in Lua,
see Roberto's book, <em>Programming in Lua</em>.

<p>
<a name="language"></a><a name="2"></a><h1>2 - The Language</h1>

<p>This section describes the lexis, the syntax, and the semantics of Lua.
In other words,
this section describes
which tokens are valid,
how they can be combined,
and what their combinations mean.

<p>The language constructs will be explained using the usual extended BNF notation,
in which
{<em>a</em>} means 0 or more <em>a</em>'s, and
[<em>a</em>] means an optional <em>a</em>.
Non-terminals are shown in <em>italics</em>,
keywords are shown in <b>bold</b>,
and other terminal symbols are shown in <code>typewriter</code> font,
enclosed in single quotes.
The complete syntax of Lua can be found at the end of this manual.

<p><a name="lexical"></a><a name="2.1"></a><h2>2.1 - Lexical Conventions</h2>

<p><em>Names</em>
(also called <em>identifiers</em>)
in Lua can be any string of letters,
digits, and underscores,
not beginning with a digit.
This coincides with the definition of names in most languages.
(The definition of letter depends on the current locale:
any character considered alphabetic by the current locale
can be used in an identifier.)
Identifiers are used to name variables and table fields.

<p>The following <em>keywords</em> are reserved
and cannot be used as names:

<pre>
       and       break     do        else      elseif
       end       false     for       function  if
       in        local     nil       not       or
       repeat    return    then      true      until     while
</pre>

<p>Lua is a case-sensitive language:
<code>and</code> is a reserved word, but <code>And</code> and <code>AND</code>
are two different, valid names.
As a convention, names starting with an underscore followed by
uppercase letters (such as <a href="#pdf-_VERSION"><code>_VERSION</code></a>)
are reserved for internal global variables used by Lua.

<p>The following strings denote other tokens:
<pre>
       +     -     *     /     %     ^     #
       ==    ~=    &#060;=    >=    &#060;     >     =
       (     )     {     }     [     ]
       ;     :     ,     .     ..    ...
</pre>

<p><em>Literal strings</em>
can be delimited by matching single or double quotes,
and can contain the following C-like escape sequences:
<ul>
<li><b><code>\a</code></b> --- bell
<li><b><code>\b</code></b> --- backspace
<li><b><code>\f</code></b> --- form feed
<li><b><code>\n</code></b> --- newline
<li><b><code>\r</code></b> --- carriage return
<li><b><code>\t</code></b> --- horizontal tab
<li><b><code>\v</code></b> --- vertical tab
<li><b><code>\\</code></b> --- backslash
<li><b><code>\"</code></b> --- quotation mark (double quote)
<li><b><code>\'</code></b> --- apostrophe (single quote)
</ul>
Moreover, a `<code>\</code><em>newline</em>&acute;
(that is, a backslash followed by a real newline)
results in a newline in the string.
A character in a string may also be specified by its numerical value
using the escape sequence `<code>\</code><em>ddd</em>&acute;,
where <em>ddd</em> is a sequence of up to three decimal digits.
(Note that if a numerical escape is to be followed by a digit,
it must be expressed using exactly three digits.)
Strings in Lua may contain any 8-bit value, including embedded zeros,
which can be specified as `<code>\0</code>&acute;.

<p>To put a double (single) quote, a newline, a backslash,
or an embedded zero
inside a literal string enclosed by double (single) quotes
you must use an escape sequence.
Any other character may be directly inserted into the literal.
(Some control characters may cause problems for the file system,
but Lua has no problem with them.)

<p>Literal strings can also be defined using a long format
enclosed by <em>long brackets</em>.
We define an <em>opening long bracket of level <em>n</em></em> as an opening
square bracket followed by <em>n</em> equal signs followed by another
opening square bracket.
So, an opening long bracket of level 0 is written as <code>[[</code>,
an opening long bracket of level 1 is written as <code>[=[</code>,
and so on.
A <em>closing long bracket</em> is defined similarly;
for instance, a closing long bracket of level 4 is written as <code>]====]</code>.
A long string starts with an opening long bracket of any level and
ends at the first closing long bracket of the same level.
Literals in this bracketed form may run for several lines,
do not interpret any escape sequences,
and ignore long brackets of any other level.
They may contain anything except a closing bracket of the proper level
or embedded zeros.

<p>For convenience,
when the opening long bracket is immediately followed by a newline,
the newline is not included in the string.
As an example, in a system using ASCII
(in which `<code>a</code>&acute; is coded as 97,
newline is coded as 10, and `<code>1</code>&acute; is coded as 49),
the four literals below denote the same string:
<pre>
      (1)   'alo\n123"'
      (2)   "alo\n123\""
      (3)   '\97lo\10\04923"'
      (4)   [[alo
            123"]]
      (5)   [==[
            alo
            123"]==]
</pre>

<p><em>Numerical constants</em> may be written with an optional decimal part
and an optional decimal exponent.
Lua also accepts integer hexadecimal constants,
by prefixing them with <code>0x</code>.
Examples of valid numerical constants are
<pre>
       3       3.0     3.1416  314.16e-2   0.31416E1  0xff  0x56
</pre>

<p><em>Comments</em> start with a double hyphen (<code>--</code>)
anywhere outside a string.
If the text immediately after <code>--</code> is not an opening long bracket,
the comment is a <em>short comment</em>,
which runs until the end of the line.
Otherwise, it is a <em>long comment</em>,
which runs until the corresponding closing long bracket.
Long comments are frequently used to disable code temporarily.

<p><a name="TypesSec"></a><a name="2.2"></a><h2>2.2 - Values and Types</h2>

<p>Lua is a <em>dynamically typed language</em>.
This means that
variables do not have types; only values do.
There are no type definitions in the language.
All values carry their own type.

<p>All values in Lua are <em>first-class values</em>.
This means that all values can be stored in variables,
passed as arguments to other functions, and returned as results.

<p>There are eight basic types in Lua:
<em>nil</em>, <em>boolean</em>, <em>number</em>,
<em>string</em>, <em>function</em>, <em>userdata</em>,
<em>thread</em>, and <em>table</em>.
<em>Nil</em> is the type of the value <b>nil</b>,
whose main property is to be different from any other value;
it usually represents the absence of a useful value.
<em>Boolean</em> is the type of the values <b>false</b> and <b>true</b>.
Both <b>nil</b> and <b>false</b> make a condition false;
any other value makes it true.
<em>Number</em> represents real (double-precision floating-point) numbers.
(It is easy to build Lua interpreters that use other
internal representations for numbers,
such as single-precision float or long integers.
See file <code>luaconf.h</code>.)
<em>String</em> represents arrays of characters.

Lua is 8-bit clean:
Strings may contain any 8-bit character,
including embedded zeros (`<code>\0</code>&acute;) (see <a href="#lexical">2.1</a>).

<p>Lua can call (and manipulate) functions written in Lua and
functions written in C
(see <a href="#functioncall">2.5.8</a>).

<p>The type <em>userdata</em> is provided to allow arbitrary C data to
be stored in Lua variables.
This type corresponds to a block of raw memory
and has no pre-defined operations in Lua,
except assignment and identity test.
However, by using <em>metatables</em>,
the programmer can define operations for userdata values
(see <a href="#metatable">2.8</a>).
Userdata values cannot be created or modified in Lua,
only through the C API.
This guarantees the integrity of data owned by the host program.

<p>The type <em>thread</em> represents independent threads of execution
and it is used to implement coroutines (see <a href="#coroutine">2.11</a>).
Do not confuse Lua threads with operating-system threads.
Lua supports coroutines on all systems,
even those that do not support threads.

<p>The type <em>table</em> implements associative arrays,
that is, arrays that can be indexed not only with numbers,
but with any value (except <b>nil</b>).
Tables can be <em>heterogeneous</em>;
that is, they can contain values of all types (except <b>nil</b>).
Tables are the sole data structuring mechanism in Lua;
they may be used to represent ordinary arrays,
symbol tables, sets, records, graphs, trees, etc.
To represent records, Lua uses the field name as an index.
The language supports this representation by
providing <code>a.name</code> as syntactic sugar for <code>a["name"]</code>.
There are several convenient ways to create tables in Lua
(see <a href="#tableconstructor">2.5.7</a>).

<p>Like indices,
the value of a table field can be of any type (except <b>nil</b>).
In particular,
because functions are first-class values,
table fields may contain functions.
Thus tables may also carry <em>methods</em> (see <a href="#func-def">2.5.9</a>).

<p>Tables, functions, threads, and (full) userdata values are <em>objects</em>:
variables do not actually <em>contain</em> these values,
only <em>references</em> to them.
Assignment, parameter passing, and function returns
always manipulate references to such values;
these operations do not imply any kind of copy.

<p>The library function <a href="#pdf-type"><code>type</code></a> returns a string describing the type
of a given value.

<p><a name="coercion"></a><a name="2.2.1"></a><h3>2.2.1 - Coercion</h3>

<p>Lua provides automatic conversion between
string and number values at run time.
Any arithmetic operation applied to a string tries to convert
this string to a number, following the usual conversion rules.
Conversely, whenever a number is used where a string is expected,
the number is converted to a string, in a reasonable format.
For complete control over how numbers are converted to strings,
use the <code>format</code> function from the string library
(see <a href="#pdf-string.format"><code>string.format</code></a>).

<p><a name="variables"></a><a name="2.3"></a><h2>2.3 - Variables</h2>

<p>Variables are places that store values.

There are three kinds of variables in Lua:
global variables, local variables, and table fields.

<p>A single name can denote a global variable or a local variable
(or a function's formal parameter,
which is a particular kind of local variable):
<pre>
	var ::= Name
</pre>
Name denotes identifiers, as defined in (see <a href="#lexical">2.1</a>).

<p>Variables are assumed to be global unless explicitly declared local
(see <a href="#localvar">2.4.7</a>).
Local variables are <em>lexically scoped</em>:
Local variables can be freely accessed by functions
defined inside their scope (see <a href="#visibility">2.6</a>).

<p>Before the first assignment to a variable, its value is <b>nil</b>.

<p>Square brackets are used to index a table:
<pre>
	var ::= prefixexp `<b>[</b>&acute; exp `<b>]</b>&acute;
</pre>
The first expression (<em>prefixexp</em>) should result in a table value;
the second expression (<em>exp</em>)
identifies a specific entry in this table.
The expression denoting the table to be indexed has a restricted syntax;
see <a href="#expressions">2.5</a> for details.

<p>The syntax <code>var.Name</code> is just syntactic sugar for
<code>var["Name"]</code> and is used to denote table fields:
<pre>
	var ::= prefixexp `<b>.</b>&acute; Name
</pre>

<p>The meaning of accesses to global variables 
and table fields can be changed via metatables.
An access to an indexed variable <code>t[i]</code> is equivalent to
a call <code>gettable_event(t,i)</code>.
(See <a href="#metatable">2.8</a> for a complete description of the
<code>gettable_event</code> function.
This function is not defined or callable in Lua.
We use it here only for explanatory purposes.)

<p>All global variables live as fields in ordinary Lua tables,
called <em>environment tables</em> or simply
<em>environments</em> (see <a href="#environ">2.9</a>).
Each function has its own reference to an environment,
so that all global variables in this function
will refer to this environment table.
When a function is created,
it inherits the environment from the function that created it.
To get the environment table of a Lua function,
you call <a href="#pdf-getfenv"><code>getfenv</code></a>.
To replace it,
you call <a href="#pdf-setfenv"><code>setfenv</code></a>.
(You can only manipulate the environment of C functions
through the debug library; (see <a href="#libdebug">5.9</a>).)

<p>An access to a global variable <code>x</code>
is equivalent to <code>_env.x</code>,
which in turn is equivalent to
<pre>
       gettable_event(_env, "x")
</pre>
where <code>_env</code> is the environment of the running function.
(See <a href="#metatable">2.8</a> for a complete description of the
<code>gettable_event</code> function.
This function is not defined or callable in Lua.
Similarly, the <code>_env</code> variable is not defined in Lua.
We use them here only for explanatory purposes.)

<p><a name="stats"></a><a name="2.4"></a><h2>2.4 - Statements</h2>

<p>Lua supports an almost conventional set of statements,
similar to those in Pascal or C.
This set includes
assignment, control structures, function calls,
table constructors, and variable declarations.

<p><a name="chunks"></a><a name="2.4.1"></a><h3>2.4.1 - Chunks</h3>

<p>The unit of execution of Lua is called a <em>chunk</em>.
A chunk is simply a sequence of statements,
which are executed sequentially.
Each statement can be optionally followed by a semicolon:
<pre>
	chunk ::= {stat [`<b>;</b>&acute;]}
</pre>
There are no empty statements and thus `<code>;;</code>&acute; is not legal.

<p>Lua handles a chunk as the body of an anonymous function 
with a variable number of arguments
(see <a href="#func-def">2.5.9</a>).
As such, chunks can define local variables,
receive arguments, and return values.

<p>A chunk may be stored in a file or in a string inside the host program.
When a chunk is executed, first it is pre-compiled into instructions for
a virtual machine,
and then the compiled code is executed
by an interpreter for the virtual machine.

<p>Chunks may also be pre-compiled into binary form;
see program <code>luac</code> for details.
Programs in source and compiled forms are interchangeable;
Lua automatically detects the file type and acts accordingly.


<p><a name="2.4.2"></a><h3>2.4.2 - Blocks</h3>
A block is a list of statements;
syntactically, a block is the same as a chunk:
<pre>
	block ::= chunk
</pre>

<p>A block may be explicitly delimited to produce a single statement:
<pre>
	stat ::= <b>do</b> block <b>end</b>
</pre>
Explicit blocks are useful
to control the scope of variable declarations.
Explicit blocks are also sometimes used to
add a <b>return</b> or <b>break</b> statement in the middle
of another block (see <a href="#control">2.4.4</a>).


<p><a name="assignment"></a><a name="2.4.3"></a><h3>2.4.3 - Assignment</h3>

<p>Lua allows multiple assignment.
Therefore, the syntax for assignment
defines a list of variables on the left side
and a list of expressions on the right side.
The elements in both lists are separated by commas:
<pre>
	stat ::= varlist1 `<b>=</b>&acute; explist1
	varlist1 ::= var {`<b>,</b>&acute; var}
	explist1 ::= exp {`<b>,</b>&acute; exp}
</pre>
Expressions are discussed in <a href="#expressions">2.5</a>.

<p>Before the assignment,
the list of values is <em>adjusted</em> to the length of
the list of variables.
If there are more values than needed,
the excess values are thrown away.
If there are fewer values than needed,
the list is extended with as many  <b>nil</b>'s as needed.
If the list of expressions ends with a function call,
then all values returned by this call enter in the list of values,
before the adjustment
(except when the call is enclosed in parentheses; see <a href="#expressions">2.5</a>).

<p>The assignment statement first evaluates all its expressions
and only then are the assignments performed.
Thus the code
<pre>
       i = 3
       i, a[i] = i+1, 20
</pre>
sets <code>a[3]</code> to 20, without affecting <code>a[4]</code>
because the <code>i</code> in <code>a[i]</code> is evaluated (to 3)
before it is assigned 4.
Similarly, the line
<pre>
       x, y = y, x
</pre>
exchanges the values of <code>x</code> and <code>y</code>.

<p>The meaning of assignments to global variables
and table fields can be changed via metatables.
An assignment to an indexed variable <code>t[i] = val</code> is equivalent to
<code>settable_event(t,i,val)</code>.
(See <a href="#metatable">2.8</a> for a complete description of the
<code>settable_event</code> function.
This function is not defined or callable in Lua.
We use it here only for explanatory purposes.)

<p>An assignment to a global variable <code>x = val</code>
is equivalent to the assignment
<code>_env.x = val</code>,
which in turn is equivalent to
<pre>
       settable_event(_env, "x", val)
</pre>
where <code>_env</code> is the environment of the running function.
(The <code>_env</code> variable is not defined in Lua.
We use it here only for explanatory purposes.)

<p><a name="control"></a><a name="2.4.4"></a><h3>2.4.4 - Control Structures</h3>
The control structures
<b>if</b>, <b>while</b>, and <b>repeat</b> have the usual meaning and
familiar syntax:



<pre>
	stat ::= <b>while</b> exp <b>do</b> block <b>end</b>
	stat ::= <b>repeat</b> block <b>until</b> exp
	stat ::= <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b>
</pre>
Lua also has a <b>for</b> statement, in two flavors (see <a href="#for">2.4.5</a>).

<p>The condition expression of a
control structure may return any value.
Both <b>false</b> and <b>nil</b> are considered false.
All values different from <b>nil</b> and <b>false</b> are considered true
(in particular, the number 0 and the empty string are also true).

<p>In the <b>repeat</b>--<b>until</b> loop,
the inner block does not end at the <b>until</b> keyword,
but only after the condition.
So, the condition can refer to local variables
declared inside the loop block.

<p>The <b>return</b> statement is used to return values
from a function or a chunk (which is just a function).

Functions and chunks may return more than one value,
so the syntax for the <b>return</b> statement is
<pre>
	stat ::= <b>return</b> [explist1]
</pre>

<p>The <b>break</b> statement is used to terminate the execution of a
<b>while</b>, <b>repeat</b>, or <b>for</b> loop,
skipping to the next statement after the loop:

<pre>
	stat ::= <b>break</b>
</pre>
A <b>break</b> ends the innermost enclosing loop.

<p>The <b>return</b> and <b>break</b>
statements can only be written as the <em>last</em> statement of a block.
If it is really necessary to <b>return</b> or <b>break</b> in the
middle of a block,
then an explicit inner block can be used,
as in the idioms
`<code>do return end</code>&acute; and
`<code>do break end</code>&acute;,
because now <b>return</b> and <b>break</b> are the last statements in
their (inner) blocks.

<p><a name="for"></a><a name="2.4.5"></a><h3>2.4.5 - For Statement</h3>

<p>The <b>for</b> statement has two forms:
one numeric and one generic.


<p>The numeric <b>for</b> loop repeats a block of code while a
control variable runs through an arithmetic progression.
It has the following syntax:
<pre>
	stat ::= <b>for</b> Name `<b>=</b>&acute; exp `<b>,</b>&acute; exp [`<b>,</b>&acute; exp] <b>do</b> block <b>end</b>
</pre>
The <em>block</em> is repeated for <em>name</em> starting at the value of
the first <em>exp</em>, until it passes the second <em>exp</em> by steps of the
third <em>exp</em>.
More precisely, a <b>for</b> statement like
<pre>
       for var = e1, e2, e3 do block end
</pre>
is equivalent to the code:
<pre>
       do
         local _var, _limit, _step = tonumber(e1), tonumber(e2), tonumber(e3)
         if not (_var and _limit and _step) then error() end
         while (_step>0 and _var&#060;=_limit) or (_step&#060;=0 and _var>=_limit) do
           local var = _var
           block
           _var = _var + _step
         end
       end
</pre>
Note the following:
<ul>
<li> All three control expressions are evaluated only once,
before the loop starts.
They must all result in numbers.
<li> <code>_var</code>, <code>_limit</code>, and <code>_step</code> are invisible variables.
The names are here for explanatory purposes only.
<li> If the third expression (the step) is absent,
then a step of 1 is used.
<li> You can use <b>break</b> to exit a <b>for</b> loop.
<li> The loop variable <code>var</code> is local to the loop;
you cannot use its value after the <b>for</b> ends or is broken.
If you need the value of the loop variable <code>var</code>,
then assign it to another variable before breaking or exiting the loop.
</ul>

<p>The generic <b>for</b> statement works over functions,
called <em>iterators</em>.
On each iteration, the iterator function is called to produce a new value,
stopping when this new value is <b>nil</b>.
The generic <b>for</b> loop has the following syntax:
<pre>
	stat ::= <b>for</b> namelist <b>in</b> explist1 <b>do</b> block <b>end</b>
	namelist ::= Name {`<b>,</b>&acute; Name}
</pre>
A <b>for</b> statement like
<pre>
       for var_1, ..., var_n in explist do block end
</pre>
is equivalent to the code:
<pre>
       do
         local _f, _s, _var = explist
         while true do
           local var_1, ... , var_n = _f(_s, _var)
           _var = var_1
           if _var == nil then break end
           block
         end
       end
</pre>
Note the following:
<ul>
<li> <code>explist</code> is evaluated only once.
Its results are an <em>iterator</em> function,
a <em>state</em>, and an initial value for the first <em>iterator variable</em>.
<li> <code>_f</code>, <code>_s</code>, and <code>_var</code> are invisible variables.
The names are here for explanatory purposes only.
<li> You can use <b>break</b> to exit a <b>for</b> loop.
<li> The loop variables <code>var_i</code> are local to the loop;
you cannot use their values after the <b>for</b> ends.
If you need these values,
then assign them to other variables before breaking or exiting the loop.
</ul>

<p><a name="funcstat"></a><a name="2.4.6"></a><h3>2.4.6 - Function Calls as Statements</h3>
To allow possible side-effects,
function calls can be executed as statements:
<pre>
	stat ::= functioncall
</pre>
In this case, all returned values are thrown away.
Function calls are explained in <a href="#functioncall">2.5.8</a>.

<p><a name="localvar"></a><a name="2.4.7"></a><h3>2.4.7 - Local Declarations</h3>
Local variables may be declared anywhere inside a block.
The declaration may include an initial assignment:
<pre>
	stat ::= <b>local</b> namelist [`<b>=</b>&acute; explist1]
</pre>
If present, an initial assignment has the same semantics
of a multiple assignment (see <a href="#assignment">2.4.3</a>).
Otherwise, all variables are initialized with <b>nil</b>.

<p>A chunk is also a block (see <a href="#chunks">2.4.1</a>),
and so local variables can be declared in a chunk outside any explicit block.
The scope of such local variables extends until the end of the chunk.

<p>The visibility rules for local variables are explained in <a href="#visibility">2.6</a>.

<p><a name="expressions"></a><a name="2.5"></a><h2>2.5 - Expressions</h2>

<p>
The basic expressions in Lua are the following:
<pre>
	exp ::= prefixexp
	exp ::= <b>nil</b>  |  <b>false</b>  |  <b>true</b>
	exp ::= Number
	exp ::= String
	exp ::= function
	exp ::= tableconstructor
	exp ::= `<b>...</b>&acute;
	exp ::= exp binop exp
	exp ::= unop exp
	prefixexp ::= var  |  functioncall  |  `<b>(</b>&acute; exp `<b>)</b>&acute;
</pre>

<p>Numbers and literal strings are explained in <a href="#lexical">2.1</a>;
variables are explained in <a href="#variables">2.3</a>;
function definitions are explained in <a href="#func-def">2.5.9</a>;
function calls are explained in <a href="#functioncall">2.5.8</a>;
table constructors are explained in <a href="#tableconstructor">2.5.7</a>.
Vararg expressions,
denoted by three dots (`<code>...</code>&acute;), can only be used inside
vararg functions;
they are explained in <a href="#func-def">2.5.9</a>.


<p>Binary operators comprise arithmetic operators (see <a href="#arith">2.5.1</a>),
relational operators (see <a href="#rel-ops">2.5.2</a>), and logical operators (see <a href="#logic">2.5.3</a>).
Unary operators comprise the unary minus (see <a href="#arith">2.5.1</a>),
the unary <b>not</b> (see <a href="#logic">2.5.3</a>),
and the unary <em>length operator</em> (see <a href="#len-op">2.5.5</a>).

<p>Both function calls and vararg expressions may result in multiple values.
If the expression is used as a statement (see <a href="#funcstat">2.4.6</a>)
(only possible for function calls),
then its return list is adjusted to zero elements,
thus discarding all returned values.
If the expression is used inside another expression
or in the middle of a list of expressions,
then its result list is adjusted to one element,
thus discarding all values except the first one.
If the expression is used as the last element of a list of expressions,
then no adjustment is made,
unless the call is enclosed in parentheses.

<p>Here are some examples:
<pre>
       f()                -- adjusted to 0 results
       g(f(), x)          -- f() is adjusted to 1 result
       g(x, f())          -- g gets x plus all values returned by f()
       a,b,c = f(), x     -- f() is adjusted to 1 result (c gets nil)
       a,b = ...          -- a gets the first vararg parameter, b gets
                          -- the second (both a and b may get nil if there is
                          -- no corresponding vararg parameter)
       a,b,c = x, f()     -- f() is adjusted to 2 results
       a,b,c = f()        -- f() is adjusted to 3 results
       return f()         -- returns all values returned by f()
       return ...         -- returns all received vararg parameters
       return x,y,f()     -- returns x, y, and all values returned by f()
       {f()}              -- creates a list with all values returned by f()
       {...}              -- creates a list with all vararg parameters
       {f(), nil}         -- f() is adjusted to 1 result
</pre>

<p>An expression enclosed in parentheses always results in only one value.
Thus,
<code>(f(x,y,z))</code> is always a single value,
even if <code>f</code> returns several values.
(The value of <code>(f(x,y,z))</code> is the first value returned by <code>f</code>
or <b>nil</b> if <code>f</code> does not return any values.)

<p><a name="arith"></a><a name="2.5.1"></a><h3>2.5.1 - Arithmetic Operators</h3>
Lua supports the usual arithmetic operators:
the binary <code>+</code> (addition),
<code>-</code> (subtraction), <code>*</code> (multiplication),
<code>/</code> (division), <code>%</code> (modulo), and <code>^</code> (exponentiation);
and unary <code>-</code> (negation).
If the operands are numbers, or strings that can be converted to
numbers (see <a href="#coercion">2.2.1</a>),
then all operations have the usual meaning.
Exponentiation works for any exponent.
For instance, <code>x^(-0.5)</code> computes the inverse of the square root of <code>x</code>.
Modulus is defined as
<pre>
       a % b == a - math.floor(a/b)*b
</pre>
That is, it is the remainder of a division that rounds
the quotient towards minus infinity.

<p><a name="rel-ops"></a><a name="2.5.2"></a><h3>2.5.2 - Relational Operators</h3>
The relational operators in Lua are
<pre>
       ==    ~=    &#060;     >     &#060;=    >=
</pre>
These operators always result in <b>false</b> or <b>true</b>.

<p>Equality (<code>==</code>) first compares the type of its operands.
If the types are different, then the result is <b>false</b>.
Otherwise, the values of the operands are compared.
Numbers and strings are compared in the usual way.
Objects (tables, userdata, threads, and functions)
are compared by <em>reference</em>:
Two objects are considered equal only if they are the <em>same</em> object.
Every time you create a new object
(a table, userdata, thread, or function),
this new object is different from any previously existing object.

<p>You can change the way that Lua compares tables and userdata 
by using the "eq" metamethod (see <a href="#metatable">2.8</a>).

<p>The conversion rules of <a href="#coercion">2.2.1</a>
<em>do not</em> apply to equality comparisons.
Thus, <code>"0"==0</code> evaluates to <b>false</b>,
and <code>t[0]</code> and <code>t["0"]</code> denote different
entries in a table.


<p>The operator <code>~=</code> is exactly the negation of equality (<code>==</code>).

<p>The order operators work as follows.
If both arguments are numbers, then they are compared as such.
Otherwise, if both arguments are strings,
then their values are compared according to the current locale.
Otherwise, Lua tries to call the "lt" or the "le"
metamethod (see <a href="#metatable">2.8</a>).

<p><a name="logic"></a><a name="2.5.3"></a><h3>2.5.3 - Logical Operators</h3>
The logical operators in Lua are

<pre>
       and   or    not
</pre>
Like the control structures (see <a href="#control">2.4.4</a>),
all logical operators consider both <b>false</b> and <b>nil</b> as false
and anything else as true.


<p>The negation operator <b>not</b> always returns <b>false</b> or <b>true</b>.
The conjunction operator <b>and</b> returns its first argument
if this value is <b>false</b> or <b>nil</b>;
otherwise, <b>and</b> returns its second argument.
The disjunction operator <b>or</b> returns its first argument
if this value is different from <b>nil</b> and <b>false</b>;
otherwise, <b>or</b> returns its second argument.
Both <b>and</b> and <b>or</b> use short-cut evaluation;
that is,
the second operand is evaluated only if necessary.
Here are some examples:
<pre>
       10 or 20            --> 10
       10 or error()       --> 10
       nil or "a"          --> "a"
       nil and 10          --> nil
       false and error()   --> false
       false and nil       --> false
       false or nil        --> nil
       10 and 20           --> 20
</pre>
(In this manual,
`<code>--></code>&acute; indicates the result of the preceding expression.)

<p><a name="concat"></a><a name="2.5.4"></a><h3>2.5.4 - Concatenation</h3>
The string concatenation operator in Lua is
denoted by two dots (`<code>..</code>&acute;).
If both operands are strings or numbers, then they are converted to
strings according to the rules mentioned in <a href="#coercion">2.2.1</a>.
Otherwise, the "concat" metamethod is called (see <a href="#metatable">2.8</a>).

<p><a name="len-op"></a><a name="2.5.5"></a><h3>2.5.5 - The Length Operator</h3>

<p>The length operator is denoted by the unary operator <code>#</code>.
The length of a string is its number of bytes
(that is, the usual meaning of string length when each
character is one byte).

<p>The length of a table <code>t</code> is defined to be any
integer index <code>n</code>
such that <code>t[n]</code> is not <b>nil</b> and <code>t[n+1]</code> is <b>nil</b>;
moreover, if <code>t[1]</code> is <b>nil</b>, <code>n</code> may be zero.
For a regular array, with non-nil values from 1 to a given <code>n</code>,
its length is exactly that <code>n</code>,
the index of its last value.
If the array has "holes"
(that is, <b>nil</b> values between other non-nil values),
then <code>#t</code> may be any of the indices that
directly precedes a <b>nil</b> value
(that is, it may consider any such <b>nil</b> value as the end of
the array). 

<p><a name="2.5.6"></a><h3>2.5.6 - Precedence</h3>
Operator precedence in Lua follows the table below,
from lower to higher priority:
<pre>
       or
       and
       &#060;     >     &#060;=    >=    ~=    ==
       ..
       +     -
       *     /     %
       not   #     - (unary)
       ^
</pre>
As usual,
you can use parentheses to change the precedences of an expression.
The concatenation (`<code>..</code>&acute;) and exponentiation (`<code>^</code>&acute;)
operators are right associative.
All other binary operators are left associative.

<p><a name="tableconstructor"></a><a name="2.5.7"></a><h3>2.5.7 - Table Constructors</h3>
Table constructors are expressions that create tables.
Every time a constructor is evaluated, a new table is created.
Constructors can be used to create empty tables,
or to create a table and initialize some of its fields.
The general syntax for constructors is
<pre>
	tableconstructor ::= `<b>{</b>&acute; [fieldlist] `<b>}</b>&acute;
	fieldlist ::= field {fieldsep field} [fieldsep]
	field ::= `<b>[</b>&acute; exp `<b>]</b>&acute; `<b>=</b>&acute; exp  |  Name `<b>=</b>&acute; exp  |  exp
	fieldsep ::= `<b>,</b>&acute;  |  `<b>;</b>&acute;
</pre>

<p>Each field of the form <code>[exp1] = exp2</code> adds to the new table an entry
with key <code>exp1</code> and value <code>exp2</code>.
A field of the form <code>name = exp</code> is equivalent to
<code>["name"] = exp</code>.
Finally, fields of the form <code>exp</code> are equivalent to
<code>[i] = exp</code>, where <code>i</code> are consecutive numerical integers,
starting with 1.
Fields in the other formats do not affect this counting.
For example,
<pre>
       a = { [f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45 }
</pre>
is equivalent to
<pre>
       do
         local t = {}
         t[f(1)] = g
         t[1] = "x"         -- 1st exp
         t[2] = "y"         -- 2nd exp
         t.x = 1            -- t["x"] = 1
         t[3] = f(x)        -- 3rd exp
         t[30] = 23
         t[4] = 45          -- 4th exp
         a = t
       end
</pre>

<p>If the last field in the list has the form <code>exp</code>
and the expression is a function call or a vararg expression,
then all values returned by this expression enter the list consecutively
(see <a href="#functioncall">2.5.8</a>).
To avoid this,
enclose the function call (or the vararg expression)
in parentheses (see <a href="#expressions">2.5</a>).

<p>The field list may have an optional trailing separator,
as a convenience for machine-generated code.

<p><a name="functioncall"></a><a name="2.5.8"></a><h3>2.5.8 - Function Calls</h3>
A function call in Lua has the following syntax:
<pre>
	functioncall ::= prefixexp args
</pre>
In a function call,
first <em>prefixexp</em> and <em>args</em> are evaluated.
If the value of <em>prefixexp</em> has type <em>function</em>,
then this function is called
with the given arguments.
Otherwise, the <em>prefixexp</em> "call" metamethod is called,
having as first parameter the value of <em>prefixexp</em>,
followed by the original call arguments
(see <a href="#metatable">2.8</a>).

<p>The form
<pre>
	functioncall ::= prefixexp `<b>:</b>&acute; Name args
</pre>
can be used to call "methods".
A call <code>v:name(...)</code>
is syntactic sugar for <code>v.name(v,...)</code>,
except that <code>v</code> is evaluated only once.

<p>Arguments have the following syntax:
<pre>
	args ::= `<b>(</b>&acute; [explist1] `<b>)</b>&acute;
	args ::= tableconstructor
	args ::= String
</pre>
All argument expressions are evaluated before the call.
A call of the form <code>f{...}</code> is syntactic sugar for <code>f({...})</code>;
that is, the argument list is a single new table.
A call of the form <code>f'...'</code>
(or <code>f"..."</code> or <code>f[[...]]</code>) is syntactic sugar for <code>f('...')</code>;
that is, the argument list is a single literal string.

<p>As an exception to the free-format syntax of Lua,
you cannot put a line break before the `<code>(</code>&acute; in a function call.
This restriction avoids some ambiguities in the language.
If you write
<pre>
       a = f
       (g).x(a)
</pre>
Lua would see that as a single statement, <code>a = f(g).x(a)</code>.
So, if you want two statements, you must add a semi-colon between them.
If you actually want to call <code>f</code>,
you must remove the line break before <code>(g)</code>.

<p>A call of the form <code>return</code> <em>functioncall</em> is called
a <em>tail call</em>.
Lua implements <em>proper tail calls</em>
(or <em>proper tail recursion</em>):
In a tail call,
the called function reuses the stack entry of the calling function.
Therefore, there is no limit on the number of nested tail calls that
a program can execute.
However, a tail call erases any debug information about the
calling function.
Note that a tail call only happens with a particular syntax,
where the <b>return</b> has one single function call as argument;
this syntax makes the calling function return exactly
the returns of the called function.
So, none of the following examples are tail calls:
<pre>
       return (f(x))        -- results adjusted to 1
       return 2 * f(x)
       return x, f(x)       -- additional results
       f(x); return         -- results discarded
       return x or f(x)     -- results adjusted to 1
</pre>

<p><a name="func-def"></a><a name="2.5.9"></a><h3>2.5.9 - Function Definitions</h3>

<p>The syntax for function definition is
<pre>
	function ::= <b>function</b> funcbody
	funcbody ::= `<b>(</b>&acute; [parlist1] `<b>)</b>&acute; block <b>end</b>
</pre>

<p>The following syntactic sugar simplifies function definitions:
<pre>
	stat ::= <b>function</b> funcname funcbody
	stat ::= <b>local</b> <b>function</b> Name funcbody
	funcname ::= Name {`<b>.</b>&acute; Name} [`<b>:</b>&acute; Name]
</pre>
The statement
<pre>
       function f () ... end
</pre>
translates to
<pre>
       f = function () ... end
</pre>
The statement
<pre>
       function t.a.b.c.f () ... end
</pre>
translates to
<pre>
       t.a.b.c.f = function () ... end
</pre>
The statement
<pre>
       local function f () ... end
</pre>
translates to
<pre>
       local f; f = function () ... end
</pre>
<em>not</em> this:
<pre>
       local f = function () ... end
</pre>
(This only makes a difference when the body of the function
contains references to <code>f</code>.)

<p>A function definition is an executable expression,
whose value has type <em>function</em>.
When Lua pre-compiles a chunk,
all its function bodies are pre-compiled too.
Then, whenever Lua executes the function definition,
the function is <em>instantiated</em> (or <em>closed</em>).
This function instance (or <em>closure</em>)
is the final value of the expression.
Different instances of the same function
may refer to different  external local variables
and may have different environment tables.

<p>Parameters act as local variables that are
initialized with the argument values:
<pre>
	parlist1 ::= namelist [`<b>,</b>&acute; `<b>...</b>&acute;]  |  `<b>...</b>&acute;
</pre>
When a function is called,
the list of arguments is adjusted to
the length of the list of parameters,
unless the function is a variadic or <em>vararg function</em>,
which is
indicated by three dots (`<code>...</code>&acute;) at the end of its parameter list.
A vararg function does not adjust its argument list;
instead, it collects all extra arguments and supplies them
to the function through a <em>vararg expression</em>,
which is also written as three dots.
The value of this expression is a list of all actual extra arguments,
similar to a function with multiple results.
If a vararg expression is used inside another expression
or in the middle of a list of expressions,
then its return list is adjusted to one element.
If the expression is used as the last element of a list of expressions,
then no adjustment is made
(unless the call is enclosed in parentheses).

<p>As an example, consider the following definitions:
<pre>
       function f(a, b) end
       function g(a, b, ...) end
       function r() return 1,2,3 end
</pre>
Then, we have the following mapping from arguments to parameters and
to the vararg expression:
<pre>
       CALL            PARAMETERS

       f(3)             a=3, b=nil
       f(3, 4)          a=3, b=4
       f(3, 4, 5)       a=3, b=4
       f(r(), 10)       a=1, b=10
       f(r())           a=1, b=2

       g(3)             a=3, b=nil, ... -->  (nothing)
       g(3, 4)          a=3, b=4,   ... -->  (nothing)
       g(3, 4, 5, 8)    a=3, b=4,   ... -->  5  8
       g(5, r())        a=5, b=1,   ... -->  2  3
</pre>

<p>Results are returned using the <b>return</b> statement (see <a href="#control">2.4.4</a>).
If control reaches the end of a function
without encountering a <b>return</b> statement,
then the function returns with no results.

<p>The <em>colon</em> syntax
is used for defining <em>methods</em>,
that is, functions that have an implicit extra parameter <code>self</code>.
Thus, the statement
<pre>
       function t.a.b.c:f (...) ... end
</pre>
is syntactic sugar for
<pre>
       t.a.b.c.f = function (self, ...) ... end
</pre>

<p><a name="visibility"></a><a name="2.6"></a><h2>2.6 - Visibility Rules</h2>


<p>Lua is a lexically scoped language.
The scope of variables begins at the first statement <em>after</em>
their declaration and lasts until the end of the innermost block that
includes the declaration.
Consider the following example:
<pre>
       x = 10                -- global variable
       do                    -- new block
         local x = x         -- new `x', with value 10
         print(x)            --> 10
         x = x+1
         do                  -- another block
           local x = x+1     -- another `x'
           print(x)          --> 12
         end
         print(x)            --> 11
       end
       print(x)              --> 10  (the global one)
</pre>

<p>Notice that, in a declaration like <code>local x = x</code>,
the new <code>x</code> being declared is not in scope yet,
and so the second <code>x</code> refers to the outside variable.

<p>Because of the lexical scoping rules,
local variables can be freely accessed by functions
defined inside their scope.
A local variable used by an inner function is called
an <em>upvalue</em>, or <em>external local variable</em>,
inside the inner function.

<p>Notice that each execution of a <b>local</b> statement
defines new local variables.
Consider the following example:
<pre>
       a = {}
       local x = 20
       for i=1,10 do
         local y = 0
         a[i] = function () y=y+1; return x+y end
       end
</pre>
The loop creates ten closures
(that is, ten instances of the anonymous function).
Each of these closures uses a different <code>y</code> variable,
while all of them share the same <code>x</code>.

<p><a name="error"></a><a name="2.7"></a><h2>2.7 - Error Handling</h2>

<p>Because Lua is an embedded extension language,
all Lua actions start from C code in the host program
calling a function from the Lua library (see <a href="#lua_pcall"><code>lua_pcall</code></a>).
Whenever an error occurs during Lua compilation or execution,
control returns to C,
which can take appropriate measures
(such as printing an error message).

<p>Lua code can explicitly generate an error by calling the
<a href="#pdf-error"><code>error</code></a> function.
If you need to catch errors in Lua,
you can use the <a href="#pdf-pcall"><code>pcall</code></a> function.

<p><a name="metatable"></a><a name="2.8"></a><h2>2.8 - Metatables</h2>

<p>Every value in Lua may have a <em>metatable</em>.
This <em>metatable</em> is an ordinary Lua table
that defines the behavior of the original value
under certain special operations.
You can change several aspects of the behavior
of operations over a value by setting specific fields in its metatable.
For instance, when a non-numeric value is the operand of an addition,
Lua checks for a function in the field <code>"__add"</code> in its metatable.
If it finds one,
Lua calls this function to perform the addition.

<p>We call the keys in a metatable <em>events</em>
and the values <em>metamethods</em>.
In the previous example, the event is <code>"add"</code> 
and the metamethod is the function that performs the addition.

<p>You can query the metatable of any value
through the <a href="#pdf-getmetatable"><code>getmetatable</code></a> function.

<p>You can replace the metatable of tables
through the <a href="#pdf-setmetatable"><code>setmetatable</code></a>
function.
You cannot change the metatable of other types from Lua
(except using the debug library);
you must use the C API for that.

<p>Tables and userdata have individual metatables
(although multiple tables and userdata can share
a same table as their metatable);
values of all other types share one single metatable per type.
So, there is one single metatable for all numbers,
and for all strings, etc.

<p>A metatable may control how an object behaves in arithmetic operations,
order comparisons, concatenation, length operation, and indexing.
A metatable can also define a function to be called when a userdata
is garbage collected.
For each of these operations Lua associates a specific key
called an <em>event</em>.
When Lua performs one of these operations over a value,
it checks whether this value has a metatable with the corresponding event.
If so, the value associated with that key (the <em>metamethod</em>)
controls how Lua will perform the operation.

<p>Metatables control the operations listed next.
Each operation is identified by its corresponding name.
The key for each operation is a string with its name prefixed by
two underscores, `<code>__</code>&acute;;
for instance, the key for operation "add" is the
string <code>"__add"</code>.
The semantics of these operations is better explained by a Lua function
describing how the interpreter executes the operation.

<p>The code shown here in Lua is only illustrative;
the real behavior is hard coded in the interpreter
and it is much more efficient than this simulation.
All functions used in these descriptions
(<a href="#pdf-rawget"><code>rawget</code></a>, <a href="#pdf-tonumber"><code>tonumber</code></a>, etc.)
are described in <a href="#predefined">5.1</a>.
In particular, to retrieve the metamethod of a given object,
we use the expression
<pre>
       metatable(obj)[event]
</pre>
This should be read as
<pre>
       rawget(getmetatable(obj) or {}, event)
</pre>
That is, the access to a metamethod does not invoke other metamethods,
and the access to objects with no metatables does not fail
(it simply results in <b>nil</b>).

<p><ul>
<li><b>"add":</b>
the <code>+</code> operation.

<p>The function <code>getbinhandler</code> below defines how Lua chooses a handler
for a binary operation.
First, Lua tries the first operand.
If its type does not define a handler for the operation,
then Lua tries the second operand.
<pre>
 function getbinhandler (op1, op2, event)
   return metatable(op1)[event] or metatable(op2)[event]
 end
</pre>
Using this function,
the behavior of the <code>op1 + op2</code> is
<pre>
 function add_event (op1, op2)
   local o1, o2 = tonumber(op1), tonumber(op2)
   if o1 and o2 then  -- both operands are numeric?
     return o1 + o2   -- `+' here is the primitive `add'
   else  -- at least one of the operands is not numeric
     local h = getbinhandler(op1, op2, "__add")
     if h then
       -- call the handler with both operands
       return h(op1, op2)
     else  -- no handler available: default behavior
       error("...")
     end
   end
 end
</pre>

<p><li><b>"sub":</b>
the <code>-</code> operation.
Behavior similar to the "add" operation.

<p><li><b>"mul":</b>
the <code>*</code> operation.
Behavior similar to the "add" operation.

<p><li><b>"div":</b>
the <code>/</code> operation.
Behavior similar to the "add" operation.

<p><li><b>"mod":</b>
the <code>%</code> operation.
Behavior similar to the "add" operation,
with the operation
<code>o1 - floor(o1/o2)*o2</code> as the primitive operation.

<p><li><b>"pow":</b>
the <code>^</code> (exponentiation) operation.
Behavior similar to the "add" operation,
with the function <code>pow</code> (from the C math library)
as the primitive operation.

<p><li><b>"unm":</b>
the unary <code>-</code> operation.
<pre>
 function unm_event (op)
   local o = tonumber(op)
   if o then  -- operand is numeric?
     return -o  -- `-' here is the primitive `unm'
   else  -- the operand is not numeric.
     -- Try to get a handler from the operand
     local h = metatable(op).__unm
     if h then
       -- call the handler with the operand
       return h(op)
     else  -- no handler available: default behavior
       error("...")
     end
   end
 end
</pre>

<p><li><b>"concat":</b>
the <code>..</code> (concatenation) operation.
<pre>
 function concat_event (op1, op2)
   if (type(op1) == "string" or type(op1) == "number") and
      (type(op2) == "string" or type(op2) == "number") then
     return op1 .. op2  -- primitive string concatenation
   else
     local h = getbinhandler(op1, op2, "__concat")
     if h then
       return h(op1, op2)
     else
       error("...")
     end
   end
 end
</pre>

<p><li><b>"len":</b>
the <code>#</code> operation.
<pre>
 function len_event (op)
   if type(op) == "string" then
     return strlen(op)         -- primitive string length
   elseif type(op) == "table" then
     return #op                -- primitive table length
   else
     local h = metatable(op).__len
     if h then
       -- call the handler with the operand
       return h(op)
     else  -- no handler available: default behavior
       error("...")
     end
   end
 end
</pre>
See <a href="#len-op">2.5.5</a> for a description of the length of a table.

<p><li><b>"eq":</b>
the <code>==</code> operation.
The function <code>getcomphandler</code> defines how Lua chooses a metamethod
for comparison operators.
A metamethod only is selected when both objects
being compared have the same type
and the same metamethod for the selected operation.
<pre>
 function getcomphandler (op1, op2, event)
   if type(op1) ~= type(op2) then return nil end
   local mm1 = metatable(op1)[event]
   local mm2 = metatable(op2)[event]
   if mm1 == mm2 then return mm1 else return nil end
 end
</pre>
The "eq" event is defined as follows:
<pre>
 function eq_event (op1, op2)
   if type(op1) ~= type(op2) then  -- different types?
     return false   -- different objects
   end
   if op1 == op2 then   -- primitive equal?
     return true   -- objects are equal
   end
   -- try metamethod
   local h = getcomphandler(op1, op2, "__eq")
   if h then
     return h(op1, op2)
   else
     return false
   end
 end
</pre>
<code>a ~= b</code> is equivalent to <code>not (a == b)</code>.

<p><li><b>"lt":</b>
the <code>&#060;</code> operation.
<pre>
 function lt_event (op1, op2)
   if type(op1) == "number" and type(op2) == "number" then
     return op1 &#060; op2   -- numeric comparison
   elseif type(op1) == "string" and type(op2) == "string" then
     return op1 &#060; op2   -- lexicographic comparison
   else
     local h = getcomphandler(op1, op2, "__lt")
     if h then
       return h(op1, op2)
     else
       error("...");
     end
   end
 end
</pre>
<code>a > b</code> is equivalent to <code>b &#060; a</code>.

<p><li><b>"le":</b>
the <code>&#060;=</code> operation.
<pre>
 function le_event (op1, op2)
   if type(op1) == "number" and type(op2) == "number" then
     return op1 &#060;= op2   -- numeric comparison
   elseif type(op1) == "string" and type(op2) == "string" then
     return op1 &#060;= op2   -- lexicographic comparison
   else
     local h = getcomphandler(op1, op2, "__le")
     if h then
       return h(op1, op2)
     else
       h = getcomphandler(op1, op2, "__lt")
       if h then
         return not h(op2, op1)
       else
         error("...");
       end
     end
   end
 end
</pre>
<code>a >= b</code> is equivalent to <code>b &#060;= a</code>.
Note that, in the absence of a "le" metamethod,
Lua tries the "lt", assuming that <code>a &#060;= b</code> is
equivalent to <code>not (b &#060; a)</code>.

<p><li><b>"index":</b>
The indexing access <code>table[key]</code>.
<pre>
 function gettable_event (table, key)
   local h
   if type(table) == "table" then
     local v = rawget(table, key)
     if v ~= nil then return v end
     h = metatable(table).__index
     if h == nil then return nil end
   else
     h = metatable(table).__index
     if h == nil then
       error("...");
     end
   end
   if type(h) == "function" then
     return h(table, key)      -- call the handler
   else return h[key]          -- or repeat operation on it
   end
 end
</pre>

<p><li><b>"newindex":</b>
The indexing assignment <code>table[key] = value</code>.
<pre>
 function settable_event (table, key, value)
   local h
   if type(table) == "table" then
     local v = rawget(table, key)
     if v ~= nil then rawset(table, key, value); return end
     h = metatable(table).__newindex
     if h == nil then rawset(table, key, value); return end
   else
     h = metatable(table).__newindex
     if h == nil then
       error("...");
     end
   end
   if type(h) == "function" then
     return h(table, key,value)    -- call the handler
   else h[key] = value             -- or repeat operation on it
   end
 end
</pre>

<p><li><b>"call":</b>
called when Lua calls a value.
<pre>
 function function_event (func, ...)
   if type(func) == "function" then
     return func(...)   -- primitive call
   else
     local h = metatable(func).__call
     if h then
       return h(func, ...)
     else
       error("...")
     end
   end
 end
</pre>

<p></ul>

<p><a name="environ"></a><a name="2.9"></a><h2>2.9 - Environments</h2>

<p>Besides metatables,
objects of types thread, function, and userdata
have another table associated with them,
called their <em>environment</em>.
Like metatables, environments are regular tables and
multiple objects can share the same environment.

<p>Environments associated with userdata have no meaning for Lua.
It is only a feature for programmers to associate a table to
a userdata.

<p>Environments associated with threads are called
<em>global environments</em>.
They are used as the default environment for threads and
non-nested functions created by the thread
(through <a href="#pdf-loadfile"><code>loadfile</code></a>, <a href="#pdf-loadstring"><code>loadstring</code></a> or <a href="#pdf-load"><code>load</code></a>)
and can be directly accessed by C code (see <a href="#pseudo-index">3.3</a>).

<p>Environments associated with C functions can be directly
accessed by C code (see <a href="#pseudo-index">3.3</a>).
They are used as the default environment for other C functions
created by the function.

<p>Environments associated with Lua functions are used to resolve
all accesses to global variables within the function (see <a href="#variables">2.3</a>).
They are used as the default environment for other Lua functions
created by the function.

<p>You can change the environment of a Lua function or the
running thread by calling <a href="#pdf-setfenv"><code>setfenv</code></a>.
You can get the environment of a Lua function or the running thread
by calling <a href="#pdf-getfenv"><code>getfenv</code></a>.
To manipulate the environment of other objects
(userdata, C functions, other threads) you must
use the C API.

<p><a name="GC"></a><a name="2.10"></a><h2>2.10 - Garbage Collection</h2>

<p>Lua performs automatic memory management.
This means that
you have to worry neither about allocating memory for new objects
nor about freeing it when the objects are no longer needed.
Lua manages memory automatically by running
a <em>garbage collector</em> from time to time
to collect all <em>dead objects</em>
(that is, these objects that are no longer accessible from Lua).
All objects in Lua are subject to automatic management:
tables, userdata, functions, threads, and strings.

<p>Lua implements an incremental mark-and-sweep collector.
It uses two numbers to control its garbage-collection cycles:
the <em>garbage-collector pause</em> and
the <em>garbage-collector step multiplier</em>.

<p>The garbage-collector pause
controls how long the collector waits before starting a new cycle.
Larger values make the collector less aggressive.
Values smaller than 1 mean the collector will not wait to
start a new cycle.
A value of 2 means that the collector waits for the total memory in use
to double before starting a new cycle.

<p>The step multiplier
controls the relative speed of the collector relative to
memory allocation.
Larger values make the collector more aggressive but also increases
the size of each incremental step.
Values smaller than 1 make the collector too slow and
may result in  the collector never finishing a cycle.
The default, 2, means that the collector runs at "twice"
the speed of memory allocation.

<p>You can change these numbers by calling <a href="#lua_gc"><code>lua_gc</code></a> in C
or <a href="#pdf-collectgarbage"><code>collectgarbage</code></a> in Lua.
Both get as arguments percentage points
(so an argument 100 means a real value of 1).
With these functions you can also control 
the collector directly (e.g., stop and restart it).

<p><a name="2.10.1"></a><h3>2.10.1 - Garbage-Collection Metamethods</h3>

<p>Using the C API,
you can set garbage-collector metamethods for userdata (see <a href="#metatable">2.8</a>).
These metamethods are also called <em>finalizers</em>.
Finalizers allow you to coordinate Lua's garbage collection
with external resource management
(such as closing files, network or database connections,
or freeing your own memory).

<p>Garbage userdata with a field <code>__gc</code> in their metatables are not
collected immediately by the garbage collector.
Instead, Lua puts them in a list.
After the collection,
Lua does the equivalent of the following function
for each userdata in that list:
<pre>
 function gc_event (udata)
   local h = metatable(udata).__gc
   if h then
     h(udata)
   end
 end
</pre>

<p>At the end of each garbage-collection cycle,
the finalizers for userdata are called in <em>reverse</em>
order of their creation,
among those collected in that cycle.
That is, the first finalizer to be called is the one associated
with the userdata created last in the program.

<p><a name="weak-table"></a><a name="2.10.2"></a><h3>2.10.2 - Weak Tables</h3>

<p>A <em>weak table</em> is a table whose elements are
<em>weak references</em>.
A weak reference is ignored by the garbage collector.
In other words,
if the only references to an object are weak references,
then the garbage collector will collect this object.

<p>A weak table can have weak keys, weak values, or both.
A table with weak keys allows the collection of its keys,
but prevents the collection of its values.
A table with both weak keys and weak values allows the collection of
both keys and values.
In any case, if either the key or the value is collected,
the whole pair is removed from the table.
The weakness of a table is controlled by the value of the
<code>__mode</code> field of its metatable.
If the <code>__mode</code> field is a string containing the character `<code>k</code>&acute;,
the keys in the table are weak.
If <code>__mode</code> contains `<code>v</code>&acute;,
the values in the table are weak.

<p>After you use a table as a metatable,
you should not change the value of its field <code>__mode</code>.
Otherwise, the weak behavior of the tables controlled by this
metatable is undefined.

<p><a name="coroutine"></a><a name="2.11"></a><h2>2.11 - Coroutines</h2>

<p>Lua supports coroutines,
also called <em>collaborative multithreading</em>.
A coroutine in Lua represents an independent thread of execution.
Unlike threads in multithread systems, however,
a coroutine only suspends its execution by explicitly calling
a yield function.

<p>You create a coroutine with a call to <code>coroutine.create</code>.
Its sole argument is a function
that is the main function of the coroutine.
The <code>create</code> function only creates a new coroutine and
returns a handle to it (an object of type <em>thread</em>);
it does not start the coroutine execution.

<p>When you first call <code>coroutine.resume</code>,
passing as its first argument
the thread returned by <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>,
the coroutine starts its execution,
at the first line of its main function.
Extra arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> are passed on
to the coroutine main function.
After the coroutine starts running,
it runs until it terminates or <em>yields</em>.

<p>A coroutine can terminate its execution in two ways:
Normally, when its main function returns
(explicitly or implicitly, after the last instruction);
and abnormally, if there is an unprotected error.
In the first case, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>true</b>,
plus any values returned by the coroutine main function.
In case of errors, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>false</b>
plus an error message.

<p>A coroutine yields by calling <code>coroutine.yield</code>.
When a coroutine yields,
the corresponding <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns immediately,
even if the yield happens inside nested function calls
(that is, not in the main function,
but in a function directly or indirectly called by the main function).
In the case of a yield, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> also returns <b>true</b>,
plus any values passed to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>.
The next time you resume the same coroutine,
it continues its execution from the point where it yielded,
with the call to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a> returning any extra
arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>.

<p>The <code>coroutine.wrap</code> function creates a coroutine,
just like <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>,
but instead of returning the coroutine itself,
it returns a function that, when called, resumes the coroutine.
Any arguments passed to this function
go as extra arguments to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>.
<code>coroutine.wrap</code> returns all the values returned by <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
except the first one (the boolean error code).
Unlike <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
<code>coroutine.wrap</code> does not catch errors;
any error is propagated to the caller.

<p>As an example,
consider the next code:
<pre>
function foo (a)
  print("foo", a)
  return coroutine.yield(2*a)
end

co = coroutine.create(function (a,b)
      print("co-body", a, b)
      local r = foo(a+1)
      print("co-body", r)
      local r, s = coroutine.yield(a+b, a-b)
      print("co-body", r, s)
      return b, "end"
end)
       
print("main", coroutine.resume(co, 1, 10))
print("main", coroutine.resume(co, "r"))
print("main", coroutine.resume(co, "x", "y"))
print("main", coroutine.resume(co, "x", "y"))
</pre>
When you run it, it produces the following output:
<pre>
co-body 1       10
foo     2
main    true    4
co-body r
main    true    11      -9
co-body x       y
main    true    10      end
main    false   cannot resume dead coroutine
</pre>

<p>
<a name="API"></a><a name="3"></a><h1>3 - The Application Program Interface</h1>


<p>This section describes the C API for Lua, that is,
the set of C functions available to the host program to communicate
with Lua.
All API functions and related types and constants
are declared in the header file <code>lua.h</code>.

<p>Even when we use the term "function",
any facility in the API may be provided as a macro instead.
All such macros use each of its arguments exactly once
(except for the first argument, which is always a Lua state),
and so do not generate any hidden side-effects.

<p>As in most C libraries,
the Lua API functions do not check their arguments for validity or consistency.
However, you can change this behavior by compiling Lua
with a proper definition for the macro <code>luai_apicheck</code>,
in file <code>luaconf.h</code>.

<p><a name="3.1"></a><h2>3.1 - The Stack</h2>

<p>Lua uses a <em>virtual stack</em> to pass values to and from C.
Each element in this stack represents a Lua value
(<b>nil</b>, number, string, etc.).

<p>Whenever Lua calls C, the called function gets a new stack,
which is independent of previous stacks and of stacks of
C functions that are still active.
This stack initially contains any arguments to the C function
and it is where the C function pushes its results
to be returned to the caller (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).

<p>For convenience,
most query operations in the API do not follow a strict stack discipline.
Instead, they can refer to any element in the stack
by using an <em>index</em>:
A positive index represents an <em>absolute</em> stack position
(starting at 1);
a negative index represents an <em>offset</em> relative to the top of the stack.
More specifically, if the stack has <em>n</em> elements,
then index 1 represents the first element
(that is, the element that was pushed onto the stack first)
and
index <em>n</em> represents the last element;
index <em>-1</em> also represents the last element
(that is, the element at the top)
and index <em>-n</em> represents the first element.
We say that an index is <em>valid</em>
if it lies between 1 and the stack top
(that is, if <code>1 &#060;= abs(index) &#060;= top</code>).
 

<p><a name="3.2"></a><h2>3.2 - Stack Size</h2>

<p>When you interact with Lua API,
you are responsible for ensuring consistency.
In particular,
<em>you are responsible for controlling stack overflow</em>.
You can use the function <a href="#lua_checkstack"><code>lua_checkstack</code></a>
to grow the stack size.

<p>Whenever Lua calls C, 
it ensures that at least <code>LUA_MINSTACK</code> stack positions are available.
<code>LUA_MINSTACK</code> is defined as 20,
so that usually you do not have to worry about stack space
unless your code has loops pushing elements onto the stack.

<p>Most query functions accept as indices any value inside the
available stack space, that is, indices up to the maximum stack size
you have set through <a href="#lua_checkstack"><code>lua_checkstack</code></a>.
Such indices are called <em>acceptable indices</em>.
More formally, we define an <em>acceptable index</em>
as follows:
<pre>
       (index &#060; 0 &#038;&#038; abs(index) &#060;= top) || (index > 0 &#038;&#038; index &#060;= stackspace)
</pre>
Note that 0 is never an acceptable index.

<p><a name="pseudo-index"></a><a name="3.3"></a><h2>3.3 - Pseudo-Indices</h2>

<p>Unless otherwise noted,
any function that accepts valid indices can also be called with
<em>pseudo-indices</em>,
which represent some Lua values that are accessible to C code
but which are not in the stack.
Pseudo-indices are used to access the thread environment,
the function environment,
the registry,
and the upvalues of a C function (see <a href="#c-closure">3.4</a>).

<p>The thread environment (where global variables live) is
always at pseudo-index <code>LUA_GLOBALSINDEX</code>.
The environment of the running C function is always
at pseudo-index <code>LUA_ENVIRONINDEX</code>.

<p>To access and change the value of global variables,
you can use regular table operations over an environment table.
For instance, to access the value of a global variable, do
<pre>
       lua_getfield(L, LUA_GLOBALSINDEX, varname);
</pre>

<p><a name="c-closure"></a><a name="3.4"></a><h2>3.4 - C Closures</h2>

<p>When a C function is created,
it is possible to associate some values with it,
thus creating a <em>C closure</em>;
these values are called <em>upvalues</em> and are
accessible to the function whenever it is called
(see <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a>).

<p>Whenever a C function is called,
its upvalues are located at specific pseudo-indices.
These pseudo-indices are produced by the macro
<code>lua_upvalueindex</code>.
The first value associated with a function is at position
<code>lua_upvalueindex(1)</code>, and so on.
Any access to <code>lua_upvalueindex(<em>n</em>)</code>,
where <em>n</em> is greater than the number of upvalues of the
current function,
produces an acceptable (but invalid) index.

<p><a name="registry"></a><a name="3.5"></a><h2>3.5 - Registry</h2>

<p>Lua provides a <em>registry</em>,
a pre-defined table that can be used by any C code to
store whatever Lua value it needs to store.
This table is always located at pseudo-index
<code>LUA_REGISTRYINDEX</code>.
Any C library can store data into this table,
but it should take care to choose keys different from those used
by other libraries, to avoid collisions.
Typically, you should use as key a string containing your library name
or a light userdata with the address of a C object in your code.

<p>The integer keys in the registry are used by the reference mechanism,
implemented by the auxiliary library,
and therefore should not be used for other purposes.

<p><a name="3.6"></a><h2>3.6 - Error Handling in C</h2>

<p>Internally, Lua uses the C <code>longjmp</code> facility to handle errors.
(You can also choose to use exceptions if you use C++;
See file <code>luaconf.h</code>.)
When Lua faces any error
(such as memory allocation errors, type errors, syntax errors,
and runtime errors)
it <em>raises</em> an error;
that is, it does a long jump.
A <em>protected environment</em> uses <code>setjmp</code>
to set a recover point;
any error jumps to the most recent active recover point.

<p>Almost any function in the API may raise an error,
for instance due to a memory allocation error.
The following functions run in protected mode
(that is, they create a protected environment to run),
so they never raise an error:
<a href="#lua_newstate"><code>lua_newstate</code></a>, <a href="#lua_close"><code>lua_close</code></a>, <a href="#lua_load"><code>lua_load</code></a>,
<a href="#lua_pcall"><code>lua_pcall</code></a>, and <a href="#lua_cpcall"><code>lua_cpcall</code></a>.

<p>Inside a C function you can raise an error by calling <a href="#lua_error"><code>lua_error</code></a>.

<p><a name="3.7"></a><h2>3.7 - Functions and Types</h2>

<p>Here we list all functions and types from the C API in
alphabetical order.

<p><a name="lua_Alloc"></a>
<hr></hr><h3><code>lua_Alloc</code></h3>
<pre>
          typedef void * (*lua_Alloc) (void *ud,
                                       void *ptr,
                                       size_t osize,
                                       size_t nsize);

</pre>


<p>The type of the memory allocation function used by Lua states.
The allocator function must provide a
functionality similar to <code>realloc</code>,
but not exactly the same.
Its arguments are
<code>ud</code>, an opaque pointer passed to <a href="#lua_newstate"><code>lua_newstate</code></a>;
<code>ptr</code>, a pointer to the block being allocated/reallocated/freed;
<code>osize</code>, the original size of the block;
<code>nsize</code>, the new size of the block.
<code>ptr</code> is <code>NULL</code> if and only if <code>osize</code> is zero.
When <code>nsize</code> is zero, the allocator must return <code>NULL</code>;
if <code>osize</code> is not zero,
it should free the block pointed to by <code>ptr</code>.
When <code>nsize</code> is not zero, the allocator returns <code>NULL</code>
if and only if it cannot fill the request.
When <code>nsize</code> is not zero and <code>osize</code> is zero,
the allocator should behave like <code>malloc</code>.
When <code>nsize</code> and <code>osize</code> are not zero,
the allocator behaves like <code>realloc</code>.
Lua assumes that the allocator never fails when
<code>osize >= nsize</code>.

<p>Here is a simple implementation for the allocator function.
It is used in the auxiliary library by <a href="#lua_newstate"><code>lua_newstate</code></a>.
<pre>
static void *l_alloc (void *ud, void *ptr, size_t osize, size_t nsize) {
  (void)ud;     /* not used */
  (void)osize;  /* not used */
  if (nsize == 0) {
    free(ptr);  /* ANSI requires that free(NULL) has no effect */
    return NULL;
  }
  else
    /* ANSI requires that realloc(NULL, size) == malloc(size) */
    return realloc(ptr, nsize);
}
</pre>

<p><a name="lua_atpanic"></a>
<hr></hr><h3><code>lua_atpanic</code></h3>
<pre>
          lua_CFunction lua_atpanic (lua_State *L, lua_CFunction panicf);
</pre>


<p>Sets a new panic function and returns the old one.

<p>If an error happens outside any protected environment,
Lua calls a <em>panic function</em>
and then calls <code>exit(EXIT_FAILURE)</code>,
thus exiting the host application.
Your panic function may avoid this exit by
never returning (e.g., doing a long jump).

<p>The panic function can access the error message at the top of the stack.

<p><a name="lua_call"></a>
<hr></hr><h3><code>lua_call</code></h3>
<pre>
          void lua_call (lua_State *L, int nargs, int nresults);
</pre>


<p>Calls a function.

<p>To call a function you must use the following protocol:
First, the function to be called is pushed onto the stack;
then, the arguments to the function are pushed
in direct order;
that is, the first argument is pushed first.
Finally you call <a href="#lua_call"><code>lua_call</code></a>;
<code>nargs</code> is the number of arguments that you pushed onto the stack.
All arguments and the function value are popped from the stack
when the function is called.
The function results are pushed onto the stack when the function returns.
The number of results is adjusted to <code>nresults</code>,
unless <code>nresults</code> is <code>LUA_MULTRET</code>.
In this case, <em>all</em> results from the function are pushed.
Lua takes care that the returned values fit into the stack space.
The function results are pushed onto the stack in direct order
(the first result is pushed first),
so that after the call the last result is on the top of the stack.

<p>Any error inside the called function is propagated upwards
(with a <code>longjmp</code>).

<p>The following example shows how the host program may do the
equivalent to this Lua code:
<pre>
       a = f("how", t.x, 14)
</pre>
Here it is in C:
<pre>
    lua_getfield(L, LUA_GLOBALSINDEX, "f");          /* function to be called */
    lua_pushstring(L, "how");                                 /* 1st argument */
    lua_getfield(L, LUA_GLOBALSINDEX, "t");            /* table to be indexed */
    lua_getfield(L, -1, "x");                 /* push result of t.x (2nd arg) */
    lua_remove(L, -2);                           /* remove `t' from the stack */
    lua_pushinteger(L, 14);                                   /* 3rd argument */
    lua_call(L, 3, 1);         /* call function with 3 arguments and 1 result */
    lua_setfield(L, LUA_GLOBALSINDEX, "a");        /* set global variable `a' */
</pre>
Note that the code above is "balanced":
at its end, the stack is back to its original configuration.
This is considered good programming practice.

<p><a name="lua_CFunction"></a>
<hr></hr><h3><code>lua_CFunction</code></h3>
<pre>
          typedef int (*lua_CFunction) (lua_State *L);
</pre>


<p>Type for C functions.

<p>In order to communicate properly with Lua,
a C function must use the following protocol,
which defines the way parameters and results are passed:
A C function receives its arguments from Lua in its stack
in direct order (the first argument is pushed first).
So, when the function starts,
<a href="#lua_gettop(L)"><code>lua_gettop(L)</code></a> returns the number of arguments received by the function.
The first argument (if any) is at index 1
and its last argument is at index <a href="#lua_gettop(L)"><code>lua_gettop(L)</code></a>.
To return values to Lua, a C function just pushes them onto the stack,
in direct order (the first result is pushed first),
and returns the number of results.
Any other value in the stack below the results will be properly
discarded by Lua.
Like a Lua function, a C function called by Lua can also return
many results.

<p>As an example, the following function receives a variable number
of numerical arguments and returns their average and sum:
<pre>
       static int foo (lua_State *L) {
         int n = lua_gettop(L);    /* number of arguments */
         lua_Number sum = 0;
         int i;
         for (i = 1; i &#060;= n; i++) {
           if (!lua_isnumber(L, i)) {
             lua_pushstring(L, "incorrect argument to function `average'");
             lua_error(L);
           }
           sum += lua_tonumber(L, i);
         }
         lua_pushnumber(L, sum/n);        /* first result */
         lua_pushnumber(L, sum);         /* second result */
         return 2;                   /* number of results */
       }
</pre>

<p><a name="lua_checkstack"></a>
<hr></hr><h3><code>lua_checkstack</code></h3>
<pre>
          int lua_checkstack (lua_State *L, int extra);
</pre>


<p>Ensures that there are at least <code>extra</code> free stack slots in the stack.
It returns false if it cannot grow the stack to that size.
This function never shrinks the stack;
if the stack is already larger than the new size,
it is left unchanged.

<p><a name="lua_close"></a>
<hr></hr><h3><code>lua_close</code></h3>
<pre>
          void lua_close (lua_State *L);
</pre>


<p>Destroys all objects in the given Lua state
(calling the corresponding garbage-collection metamethods, if any)
and frees all dynamic memory used by this state.
On several platforms, you may not need to call this function,
because all resources are naturally released when the host program ends.
On the other hand, long-running programs,
such as a daemon or a web server,
might need to release states as soon as they are not needed,
to avoid growing too large.

<p><a name="lua_concat"></a>
<hr></hr><h3><code>lua_concat</code></h3>
<pre>
          void lua_concat (lua_State *L, int n);
</pre>


<p>Concatenates the <code>n</code> values at the top of the stack,
pops them, and leaves the result at the top.
If <code>n</code> is 1, the result is the single string on the stack
(that is, the function does nothing);
if <code>n</code> is 0, the result is the empty string.
Concatenation is done following the usual semantics of Lua
(see <a href="#concat">2.5.4</a>).

<p><a name="lua_cpcall"></a>
<hr></hr><h3><code>lua_cpcall</code></h3>
<pre>
          int lua_cpcall (lua_State *L, lua_CFunction func, void *ud);
</pre>


<p>Calls the C function <code>func</code> in protected mode.
<code>func</code> starts with only one element in its stack,
a light userdata containing <code>ud</code>.
In case of errors,
<a href="#lua_cpcall"><code>lua_cpcall</code></a> returns the same error codes as <a href="#lua_pcall"><code>lua_pcall</code></a>,
plus the error object on the top of the stack;
otherwise, it returns zero, and does not change the stack.
All values returned by <code>func</code> are discarded.

<p><a name="lua_createtable"></a>
<hr></hr><h3><code>lua_createtable</code></h3>
<pre>
          void lua_createtable (lua_State *L, int narr, int nrec);
</pre>


<p>Creates a new empty table and pushes it onto the stack.
The new table has space pre-allocated
for <code>narr</code> array elements and <code>nrec</code> non-array elements.
This pre-allocation is useful when you know exactly how many elements
the table will have.
Otherwise you can use the function <a href="#lua_newtable"><code>lua_newtable</code></a>.

<p><a name="lua_dump"></a>
<hr></hr><h3><code>lua_dump</code></h3>
<pre>
          int lua_dump (lua_State *L, lua_Writer writer, void *data);
</pre>


<p>Dumps a function as a binary chunk.
Receives a Lua function on the top of the stack
and produces a binary chunk that,
if loaded again,
results in a function equivalent to the one dumped.
As it produces parts of the chunk,
<a href="#lua_dump"><code>lua_dump</code></a> calls function <code>writer</code> (see <a href="#lua_Writer"><code>lua_Writer</code></a>)
with the given <code>data</code>
to write them.

<p>The value returned is the error code returned by the last
call to the writer;
0 means no errors.

<p>This function does not pop the Lua function from the stack.

<p><a name="lua_equal"></a>
<hr></hr><h3><code>lua_equal</code></h3>
<pre>
          int lua_equal (lua_State *L, int index1, int index2);
</pre>


<p>Returns 1 if the two values in acceptable indices <code>index1</code> and
<code>index2</code> are equal,
following the semantics of the Lua <code>==</code> operator
(that is, may call metamethods).
Otherwise returns 0.
Also returns 0 if any of the indices is non valid.

<p><a name="lua_error"></a>
<hr></hr><h3><code>lua_error</code></h3>
<pre>
          int lua_error (lua_State *L);
</pre>


<p>Generates a Lua error.
The error message (which can actually be a Lua value of any type)
must be on the stack top.
This function does a long jump,
and therefore never returns.
(see <a href="#pdf-luaL_error"><code>luaL_error</code></a>).

<p><a name="lua_gc"></a>
<hr></hr><h3><code>lua_gc</code></h3>
<pre>
          int lua_gc (lua_State *L, int what, int data);
</pre>


<p>Controls the garbage collector.

<p>This function performs several tasks,
according to the value of the parameter <code>what</code>:
<ul>
<li> <code>LUA_GCSTOP</code>--- stops the garbage collector.
<li> <code>LUA_GCRESTART</code>--- restarts the garbage collector.
<li> <code>LUA_GCCOLLECT</code>--- performs a full garbage-collection cycle.
<li> <code>LUA_GCCOUNT</code>--- returns the current
amount of memory (in Kbytes) in use by Lua.
<li> <code>LUA_GCCOUNTB</code>--- returns the remainder of
dividing the current amount of bytes of memory in use by Lua 
by 1024.
<li> <code>LUA_GCSTEP</code>--- performs an incremental step of
garbage collection.
The step "size" is controlled by <code>data</code>
(larger values mean more steps) in a non-specified way.
If you want to control the step size
you must tune experimentally the value of <code>data</code>.
The function returns 1 if the step finished a
garbage-collection cycle.
<li> <code>LUA_GCSETPAUSE</code>---
sets <code>data</code>/100 as the new value
for the <em>pause</em> of the collector (see <a href="#GC">2.10</a>).
The function returns the previous value of the pause.
<li> <code>LUA_GCSETSTEPMUL</code>---
sets <code>arg</code>/100 as the new value for the <em>step multiplier</em> of
the collector (see <a href="#GC">2.10</a>).
The function returns the previous value of the step multiplier.
</ul>

<p><a name="lua_getallocf"></a>
<hr></hr><h3><code>lua_getallocf</code></h3>
<pre>
          lua_Alloc lua_getallocf (lua_State *L, void **ud);
</pre>


<p>Returns the memory allocator function of a given state.
If <code>ud</code> is not <code>NULL</code>, Lua stores in <code>*ud</code> the
opaque pointer passed to <a href="#lua_newstate"><code>lua_newstate</code></a>.

<p><a name="lua_getfenv"></a>
<hr></hr><h3><code>lua_getfenv</code></h3>
<pre>
          void lua_getfenv (lua_State *L, int index);
</pre>


<p>Pushes on the stack the environment table of
the value at the given index.

<p><a name="lua_getfield"></a>
<hr></hr><h3><code>lua_getfield</code></h3>
<pre>
          void lua_getfield (lua_State *L, int index, const char *k);
</pre>


<p>Pushes onto the stack the value <code>t[k]</code>,
where <code>t</code> is the value at the given valid index <code>index</code>.
As in Lua, this function may trigger a metamethod
for the "index" event (see <a href="#metatable">2.8</a>).

<p><a name="lua_getglobal"></a>
<hr></hr><h3><code>lua_getglobal</code></h3>
<pre>
          void lua_getglobal (lua_State *L, const char *name);
</pre>


<p>Pushes onto the stack the value of the global <code>name</code>.
It is defined as a macro:
<pre>
#define lua_getglobal(L,s)  lua_getfield(L, LUA_GLOBALSINDEX, s)
</pre>

<p><a name="lua_getmetatable"></a>
<hr></hr><h3><code>lua_getmetatable</code></h3>
<pre>
          int lua_getmetatable (lua_State *L, int index);
</pre>


<p>Pushes onto the stack the metatable of the value at the given
acceptable index.
If the index is not valid,
or if the value does not have a metatable,
the function returns 0 and pushes nothing on the stack.

<p><a name="lua_gettable"></a>
<hr></hr><h3><code>lua_gettable</code></h3>
<pre>
          void lua_gettable (lua_State *L, int index);
</pre>


<p>Pushes onto the stack the value <code>t[k]</code>,
where <code>t</code> is the value at the given valid index <code>index</code>
and <code>k</code> is the value at the top of the stack.

<p>This function pops the key from the stack
(putting the resulting value in its place).
As in Lua, this function may trigger a metamethod
for the "index" event (see <a href="#metatable">2.8</a>).

<p><a name="lua_gettop"></a>
<hr></hr><h3><code>lua_gettop</code></h3>
<pre>
          int lua_gettop (lua_State *L);
</pre>


<p>Returns the index of the top element in the stack.
Because indices start at 1,
this result is equal to the number of elements in the stack
(and so 0 means an empty stack).

<p><a name="lua_insert"></a>
<hr></hr><h3><code>lua_insert</code></h3>
<pre>
          void lua_insert (lua_State *L, int index);
</pre>


<p>Moves the top element into the given valid index,
shifting up the elements above this index to open space.
Cannot be called with a pseudo-index,
because a pseudo-index is not an actual stack position.

<p><a name="lua_Integer"></a>
<hr></hr><h3><code>lua_Integer</code></h3>
<pre>
          typedef ptrdiff_t lua_Integer;
</pre>


<p>The type used by the Lua API to represent integral values.

<p>By default it is a <code>ptrdiff_t</code>,
which is usually the largest integral type the machine handles
"comfortably".

<p><a name="lua_isboolean"></a>
<hr></hr><h3><code>lua_isboolean</code></h3>
<pre>
          int lua_isboolean (lua_State *L, int index);
</pre>


<p>Returns 1 if the value at the given acceptable index has type boolean,
and 0 otherwise.

<p><a name="lua_iscfunction"></a>
<hr></hr><h3><code>lua_iscfunction</code></h3>
<pre>
          int lua_iscfunction (lua_State *L, int index);
</pre>


<p>Returns 1 if the value at the given acceptable index is a C function,
and 0 otherwise.

<p><a name="lua_isfunction"></a>
<hr></hr><h3><code>lua_isfunction</code></h3>
<pre>
          int lua_isfunction (lua_State *L, int index);
</pre>


<p>Returns 1 if the value at the given acceptable index is a function
(either C or Lua), and 0 otherwise.

<p><a name="lua_islightuserdata"></a>
<hr></hr><h3><code>lua_islightuserdata</code></h3>
<pre>
          int lua_islightuserdata (lua_State *L, int index);
</pre>


<p>Returns 1 if the value at the given acceptable index is a light userdata,
and 0 otherwise.

<p><a name="lua_isnil"></a>
<hr></hr><h3><code>lua_isnil</code></h3>
<pre>
          int lua_isnil (lua_State *L, int index);
</pre>


<p>Returns 1 if the value at the given acceptable index is <b>nil</b>,
and 0 otherwise.

<p><a name="lua_isnumber"></a>
<hr></hr><h3><code>lua_isnumber</code></h3>
<pre>
          int lua_isnumber (lua_State *L, int index);
</pre>


<p>Returns 1 if the value at the given acceptable index is a number
or a string convertible to a number,
and 0 otherwise.

<p><a name="lua_isstring"></a>
<hr></hr><h3><code>lua_isstring</code></h3>
<pre>
          int lua_isstring (lua_State *L, int index);
</pre>


<p>Returns 1 if the value at the given acceptable index is a string
or a number (which is always convertible to a string),
and 0 otherwise.

<p><a name="lua_istable"></a>
<hr></hr><h3><code>lua_istable</code></h3>
<pre>
          int lua_istable (lua_State *L, int index);
</pre>


<p>Returns 1 if the value at the given acceptable index is a table,
and 0 otherwise.

<p><a name="lua_isthread"></a>
<hr></hr><h3><code>lua_isthread</code></h3>
<pre>
          int lua_isthread (lua_State *L, int index);
</pre>


<p>Returns 1 if the value at the given acceptable index is a thread,
and 0 otherwise.

<p><a name="lua_isuserdata"></a>
<hr></hr><h3><code>lua_isuserdata</code></h3>
<pre>
          int lua_isuserdata (lua_State *L, int index);
</pre>


<p>Returns 1 if the value at the given acceptable index is a userdata
(either full or light), and 0 otherwise.

<p><a name="lua_lessthan"></a>
<hr></hr><h3><code>lua_lessthan</code></h3>
<pre>
          int lua_lessthan (lua_State *L, int index1, int index2);
</pre>


<p>Returns 1 if the value at acceptable index <code>index1</code> is smaller
than the value at acceptable index <code>index2</code>,
following the semantics of the Lua <code>&#060;</code> operator
(that is, may call metamethods).
Otherwise returns 0.
Also returns 0 if any of the indices is non valid.

<p><a name="lua_load"></a>
<hr></hr><h3><code>lua_load</code></h3>
<pre>
          int lua_load (lua_State *L, lua_Reader reader, void *data,
                                      const char *chunkname);

</pre>


<p>Loads a Lua chunk.
If there are no errors,
<a href="#lua_load"><code>lua_load</code></a> pushes the compiled chunk as a Lua
function on top of the stack.
Otherwise, it pushes an error message.
The return values of <a href="#lua_load"><code>lua_load</code></a> are:
<ul>
<li> 0 --- no errors;
<li> <code>LUA_ERRSYNTAX</code> ---
syntax error during pre-compilation.
<li> <code>LUA_ERRMEM</code> ---
memory allocation error.
</ul>

<p><a href="#lua_load"><code>lua_load</code></a> automatically detects whether the chunk is text or binary,
and loads it accordingly (see program <code>luac</code>).

<p><a href="#lua_load"><code>lua_load</code></a> uses a user-supplied <code>reader</code> function to read the chunk
(see <a href="#lua_Reader"><code>lua_Reader</code></a>).
The <code>data</code> argument is an opaque value passed to the reader function.

<p>The <code>chunkname</code> argument gives a name to the chunk,
which is used for error messages and in debug information (see <a href="#debugI">3.8</a>).

<p><a name="lua_newstate"></a>
<hr></hr><h3><code>lua_newstate</code></h3>
<pre>
          lua_State *lua_newstate (lua_Alloc f, void *ud);
</pre>


<p>Creates a new, independent state.
Returns <code>NULL</code> if cannot create the state
(due to lack of memory).
The argument <code>f</code> is the allocator function;
Lua does all memory allocation for this state through this function.
The second argument, <code>ud</code>, is an opaque pointer that Lua
simply passes to the allocator in every call.

<p><a name="lua_newtable"></a>
<hr></hr><h3><code>lua_newtable</code></h3>
<pre>
          void lua_newtable (lua_State *L);
</pre>


<p>Creates a new empty table and pushes it onto the stack.
Equivalent to <code>lua_createtable(L, 0, 0)</code>.

<p><a name="lua_newthread"></a>
<hr></hr><h3><code>lua_newthread</code></h3>
<pre>
          lua_State *lua_newthread (lua_State *L);
</pre>


<p>Creates a new thread, pushes it on the stack,
and returns a pointer to a <a href="#lua_State"><code>lua_State</code></a> that represents this new thread.
The new state returned by this function shares with the original state
all global objects (such as tables),
but has an independent execution stack.

<p>There is no explicit function to close or to destroy a thread.
Threads are subject to garbage collection,
like any Lua object.

<p><a name="lua_newuserdata"></a>
<hr></hr><h3><code>lua_newuserdata</code></h3>
<pre>
          void *lua_newuserdata (lua_State *L, size_t size);
</pre>


<p>This function allocates a new block of memory with the given size,
pushes on the stack a new full userdata with the block address,
and returns this address.

<p>Userdata represents C values in Lua.
A <em>full userdata</em> represents a block of memory.
It is an object (like a table):
You must create it, it can have its own metatable,
and you can detect when it is being collected.
A full userdata is only equal to itself (under raw equality).

<p>When Lua collects a full userdata with a <code>gc</code> metamethod,
Lua calls the metamethod and marks the userdata as finalized.
When this userdata is collected again then
Lua frees its corresponding memory.

<p><a name="lua_next"></a>
<hr></hr><h3><code>lua_next</code></h3>
<pre>
          int lua_next (lua_State *L, int index);
</pre>


<p>Pops a key from the stack,
and pushes a key-value pair from the table at the given index
(the "next" pair after the given key).
If there are no more elements in the table,
then <a href="#lua_next"><code>lua_next</code></a> returns 0 (and pushes nothing).

<p>A typical traversal looks like this:
<pre>
       /* table is in the stack at index `t' */
       lua_pushnil(L);  /* first key */
       while (lua_next(L, t) != 0) {
         /* `key' is at index -2 and `value' at index -1 */
         printf("%s - %s\n",
           lua_typename(L, lua_type(L, -2)), lua_typename(L, lua_type(L, -1)));
         lua_pop(L, 1);  /* removes `value'; keeps `key' for next iteration */
       }
</pre>

<p>While traversing a table,
do not call <a href="#lua_tolstring"><code>lua_tolstring</code></a> directly on a key,
unless you know that the key is actually a string.
Recall that <a href="#lua_tolstring"><code>lua_tolstring</code></a> <em>changes</em>
the value at the given index;
this confuses the next call to <a href="#lua_next"><code>lua_next</code></a>.

<p><a name="lua_Number"></a>
<hr></hr><h3><code>lua_Number</code></h3>
<pre>
          typedef double lua_Number;
</pre>


<p>The type of numbers in Lua.
By default, it is double, but that can be changed in <code>luaconf.h</code>.

<p>Through the configuration file you can change
Lua to operate with another type for numbers (e.g., float or long).

<p><a name="lua_objlen"></a>
<hr></hr><h3><code>lua_objlen</code></h3>
<pre>
          size_t lua_objlen (lua_State *L, int index);
</pre>


<p>Returns the "length" of the value at the given acceptable index:
for strings, this is the string length;
for tables, this is the result of the length operator (`<code>#</code>&acute;);
for userdata, this is the size of the block of memory allocated
for the userdata;
for other values, it is 0.

<p><a name="lua_pcall"></a>
<hr></hr><h3><code>lua_pcall</code></h3>
<pre>
          lua_pcall (lua_State *L, int nargs, int nresults, int errfunc);
</pre>


<p>Calls a function in protected mode.

<p>Both <code>nargs</code> and <code>nresults</code> have the same meaning as
in <a href="#lua_call"><code>lua_call</code></a>.
If there are no errors during the call,
<a href="#lua_pcall"><code>lua_pcall</code></a> behaves exactly like <a href="#lua_call"><code>lua_call</code></a>.
However, if there is any error,
<a href="#lua_pcall"><code>lua_pcall</code></a> catches it,
pushes a single value on the stack (the error message),
and returns an error code.
Like <a href="#lua_call"><code>lua_call</code></a>,
<a href="#lua_pcall"><code>lua_pcall</code></a> always removes the function
and its arguments from the stack.

<p>If <code>errfunc</code> is 0,
then the error message returned on the stack
is exactly the original error message.
Otherwise, <code>errfunc</code> is the stack index of an
<em>error handler function</em>.
(In the current implementation, this index cannot be a pseudo-index.)
In case of runtime errors,
this function will be called with the error message
and its return value will be the message returned on the stack by <a href="#lua_pcall"><code>lua_pcall</code></a>.

<p>Typically, the error handler function is used to add more debug
information to the error message, such as a stack traceback.
Such information cannot be gathered after the return of <a href="#lua_pcall"><code>lua_pcall</code></a>,
since by then the stack has unwound.

<p>The <a href="#lua_pcall"><code>lua_pcall</code></a> function returns 0 in case of success
or one of the following error codes
(defined in <code>lua.h</code>):
<ul>
<li> <code>LUA_ERRRUN</code> --- a runtime error.
<li> <code>LUA_ERRMEM</code> --- memory allocation error.
For such errors, Lua does not call the error handler function.
<li> <code>LUA_ERRERR</code> ---
error while running the error handler function.
</ul>

<p><a name="lua_pop"></a>
<hr></hr><h3><code>lua_pop</code></h3>
<pre>
          void lua_pop (lua_State *L, int n);
</pre>


<p>Pops <code>n</code> elements from the stack.

<p><a name="lua_pushboolean"></a>
<hr></hr><h3><code>lua_pushboolean</code></h3>
<pre>
          void lua_pushboolean (lua_State *L, int b);
</pre>


<p>Pushes a boolean value with value <code>b</code> onto the stack.

<p><a name="lua_pushcclosure"></a>
<hr></hr><h3><code>lua_pushcclosure</code></h3>
<pre>
          void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n);
</pre>


<p>Pushes a new C closure onto the stack.

<p>When a C function is created,
it is possible to associate some values with it,
thus creating a <em>C closure</em> (see <a href="#c-closure">3.4</a>);
these values are then accessible to the function whenever it is called.
To associate values with a C function,
first these values should be pushed onto the stack
(when there are multiple values, the first value is pushed first).
Then <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a>
is called to create and push the C function onto the stack,
with the argument <code>n</code> telling how many values should be
associated with the function.
<a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a> also pops these values from the stack.

<p><a name="lua_pushcfunction"></a>
<hr></hr><h3><code>lua_pushcfunction</code></h3>
<pre>
          void lua_pushcfunction (lua_State *L, lua_CFunction f);
</pre>


<p>Pushes a C function onto the stack.
This function receives a pointer to a C function
and pushes on the stack a Lua value of type <code>function</code> that,
when called, invokes the corresponding C function.

<p>Any function to be registered in Lua must
follow the correct protocol to receive its parameters
and return its results (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).

<p>The call <code>lua_pushcfunction(L, f)</code> is equivalent to
<code>lua_pushcclosure(L, f, 0)</code>.

<p><a name="lua_pushfstring"></a>
<hr></hr><h3><code>lua_pushfstring</code></h3>
<pre>
          const char *lua_pushfstring (lua_State *L, const char *fmt, ...);
</pre>


<p>Pushes onto the stack a formatted string
and returns a pointer to this string.
It is similar to the C function <code>sprintf</code>,
but has some important differences:
<ul>
<li> You do not have to allocate space for the result:
The result is a Lua string and Lua takes care of memory allocation
(and deallocation, through garbage collection).
<li> The conversion specifiers are quite restricted.
There are no flags, widths, or precisions.
The conversion specifiers can only be
`<code>%%</code>&acute; (inserts a `<code>%</code>&acute; in the string),
`<code>%s</code>&acute; (inserts a zero-terminated string, with no size restrictions),
`<code>%f</code>&acute; (inserts a <a href="#lua_Number"><code>lua_Number</code></a>),
`<code>%p</code>&acute; (inserts a pointer as a hexadecimal numeral),
`<code>%d</code>&acute; (inserts an <code>int</code>), and
`<code>%c</code>&acute; (inserts an <code>int</code> as a character).
</ul>

<p><a name="lua_pushinteger"></a>
<hr></hr><h3><code>lua_pushinteger</code></h3>
<pre>
          void lua_pushinteger (lua_State *L, lua_Integer n);
</pre>


<p>Pushes a number with value <code>n</code> onto the stack.

<p><a name="lua_pushlightuserdata"></a>
<hr></hr><h3><code>lua_pushlightuserdata</code></h3>
<pre>
          void lua_pushlightuserdata (lua_State *L, void *p);
</pre>


<p>Pushes a light userdata onto the stack.

<p>Userdata represents C values in Lua.
A <em>light userdata</em> represents a pointer.
It is a value (like a number):
You do not create it, it has no metatables,
it is not collected (as it was never created).
A light userdata is equal to "any"
light userdata with the same C address.

<p><a name="lua_pushlstring"></a>
<hr></hr><h3><code>lua_pushlstring</code></h3>
<pre>
          void lua_pushlstring (lua_State *L, const char *s, size_t len);
</pre>


<p>Pushes the string pointed to by <code>s</code> with size <code>len</code>
onto the stack.
Lua makes (or reuses) an internal copy of the given string,
so the memory at <code>s</code> can be freed or reused immediately after
the function returns.
The string can contain embedded zeros.

<p><a name="lua_pushnil"></a>
<hr></hr><h3><code>lua_pushnil</code></h3>
<pre>
          void lua_pushnil (lua_State *L);
</pre>


<p>Pushes a nil value onto the stack.

<p><a name="lua_pushnumber"></a>
<hr></hr><h3><code>lua_pushnumber</code></h3>
<pre>
          void lua_pushnumber (lua_State *L, lua_Number n);
</pre>


<p>Pushes a number with value <code>n</code> onto the stack.

<p><a name="lua_pushstring"></a>
<hr></hr><h3><code>lua_pushstring</code></h3>
<pre>
          void lua_pushstring (lua_State *L, const char *s);
</pre>


<p>Pushes the zero-terminated string pointed to by <code>s</code>
onto the stack.
Lua makes (or reuses) an internal copy of the given string,
so the memory at <code>s</code> can be freed or reused immediately after
the function returns.
The string cannot contain embedded zeros;
it is assumed to end at the first zero.

<p><a name="lua_pushthread"></a>
<hr></hr><h3><code>lua_pushthread</code></h3>
<pre>
          void lua_pushthread (lua_State *L);
</pre>


<p>Pushes the thread represented by <code>L</code> onto the stack.

<p><a name="lua_pushvalue"></a>
<hr></hr><h3><code>lua_pushvalue</code></h3>
<pre>
          void lua_pushvalue (lua_State *L, int index);
</pre>


<p>Pushes a copy of the element at the given valid index
onto the stack.

<p><a name="lua_pushvfstring"></a>
<hr></hr><h3><code>lua_pushvfstring</code></h3>
<pre>
          const char *lua_pushvfstring (lua_State *L, const char *fmt, va_list argp);
</pre>


<p>Equivalent to <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>, except that it receives a <code>va_list</code>
instead of a variable number of arguments.

<p><a name="lua_rawequal"></a>
<hr></hr><h3><code>lua_rawequal</code></h3>
<pre>
          int lua_rawequal (lua_State *L, int index1, int index2);
</pre>


<p>Returns 1 if the two values in acceptable indices <code>index1</code> and
<code>index2</code> are primitively equal
(that is, without calling metamethods).
Otherwise returns 0.
Also returns 0 if any of the indices are non valid.

<p><a name="lua_rawget"></a>
<hr></hr><h3><code>lua_rawget</code></h3>
<pre>
          void lua_rawget (lua_State *L, int index);
</pre>


<p>Similar to <a href="#lua_gettable"><code>lua_gettable</code></a>, but does a raw access
(i.e., without metamethods).

<p><a name="lua_rawgeti"></a>
<hr></hr><h3><code>lua_rawgeti</code></h3>
<pre>
          void lua_rawgeti (lua_State *L, int index, int n);
</pre>


<p>Pushes onto the stack the value <code>t[n]</code>,
where <code>t</code> is the value at the given valid index <code>index</code>.
The access is raw;
that is, it does not invoke metamethods.

<p><a name="lua_rawset"></a>
<hr></hr><h3><code>lua_rawset</code></h3>
<pre>
          void lua_rawset (lua_State *L, int index);
</pre>


<p>Similar to <a href="#lua_settable"><code>lua_settable</code></a>, but does a raw assignment
(i.e., without metamethods).

<p><a name="lua_rawseti"></a>
<hr></hr><h3><code>lua_rawseti</code></h3>
<pre>
          void lua_rawseti (lua_State *L, int index, int n);
</pre>


<p>Does the equivalent of <code>t[n] = v</code>,
where <code>t</code> is the value at the given valid index <code>index</code>
and <code>v</code> is the value at the top of the stack,

<p>This function pops the value from the stack.
The assignment is raw;
that is, it does not invoke metamethods.

<p><a name="lua_Reader"></a>
<hr></hr><h3><code>lua_Reader</code></h3>
<pre>
          typedef const char * (*lua_Reader)
                               (lua_State *L, void *data, size_t *size);

</pre>


<p>The reader function used by <a href="#lua_load"><code>lua_load</code></a>.
Every time it needs another piece of the chunk,
<a href="#lua_load"><code>lua_load</code></a> calls the reader,
passing along its <code>data</code> parameter.
The reader must return a pointer to a block of memory
with a new piece of the chunk
and set <code>size</code> to the block size.
The block must exist until the reader function is called again.
To signal the end of the chunk, the reader must return <code>NULL</code>.
The reader function may return pieces of any size greater than zero.

<p><a name="lua_register"></a>
<hr></hr><h3><code>lua_register</code></h3>
<pre>
          void lua_register (lua_State *L, const char *name, lua_CFunction f);
</pre>


<p>Sets the C function <code>f</code> as the new value of global <code>name</code>.
It is defined as a macro:
<pre>
#define lua_register(L,n,f)  (lua_pushcfunction(L, f), lua_setglobal(L, n))
</pre>

<p><a name="lua_remove"></a>
<hr></hr><h3><code>lua_remove</code></h3>
<pre>
          void lua_remove (lua_State *L, int index);
</pre>


<p>Removes the element at the given valid index,
shifting down the elements above this index to fill the gap.
Cannot be called with a pseudo-index,
because a pseudo-index is not an actual stack position.

<p><a name="lua_replace"></a>
<hr></hr><h3><code>lua_replace</code></h3>
<pre>
          void lua_replace (lua_State *L, int index);
</pre>


<p>Moves the top element into the given position (and pops it),
without shifting any element
(therefore replacing the value at the given position).

<p><a name="lua_resume"></a>
<hr></hr><h3><code>lua_resume</code></h3>
<pre>
          int lua_resume (lua_State *L, int narg);
</pre>


<p>Starts and resumes a coroutine in a given thread.

<p>To start a coroutine, you first create a new thread
(see <a href="#lua_newthread"><code>lua_newthread</code></a>);
then you push on its stack the main function plus any eventual arguments;
then you call <a href="#lua_resume"><code>lua_resume</code></a>,
with <code>narg</code> being the number of arguments.
This call returns when the coroutine suspends or finishes its execution.
When it returns, the stack contains all values passed to <a href="#lua_yield"><code>lua_yield</code></a>,
or all values returned by the body function.
<a href="#lua_resume"><code>lua_resume</code></a> returns
<a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the coroutine yields,
0 if the coroutine finishes its execution
without errors,
or an error code in case of errors (see <a href="#lua_pcall"><code>lua_pcall</code></a>).
In case of errors,
the stack is not unwound,
so you can use the debug API over it.
The error message is on the top of the stack.
To restart a coroutine, you put on its stack only the values to
be passed as results from <code>yield</code>,
and then call <a href="#lua_resume"><code>lua_resume</code></a>.

<p><a name="lua_setallocf"></a>
<hr></hr><h3><code>lua_setallocf</code></h3>
<pre>
          void lua_setallocf (lua_State *L, lua_Alloc f, void *ud);
</pre>


<p>Changes the allocator function of a given state to <code>f</code>
with user data <code>ud</code>.

<p><a name="lua_setfenv"></a>
<hr></hr><h3><code>lua_setfenv</code></h3>
<pre>
          int lua_setfenv (lua_State *L, int index);
</pre>


<p>Pops a table from the stack and sets it as
the new environment for the value at the given index.
If the value at the given index is
neither a function nor a thread nor a userdata,
<a href="#lua_setfenv"><code>lua_setfenv</code></a> returns 0.
Otherwise it returns 1.

<p><a name="lua_setfield"></a>
<hr></hr><h3><code>lua_setfield</code></h3>
<pre>
          void lua_setfield (lua_State *L, int index, const char *k);
</pre>


<p>Does the equivalent to <code>t[k] = v</code>,
where <code>t</code> is the value at the given valid index <code>index</code>
and <code>v</code> is the value at the top of the stack,

<p>This function pops the value from the stack.
As in Lua, this function may trigger a metamethod
for the "newindex" event (see <a href="#metatable">2.8</a>).

<p><a name="lua_setglobal"></a>
<hr></hr><h3><code>lua_setglobal</code></h3>
<pre>
          void lua_setglobal (lua_State *L, const char *name);
</pre>


<p>Pops a value from the stack and
sets it as the new value of global <code>name</code>.
It is defined as a macro:
<pre>
#define lua_setglobal(L,s)   lua_setfield(L, LUA_GLOBALSINDEX, s)
</pre>

<p><a name="lua_setmetatable"></a>
<hr></hr><h3><code>lua_setmetatable</code></h3>
<pre>
          int lua_setmetatable (lua_State *L, int index);
</pre>


<p>Pops a table from the stack and
sets it as the new metatable for the value at the given
acceptable index.

<p><a name="lua_settable"></a>
<hr></hr><h3><code>lua_settable</code></h3>
<pre>
          void lua_settable (lua_State *L, int index);
</pre>


<p>Does the equivalent to <code>t[k] = v</code>,
where <code>t</code> is the value at the given valid index <code>index</code>,
<code>v</code> is the value at the top of the stack,
and <code>k</code> is the value just below the top.

<p>This function pops both the key and the value from the stack.
As in Lua, this function may trigger a metamethod
for the "newindex" event (see <a href="#metatable">2.8</a>).

<p><a name="lua_settop"></a>
<hr></hr><h3><code>lua_settop</code></h3>
<pre>
          void lua_settop (lua_State *L, int index);
</pre>


<p>Accepts any acceptable index, or 0,
and sets the stack top to this index.
If the new top is larger than the old one,
then the new elements are filled with <b>nil</b>.
If <code>index</code> is 0, then all stack elements are removed.

<p><a name="lua_State"></a>
<hr></hr><h3><code>lua_State</code></h3>
<pre>
          typedef struct lua_State lua_State;
</pre>


<p>Opaque structure that keeps the whole state of a Lua interpreter.
The Lua library is fully reentrant:
it has no global variables.
All information about a state is kept in this structure.

<p>A pointer to this state must be passed as the first argument to
every function in the library, except to <a href="#lua_newstate"><code>lua_newstate</code></a>,
which creates a Lua state from scratch.

<p><a name="lua_status"></a>
<hr></hr><h3><code>lua_status</code></h3>
<pre>
          int lua_status (lua_State *L);
</pre>


<p>Returns the status of the thread <code>L</code>.

<p>The status can be 0 for a normal thread,
an error code if the thread finished its execution with an error,
or <code>LUA_YIELD</code> if the thread is suspended.

<p><a name="lua_toboolean"></a>
<hr></hr><h3><code>lua_toboolean</code></h3>
<pre>
          int lua_toboolean (lua_State *L, int index);
</pre>


<p>Converts the Lua value at the given acceptable index to a C boolean
value (0 or 1).
Like all tests in Lua,
<a href="#lua_toboolean"><code>lua_toboolean</code></a> returns 1 for any Lua value
different from <b>false</b> and <b>nil</b>;
otherwise it returns 0.
It also returns 0 when called with a non-valid index.
(If you want to accept only actual boolean values,
use <a href="#lua_isboolean"><code>lua_isboolean</code></a> to test the value's type.)

<p><a name="lua_tocfunction"></a>
<hr></hr><h3><code>lua_tocfunction</code></h3>
<pre>
          lua_CFunction lua_tocfunction (lua_State *L, int index);
</pre>


<p>Converts a value at the given acceptable index to a C function.
That value must be a C function;
otherwise, returns <code>NULL</code>.

<p><a name="lua_tointeger"></a>
<hr></hr><h3><code>lua_tointeger</code></h3>
<pre>
          lua_Integer lua_tointeger (lua_State *L, int idx);
</pre>


<p>Converts the Lua value at the given acceptable index
to the signed integral type <a href="#lua_Integer"><code>lua_Integer</code></a>.
The Lua value must be a number or a string convertible to a number
(see <a href="#coercion">2.2.1</a>);
otherwise, <a href="#lua_tointeger"><code>lua_tointeger</code></a> returns 0.

<p>If the number is not an integer,
it is truncated in some non-specified way.

<p><a name="lua_tolstring"></a>
<hr></hr><h3><code>lua_tolstring</code></h3>
<pre>
          const char *lua_tolstring (lua_State *L, int index, size_t *len);
</pre>


<p>Converts the Lua value at the given acceptable index to a string
(<code>const char*</code>).
If <code>len</code> is not <code>NULL</code>,
it also sets <code>*len</code> with the string length.
The Lua value must be a string or a number;
otherwise, the function returns <code>NULL</code>.
If the value is a number,
then <a href="#lua_tolstring"><code>lua_tolstring</code></a> also
<em>changes the actual value in the stack to a string</em>.
(This change confuses <a href="#lua_next"><code>lua_next</code></a>
when <a href="#lua_tolstring"><code>lua_tolstring</code></a> is applied to keys during a table traversal.)

<p><a href="#lua_tolstring"><code>lua_tolstring</code></a> returns a fully aligned pointer
to a string inside the Lua state.
This string always has a zero (`<code>\0</code>&acute;)
after its last character (as in C),
but may contain other zeros in its body.
Because Lua has garbage collection,
there is no guarantee that the pointer returned by <a href="#lua_tolstring"><code>lua_tolstring</code></a>
will be valid after the corresponding value is removed from the stack.

<p><a name="lua_tonumber"></a>
<hr></hr><h3><code>lua_tonumber</code></h3>
<pre>
          lua_Number lua_tonumber (lua_State *L, int index);
</pre>


<p>Converts the Lua value at the given acceptable index
to a number (see <a href="#lua_Number"><code>lua_Number</code></a>).
The Lua value must be a number or a string convertible to a number
(see <a href="#coercion">2.2.1</a>);
otherwise, <a href="#lua_tonumber"><code>lua_tonumber</code></a> returns 0.

<p><a name="lua_topointer"></a>
<hr></hr><h3><code>lua_topointer</code></h3>
<pre>
          const void *lua_topointer (lua_State *L, int index);
</pre>


<p>Converts the value at the given acceptable index to a generic
C pointer (<code>void*</code>).
The value may be a userdata, a table, a thread, or a function;
otherwise, <a href="#lua_topointer"><code>lua_topointer</code></a> returns <code>NULL</code>.
Lua ensures that different objects return different pointers.
There is no direct way to convert the pointer back to its original value.

<p>Typically this function is used only for debug information.

<p><a name="lua_tostring"></a>
<hr></hr><h3><code>lua_tostring</code></h3>
<pre>
          const char *lua_tostring (lua_State *L, int index);
</pre>


<p>Equivalent to <a href="#lua_tolstring"><code>lua_tolstring</code></a> with <code>len</code> equal to <code>NULL</code>.

<p><a name="lua_tothread"></a>
<hr></hr><h3><code>lua_tothread</code></h3>
<pre>
          lua_State *lua_tothread (lua_State *L, int index);
</pre>


<p>Converts the value at the given acceptable index to a Lua thread
(represented as <code>lua_State*</code>).
This value must be a thread;
otherwise, the function returns <code>NULL</code>.

<p><a name="lua_touserdata"></a>
<hr></hr><h3><code>lua_touserdata</code></h3>
<pre>
          void *lua_touserdata (lua_State *L, int index);
</pre>


<p>If the value at the given acceptable index is a full userdata,
returns its block address.
If the value is a light userdata,
returns its pointer.
Otherwise, returns <code>NULL</code>.

<p><a name="lua_type"></a>
<hr></hr><h3><code>lua_type</code></h3>
<pre>
          int lua_type (lua_State *L, int index);
</pre>


<p>Returns the type of the value in the given acceptable index,
or <code>LUA_TNONE</code> for a non-valid index
(that is, an index to an "empty" stack position).
The types returned by <a href="#lua_type"><code>lua_type</code></a> are coded by the following constants
defined in <code>lua.h</code>:
<code>LUA_TNIL</code>,
<code>LUA_TNUMBER</code>,
<code>LUA_TBOOLEAN</code>,
<code>LUA_TSTRING</code>,
<code>LUA_TTABLE</code>,
<code>LUA_TFUNCTION</code>,
<code>LUA_TUSERDATA</code>,
<code>LUA_TTHREAD</code>,
and
<code>LUA_TLIGHTUSERDATA</code>.

<p><a name="lua_typename"></a>
<hr></hr><h3><code>lua_typename</code></h3>
<pre>
          const char *lua_typename  (lua_State *L, int tp);
</pre>


<p>Returns the name of the type encoded by the value <code>tp</code>,
which must be one the values returned by <a href="#lua_type"><code>lua_type</code></a>.

<p><a name="lua_Writer"></a>
<hr></hr><h3><code>lua_Writer</code></h3>
<pre>
          typedef int (*lua_Writer)
                          (lua_State *L, const void* p, size_t sz, void* ud);

</pre>


<p>The writer function used by <a href="#lua_dump"><code>lua_dump</code></a>.
Every time it produces another piece of chunk,
<a href="#lua_dump"><code>lua_dump</code></a> calls the writer,
passing along the buffer to be written (<code>p</code>),
its size (<code>sz</code>),
and the <code>data</code> parameter supplied to <a href="#lua_dump"><code>lua_dump</code></a>.

<p>The writer returns an error code:
0 means no errors;
any other value means an error and stops <a href="#lua_dump"><code>lua_dump</code></a> from
calling the writer again.

<p><a name="lua_xmove"></a>
<hr></hr><h3><code>lua_xmove</code></h3>
<pre>
          void lua_xmove (lua_State *from, lua_State *to, int n);
</pre>


<p>Exchange values between different threads of the <em>same</em> global state.

<p>This function pops <code>n</code> values from the stack <code>from</code>,
and pushes them onto the stack <code>to</code>.

<p><a name="lua_yield"></a>
<hr></hr><h3><code>lua_yield</code></h3>
<pre>
          int lua_yield  (lua_State *L, int nresults);
</pre>


<p>Yields a coroutine.

<p>This function should only be called as the
return expression of a C function, as follows:
<pre>
       return lua_yield (L, nresults);
</pre>
When a C function calls <a href="#lua_yield"><code>lua_yield</code></a> in that way,
the running coroutine suspends its execution,
and the call to <a href="#lua_resume"><code>lua_resume</code></a> that started this coroutine returns.
The parameter <code>nresults</code> is the number of values from the stack
that are passed as results to <a href="#lua_resume"><code>lua_resume</code></a>.

<p>
<a name="debugI"></a><a name="3.8"></a><h2>3.8 - The Debug Interface</h2>

<p>Lua has no built-in debugging facilities.
Instead, it offers a special interface
by means of functions and <em>hooks</em>.
This interface allows the construction of different
kinds of debuggers, profilers, and other tools
that need "inside information" from the interpreter.

<p><a name="lua_Debug"></a>
<hr></hr><h3><code>lua_Debug</code></h3>
<pre>
          typedef struct lua_Debug {
            int event;
            const char *name;           /* (n) */
            const char *namewhat;       /* (n) */
            const char *what;           /* (S) */
            const char *source;         /* (S) */
            int currentline;            /* (l) */
            int nups;                   /* (u) number of upvalues */
            int linedefined;            /* (S) */
            int lastlinedefined;        /* (S) */
            char short_src[LUA_IDSIZE]; /* (S) */
            /* private part */
            ...
          } lua_Debug;

</pre>


<p>A structure used to carry different pieces of
information about an active function.
<a href="#lua_getstack"><code>lua_getstack</code></a> fills only the private part
of this structure, for later use.
To fill the other fields of <a href="#lua_Debug"><code>lua_Debug</code></a> with useful information,
call <a href="#lua_getinfo"><code>lua_getinfo</code></a>.

<p>The fields of <a href="#lua_Debug"><code>lua_Debug</code></a> have the following meaning:
<ul>
<li><b><code>source</code></b> ---
If the function was defined in a string,
then <code>source</code> is that string.
If the function was defined in a file,
then <code>source</code> starts with a `<code>@</code>&acute; followed by the file name.

<p><li><b><code>short_src</code></b> ---
a "printable" version of <code>source</code>, to be used in error messages.

<p><li><b><code>linedefined</code></b> ---
the line number where the definition of the function starts.

<p><li><b><code>lastlinedefined</code></b> ---
the line number where the definition of the function ends.

<p><li><b><code>what</code></b> ---
the string <code>"Lua"</code> if the function is a Lua function,
<code>"C"</code> if it is a C function,
<code>"main"</code> if it is the main part of a chunk,
and <code>"tail"</code> if it was a function that did a tail call.
In the latter case,
Lua has no other information about the function.

<p><li><b><code>currentline</code></b> ---
the current line where the given function is executing.
When no line information is available,
<code>currentline</code> is set to <em>-1</em>.

<p><li><b><code>name</code></b> ---
a reasonable name for the given function.
Because functions in Lua are first-class values,
they do not have a fixed name:
Some functions may be the value of multiple global variables,
while others may be stored only in a table field.
The <code>lua_getinfo</code> function checks how the function was
called to find a suitable name.
If it cannot find a name,
then <code>name</code> is set to <code>NULL</code>.

<p><li><b><code>namewhat</code></b> ---
explains the <code>name</code> field.
The value of <code>namewhat</code> can be
<code>"global"</code>, <code>"local"</code>, <code>"method"</code>,
<code>"field"</code>, <code>"upvalue"</code>, or <code>""</code> (the empty string),
according to how the function was called.
(Lua uses the empty string when no other option seems to apply.)

<p><li><b><code>nups</code></b> ---
the number of upvalues of the function.

<p></ul>

<p><a name="lua_gethook"></a>
<hr></hr><h3><code>lua_gethook</code></h3>
<pre>
          lua_Hook lua_gethook (lua_State *L);
</pre>


<p>Returns the current hook function.

<p><a name="lua_gethookcount"></a>
<hr></hr><h3><code>lua_gethookcount</code></h3>
<pre>
          int lua_gethookcount (lua_State *L);
</pre>


<p>Returns the current hook count.

<p><a name="lua_gethookmask"></a>
<hr></hr><h3><code>lua_gethookmask</code></h3>
<pre>
          int lua_gethookmask (lua_State *L);
</pre>


<p>Returns the current hook mask.

<p><a name="lua_getinfo"></a>
<hr></hr><h3><code>lua_getinfo</code></h3>
<pre>
          int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar);
</pre>


<p>Fills the fields of <a href="#lua_Debug"><code>lua_Debug</code></a> with useful information.

<p>This function returns 0 on error
(for instance, an invalid option in <code>what</code>).
Each character in the string <code>what</code>
selects some fields of the structure <code>ar</code> to be filled,
as indicated by the letter in parentheses in the definition of <a href="#lua_Debug"><code>lua_Debug</code></a>:
`<code>S</code>&acute; fills in the fields <code>source</code>, <code>linedefined</code>,
<code>lastlinedefined</code>,
and <code>what</code>;
`<code>l</code>&acute; fills in the field <code>currentline</code>, etc.
Moreover, `<code>f</code>&acute; pushes onto the stack the function that is
running at the given level.

<p>To get information about a function that is not active
(that is, not in the stack),
you push it onto the stack
and start the <code>what</code> string with the character `<code>></code>&acute;.
For instance, to know in which line a function <code>f</code> was defined,
you can write the following code:
<pre>
       lua_Debug ar;
       lua_getfield(L, LUA_GLOBALSINDEX, "f");  /* get global `f' */
       lua_getinfo(L, ">S", &#038;ar);
       printf("%d\n", ar.linedefined);
</pre>

<p><a name="lua_getlocal"></a>
<hr></hr><h3><code>lua_getlocal</code></h3>
<pre>
          const char *lua_getlocal (lua_State *L, const lua_Debug *ar, int n);
</pre>


<p>Gets information about a local variable of a given activation record.
The parameter <code>ar</code> must be a valid activation record that was
filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or
given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>).
The index <code>n</code> selects which local variable to inspect
(1 is the first parameter or active local variable, and so on,
until the last active local variable).
<a href="#lua_getlocal"><code>lua_getlocal</code></a> pushes the variable's value onto the stack
and returns its name.

<p>Variable names starting with `<code>(</code>&acute; (open parentheses)
represent internal variables
(loop control variables, temporaries, and C function locals).

<p>Returns <code>NULL</code> (and pushes nothing)
when the index is greater than
the number of active local variables.

<p><a name="lua_getstack"></a>
<hr></hr><h3><code>lua_getstack</code></h3>
<pre>
          int lua_getstack (lua_State *L, int level, lua_Debug *ar);
</pre>


<p>Get information about the interpreter runtime stack.

<p>This function fills parts of a <a href="#lua_Debug"><code>lua_Debug</code></a> structure with
an identification of the <em>activation record</em>
of the function executing at a given level.
Level 0 is the current running function,
whereas level <em>n+1</em> is the function that has called level <em>n</em>.
When there are no errors, <a href="#lua_getstack"><code>lua_getstack</code></a> returns 1;
when called with a level greater than the stack depth,
it returns 0.

<p><a name="lua_getupvalue"></a>
<hr></hr><h3><code>lua_getupvalue</code></h3>
<pre>
          const char *lua_getupvalue (lua_State *L, int funcindex, int n);
</pre>


<p>Gets information about a closure's upvalue.
(For Lua functions,
upvalues are the external local variables that the function uses,
and that are consequently included in its closure.)
<a href="#lua_getupvalue"><code>lua_getupvalue</code></a> gets the index <code>n</code> of an upvalue,
pushes the upvalue's value onto the stack,
and returns its name.
<code>funcindex</code> points to the closure in the stack.
(Upvalues have no particular order,
as they are active through the whole function.
So, they are numbered in an arbitrary order.)

<p>Returns <code>NULL</code> (and pushes nothing)
when the index is greater than the number of upvalues.
For C functions, this function uses the empty string <code>""</code>
as a name for all upvalues.

<p><a name="lua_Hook"></a>
<hr></hr><h3><code>lua_Hook</code></h3>
<pre>
          typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);
</pre>


<p>Type for debugging hook functions.

<p>Whenever a hook is called, its <code>ar</code> argument has its field
<code>event</code> set to the specific event that triggered the hook.
Lua identifies these events with the following constants:
<code>LUA_HOOKCALL</code>, <code>LUA_HOOKRET</code>,
<code>LUA_HOOKTAILRET</code>, <code>LUA_HOOKLINE</code>,
and <code>LUA_HOOKCOUNT</code>.
Moreover, for line events, the field <code>currentline</code> is also set.
To get the value of any other field in <code>ar</code>,
the hook must call <a href="#lua_getinfo"><code>lua_getinfo</code></a>.
For return events, <code>event</code> may be <code>LUA_HOOKRET</code>,
the normal value, or <code>LUA_HOOKTAILRET</code>.
In the latter case, Lua is simulating a return from
a function that did a tail call;
in this case, it is useless to call <a href="#lua_getinfo"><code>lua_getinfo</code></a>.

<p>While Lua is running a hook, it disables other calls to hooks.
Therefore, if a hook calls back Lua to execute a function or a chunk,
this execution occurs without any calls to hooks.

<p><a name="lua_sethook"></a>
<hr></hr><h3><code>lua_sethook</code></h3>
<pre>
          int lua_sethook (lua_State *L, lua_Hook func, int mask, int count);
</pre>


<p>Sets the debugging hook function.

<p><code>func</code> is the hook function.
<code>mask</code> specifies on which events the hook will be called:
It is formed by a bitwise or of the constants
<code>LUA_MASKCALL</code>,
<code>LUA_MASKRET</code>,
<code>LUA_MASKLINE</code>,
and <code>LUA_MASKCOUNT</code>.
The <code>count</code> argument is only meaningful when the mask
includes <code>LUA_MASKCOUNT</code>.
For each event, the hook is called as explained below:
<ul>
<li><b>The call hook</b> is called when the interpreter calls a function.
The hook is called just after Lua enters the new function,
before the function gets its arguments.
<li><b>The return hook</b> is called when the interpreter returns from a function.
The hook is called just before Lua leaves the function.
You have no access to the values to be returned by the function.
<li><b>The line hook</b> is called when the interpreter is about to
start the execution of a new line of code,
or when it jumps back in the code (even to the same line).
(This event only happens while Lua is executing a Lua function.)
<li><b>The count hook</b> is called after the interpreter executes every
<code>count</code> instructions.
(This event only happens while Lua is executing a Lua function.)
</ul>

<p>A hook is disabled by setting <code>mask</code> to zero.

<p><a name="lua_setlocal"></a>
<hr></hr><h3><code>lua_setlocal</code></h3>
<pre>
          const char *lua_setlocal (lua_State *L, const lua_Debug *ar, int n);
</pre>


<p>Sets the value of a local variable of a given activation record.
Parameters <code>ar</code> and <code>n</code> are as in <a href="#lua_getlocal"><code>lua_getlocal</code></a>
(see <a href="#lua_getlocal"><code>lua_getlocal</code></a>).
<a href="#lua_setlocal"><code>lua_setlocal</code></a> assigns the value at the top of the stack
to the variable and returns its name.
It also pops the value from the stack.

<p>Returns <code>NULL</code> (and pops nothing)
when the index is greater than
the number of active local variables.

<p><a name="lua_setupvalue"></a>
<hr></hr><h3><code>lua_setupvalue</code></h3>
<pre>
          const char *lua_setupvalue (lua_State *L, int funcindex, int n);
</pre>


<p>Sets the value of a closure's upvalue.
Parameters <code>funcindex</code> and <code>n</code> are as in <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>
(see <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>).
It assigns the value at the top of the stack
to the upvalue and returns its name.
It also pops the value from the stack.

<p>Returns <code>NULL</code> (and pops nothing)
when the index is greater than the number of upvalues.

<p>
<a name="4"></a><h1>4 - The Auxiliary Library</h1>

<p>
The <em>auxiliary library</em> provides several convenient functions
to interface C with Lua.
While the basic API provides the primitive functions for all 
interactions between C and Lua,
the auxiliary library provides higher-level functions for some
common tasks.

<p>All functions from the auxiliary library
are defined in header file <code>lauxlib.h</code> and
have a prefix <code>luaL_</code>.

<p>All functions in the auxiliary library are built on
top of the basic API,
and so they provide nothing that cannot be done with this API.

<p>Several functions in the auxiliary library are used to
check C function arguments.
Their names are always <code>luaL_check*</code> or <code>luaL_opt*</code>.
All of these functions raise an error if the check is not satisfied.
Because the error message is formatted for arguments
(e.g., <code>"bad argument #1"</code>),
you should not use these functions for other stack values.

<p><a name="4.1"></a><h2>4.1 - Functions and Types</h2>

<p>Here we list all functions and types from the auxiliary library
in alphabetical order.

<p><a name="luaL_addchar"></a>
<hr></hr><h3><code>luaL_addchar</code></h3>
<pre>
          void luaL_addchar (luaL_Buffer B, char c);
</pre>


<p>Adds the character <code>c</code> to the buffer <code>B</code>
(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).

<p><a name="luaL_addlstring"></a>
<hr></hr><h3><code>luaL_addlstring</code></h3>
<pre>
          void luaL_addlstring (luaL_Buffer *B, const char *s, size_t l);
</pre>


<p>Adds the string pointed to by <code>s</code> with length <code>l</code> to
the buffer <code>B</code>
(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
The string may contain embedded zeros.

<p><a name="luaL_addsize"></a>
<hr></hr><h3><code>luaL_addsize</code></h3>
<pre>
          void luaL_addsize (luaL_Buffer B, size_t n);
</pre>


<p>Adds a string of length <code>n</code> previously copied to the
buffer area (see <a href="#luaL_prepbuffer"><code>luaL_prepbuffer</code></a>) to the buffer <code>B</code>
(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).

<p><a name="luaL_addstring"></a>
<hr></hr><h3><code>luaL_addstring</code></h3>
<pre>
          void luaL_addstring (luaL_Buffer *B, const char *s);
</pre>


<p>Adds the zero-terminated string pointed to by <code>s</code>
to the buffer <code>B</code>
(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
The string may not contain embedded zeros.

<p><a name="luaL_addvalue"></a>
<hr></hr><h3><code>luaL_addvalue</code></h3>
<pre>
          void luaL_addvalue (luaL_Buffer *B);
</pre>


<p>Adds the value at the top of the stack
to the buffer <code>B</code>
(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
Pops the value.

<p>This is the only function on string buffers that can (and must)
be called with an extra element on the stack,
which is the value to be added to the buffer.

<p><a name="luaL_argcheck"></a>
<hr></hr><h3><code>luaL_argcheck</code></h3>
<pre>
          void luaL_argcheck (lua_State *L, int cond, int numarg,
                              const char *extramsg);
</pre>


<p>Checks whether <code>cond</code> is true.
If not, raises an error with message
<code>"bad argument #&#060;numarg> to &#060;func> (&#060;extramsg>)"</code>,
where <code>func</code> is retrieved from the call stack.

<p><a name="luaL_argerror"></a>
<hr></hr><h3><code>luaL_argerror</code></h3>
<pre>
          int luaL_argerror (lua_State *L, int numarg, const char *extramsg);
</pre>


<p>Raises an error with message
<code>"bad argument #&#060;numarg> to &#060;func> (&#060;extramsg>)"</code>,
where <code>func</code> is retrieved from the call stack.

<p>This function never returns,
but it is an idiom to use it as <code>return luaL_argerror ...</code>
in C functions.

<p><a name="luaL_Buffer"></a>
<hr></hr><h3><code>luaL_Buffer</code></h3>
<pre>
          typedef struct luaL_Buffer luaL_Buffer;
</pre>


<p>Type for a <em>string buffer</em>.

<p>A string buffer allows C code to build Lua strings piecemeal.
Its pattern of use is as follows:
<ul>
<li> First you declare a variable <code>b</code> of type <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>.
<li> Then you initialize it with a call <code>luaL_buffinit(L, &#038;b)</code>.
<li> Then you add string pieces to the buffer calling any of
the <code>luaL_add*</code> functions.
<li> You finish by calling <code>luaL_pushresult(&#038;b)</code>.
This call leaves the final string on the top of the stack.
</ul>

<p>During its normal operation,
a string buffer uses a variable number of stack slots.
So, while using a buffer, you cannot assume that you know where
the top of the stack is.
You can use the stack between successive calls to buffer operations
as long as that use is balanced;
that is,
when you call a buffer operation,
the stack is at the same level
it was immediately after the previous buffer operation.
(The only exception to this rule is <a href="#luaL_addvalue"><code>luaL_addvalue</code></a>.)
After calling <a href="#luaL_pushresult"><code>luaL_pushresult</code></a> the stack is back to its
level when the buffer was initialized,
plus the final string on its top.

<p><a name="luaL_buffinit"></a>
<hr></hr><h3><code>luaL_buffinit</code></h3>
<pre>
          void luaL_buffinit (lua_State *L, luaL_Buffer *B);
</pre>


<p>Initializes a buffer <code>B</code>.
This function does not allocate any space;
the buffer must be declared as a variable
(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).

<p><a name="luaL_callmeta"></a>
<hr></hr><h3><code>luaL_callmeta</code></h3>
<pre>
          int luaL_callmeta (lua_State *L, int obj, const char *e);
</pre>


<p>Calls a metamethod.

<p>If the object at index <code>obj</code> has a metatable and this
metatable has a field <code>e</code>,
this function calls this field and passes the object as its only argument.
In this case this function returns 1 and pushes on the
stack the value returned by the call.
If there is no metatable or no metamethod,
this function returns 0 (without pushing any value on the stack).

<p><a name="luaL_checkany"></a>
<hr></hr><h3><code>luaL_checkany</code></h3>
<pre>
          void luaL_checkany (lua_State *L, int narg);
</pre>


<p>Checks whether the function has an argument
of any type (including <b>nil</b>) at position <code>narg</code>.

<p><a name="luaL_checkint"></a>
<hr></hr><h3><code>luaL_checkint</code></h3>
<pre>
          int luaL_checkint (lua_State *L, int narg);
</pre>


<p>Checks whether the function argument <code>narg</code> is a number
and returns this number cast to an <code>int</code>.

<p><a name="luaL_checkinteger"></a>
<hr></hr><h3><code>luaL_checkinteger</code></h3>
<pre>
          lua_Integer luaL_checkinteger (lua_State *L, int narg);
</pre>


<p>Checks whether the function argument <code>narg</code> is a number
and returns this number cast to a <a href="#lua_Integer"><code>lua_Integer</code></a>.

<p><a name="luaL_checklong"></a>
<hr></hr><h3><code>luaL_checklong</code></h3>
<pre>
          long luaL_checklong (lua_State *L, int narg);
</pre>


<p>Checks whether the function argument <code>narg</code> is a number
and returns this number cast to a <code>long</code>.

<p><a name="luaL_checklstring"></a>
<hr></hr><h3><code>luaL_checklstring</code></h3>
<pre>
          const char *luaL_checklstring (lua_State *L, int narg, size_t *l);
</pre>


<p>Checks whether the function argument <code>narg</code> is a string
and returns this string;
if <code>l</code> is not <code>NULL</code> fills <code>*l</code>
with the string's length.

<p><a name="luaL_checknumber"></a>
<hr></hr><h3><code>luaL_checknumber</code></h3>
<pre>
          lua_Number luaL_checknumber (lua_State *L, int narg);
</pre>


<p>Checks whether the function argument <code>narg</code> is a number
and returns this number.

<p><a name="luaL_checkoption"></a>
<hr></hr><h3><code>luaL_checkoption</code></h3>
<pre>
          int luaL_checkoption (lua_State *L, int narg, const char *def,
                                const char *const lst[]);
</pre>


<p>Checks whether the function argument <code>narg</code> is a string and
searches for this string in the array <code>lst</code>
(which must be NULL-terminated).
If <code>def</code> is not <code>NULL</code>,
uses <code>def</code> as a default value when
the function has no argument <code>narg</code> or if this argument is <b>nil</b>.

<p>Returns the index in the array where the string was found.
Raises an error if the argument is not a string or
if the string cannot be found.

<p>This is a useful function for mapping strings to C enums.
The usual convention in Lua libraries is to use strings instead of numbers
to select options.

<p><a name="luaL_checkstack"></a>
<hr></hr><h3><code>luaL_checkstack</code></h3>
<pre>
          void luaL_checkstack (lua_State *L, int sz, const char *msg);
</pre>


<p>Grows the stack size to <code>top + sz</code> elements,
raising an error if the stack cannot grow to that size.
<code>msg</code> is an additional text to go into the error message.

<p><a name="luaL_checkstring"></a>
<hr></hr><h3><code>luaL_checkstring</code></h3>
<pre>
          const char *luaL_checkstring (lua_State *L, int narg);
</pre>


<p>Checks whether the function argument <code>narg</code> is a string
and returns this string.

<p><a name="luaL_checktype"></a>
<hr></hr><h3><code>luaL_checktype</code></h3>
<pre>
          void luaL_checktype (lua_State *L, int narg, int t);
</pre>


<p>Checks whether the function argument <code>narg</code> has type <code>t</code>.

<p><a name="luaL_checkudata"></a>
<hr></hr><h3><code>luaL_checkudata</code></h3>
<pre>
          void *luaL_checkudata (lua_State *L, int narg, const char *tname);
</pre>


<p>Checks whether the function argument <code>narg</code> is a userdata
of the type <code>tname</code> (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>).

<p><a name="luaL_error"></a>
<hr></hr><h3><code>luaL_error</code></h3>
<pre>
          int luaL_error (lua_State *L, const char *fmt, ...);
</pre>


<p>Raises an error.
The error message format is given by <code>fmt</code>
plus any extra arguments,
following the same rules of <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>.
It also adds at the beginning of the message the file name and
the line number where the error occurred,
if this information is available.

<p>This function never returns,
but it is an idiom to use it as <code>return luaL_error ...</code>
in C functions.

<p><a name="luaL_getmetafield"></a>
<hr></hr><h3><code>luaL_getmetafield</code></h3>
<pre>
          int luaL_getmetafield (lua_State *L, int obj, const char *e);
</pre>


<p>Pushes on the stack the field <code>e</code> from the metatable
of the object at index <code>obj</code>.
If the object does not have a metatable,
or if the metatable does not have this field,
returns 0 and pushes nothing.

<p><a name="luaL_getmetatable"></a>
<hr></hr><h3><code>luaL_getmetatable</code></h3>
<pre>
          void luaL_getmetatable (lua_State *L, const char *tname);
</pre>


<p>Pushes on the stack the metatable associated with name <code>tname</code>
in the registry (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>).

<p><a name="luaL_gsub"></a>
<hr></hr><h3><code>luaL_gsub</code></h3>
<pre>
          const char *luaL_gsub (lua_State *L, const char *s,
                                 const char *p, const char *r);
</pre>


<p>Creates a copy of string <code>s</code> by replacing
any occurrence of the string <code>p</code>
with the string <code>r</code>.
Pushes the resulting string on the stack and returns it.

<p><a name="luaL_loadbuffer"></a>
<hr></hr><h3><code>luaL_loadbuffer</code></h3>
<pre>
          int luaL_loadbuffer (lua_State *L, const char *buff,
                               size_t sz, const char *name);
</pre>


<p>Loads a buffer as a Lua chunk.
This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the
buffer pointed to by <code>buff</code> with size <code>sz</code>.

<p>This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>.
<code>name</code> is the chunk name,
used for debug information and error messages.

<p><a name="luaL_loadfile"></a>
<hr></hr><h3><code>luaL_loadfile</code></h3>
<pre>
          int luaL_loadfile (lua_State *L, const char *filename);
</pre>


<p>Loads a file as a Lua chunk.
This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the file
named <code>filename</code>.
If <code>filename</code> is <code>NULL</code>,
then it loads from the standard input.
The first line in the file is ignored if it starts with a <code>#</code>.

<p>This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>,
but it has an extra error code <code>LUA_ERRFILE</code>
if it cannot open/read the file.

<p><a name="luaL_loadstring"></a>
<hr></hr><h3><code>luaL_loadstring</code></h3>
<pre>
          int luaL_loadstring (lua_State *L, const char *s);
</pre>


<p>Loads a string as a Lua chunk.
This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in
the zero-terminated string <code>s</code>.

<p>This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>.

<p><a name="luaL_newmetatable"></a>
<hr></hr><h3><code>luaL_newmetatable</code></h3>
<pre>
          int luaL_newmetatable (lua_State *L, const char *tname);
</pre>


<p>If the registry already has the key <code>tname</code>,
returns 0.
Otherwise,
creates a new table to be used as a metatable for userdata,
adds it to the registry with key <code>tname</code>,
and returns 1.

<p>In both cases pushes on the stack the final value associated
with <code>tname</code> in the registry.

<p><a name="luaL_newstate"></a>
<hr></hr><h3><code>luaL_newstate</code></h3>
<pre>
          lua_State *luaL_newstate (void);
</pre>


<p>Creates a new Lua state, calling <a href="#lua_newstate"><code>lua_newstate</code></a> with an
allocation function based on the standard C <code>realloc</code> function
and setting a panic function (see <a href="#lua_atpanic"><code>lua_atpanic</code></a>) that prints
an error message to the standard error output in case of fatal
errors.

<p>Returns the new state,
or <code>NULL</code> if there is a memory allocation error.

<p><a name="luaL_openlibs"></a>
<hr></hr><h3><code>luaL_openlibs</code></h3>
<pre>
          void luaL_openlibs (lua_State *L);
</pre>


<p>Opens all standard Lua libraries into the given state.

<p><a name="luaL_optint"></a>
<hr></hr><h3><code>luaL_optint</code></h3>
<pre>
          int luaL_optint (lua_State *L, int narg, int d);
</pre>


<p>If the function argument <code>narg</code> is a number,
returns this number cast to an <code>int</code>.
If this argument is absent or is <b>nil</b>,
returns <code>d</code>.
Otherwise, raises an error.

<p><a name="luaL_optinteger"></a>
<hr></hr><h3><code>luaL_optinteger</code></h3>
<pre>
          lua_Integer luaL_optinteger (lua_State *L, int narg, lua_Integer d);
</pre>


<p>If the function argument <code>narg</code> is a number,
returns this number cast to a <a href="#lua_Integer"><code>lua_Integer</code></a>.
If this argument is absent or is <b>nil</b>,
returns <code>d</code>.
Otherwise, raises an error.

<p><a name="luaL_optlong"></a>
<hr></hr><h3><code>luaL_optlong</code></h3>
<pre>
          long luaL_optlong (lua_State *L, int narg, long d);
</pre>


<p>If the function argument <code>narg</code> is a number,
returns this number cast to a <code>long</code>.
If this argument is absent or is <b>nil</b>,
returns <code>d</code>.
Otherwise, raises an error.

<p><a name="luaL_optlstring"></a>
<hr></hr><h3><code>luaL_optlstring</code></h3>
<pre>
          const char *luaL_optlstring (lua_State *L, int narg,
                                       const char *d, size_t *l);
</pre>


<p>If the function argument <code>narg</code> is a string,
returns this string.
If this argument is absent or is <b>nil</b>,
returns <code>d</code>.
Otherwise, raises an error.

<p>If <code>l</code> is not <code>NULL</code>,
fills the position <code>*l</code> with the results's length.

<p><a name="luaL_optnumber"></a>
<hr></hr><h3><code>luaL_optnumber</code></h3>
<pre>
          lua_Number luaL_optnumber (lua_State *L, int narg, lua_Number d);
</pre>


<p>If the function argument <code>narg</code> is a number,
returns this number.
If this argument is absent or is <b>nil</b>,
returns <code>d</code>.
Otherwise, raises an error.

<p><a name="luaL_optstring"></a>
<hr></hr><h3><code>luaL_optstring</code></h3>
<pre>
          const char *luaL_optstring (lua_State *L, int narg, const char *d);
</pre>


<p>If the function argument <code>narg</code> is a string,
returns this string.
If this argument is absent or is <b>nil</b>,
returns <code>d</code>.
Otherwise, raises an error.

<p><a name="luaL_prepbuffer"></a>
<hr></hr><h3><code>luaL_prepbuffer</code></h3>
<pre>
          char *luaL_prepbuffer (luaL_Buffer *B);
</pre>


<p>Returns an address to a space of size <code>LUAL_BUFFERSIZE</code>
where you can copy a string to be added to buffer <code>B</code>
(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
After copying the string into this space you must call
<a href="#luaL_addsize"><code>luaL_addsize</code></a> with the size of the string to actually add 
it to the buffer.

<p><a name="luaL_pushresult"></a>
<hr></hr><h3><code>luaL_pushresult</code></h3>
<pre>
          void luaL_pushresult (luaL_Buffer *B);
</pre>


<p>Finishes the use of buffer <code>B</code> leaving the final string on
the top of the stack.

<p><a name="luaL_ref"></a>
<hr></hr><h3><code>luaL_ref</code></h3>
<pre>
          int luaL_ref (lua_State *L, int t);
</pre>


<p>Creates and returns a <em>reference</em>,
in the table at index <code>t</code>,
for the object at the top of the stack (and pops the object).

<p>A reference is a unique integer key.
As long as you do not manually add integer keys into table <code>t</code>,
<a href="#luaL_ref"><code>luaL_ref</code></a> ensures the uniqueness of the key it returns.
You can retrieve an object referred by reference <code>r</code>
by calling <code>lua_rawgeti(L, t, r)</code>.
Function <a href="#luaL_unref"><code>luaL_unref</code></a> frees a reference and its associated object.

<p>If the object at the top of the stack is <b>nil</b>,
<a href="#luaL_ref"><code>luaL_ref</code></a> returns the constant <code>LUA_REFNIL</code>.
The constant <code>LUA_NOREF</code> is guaranteed to be different
from any reference returned by <a href="#luaL_ref"><code>luaL_ref</code></a>.

<p><a name="luaL_Reg"></a>
<hr></hr><h3><code>luaL_Reg</code></h3>
<pre>
          typedef struct luaL_Reg {
            const char *name;
            lua_CFunction func;
          } luaL_Reg;

</pre>


<p>Type for arrays of functions to be registered by
<a href="#luaL_register"><code>luaL_register</code></a>.
<code>name</code> is the function name and <code>func</code> is a pointer to
the function.
Any array of <a href="#luaL_Reg"><code>luaL_Reg</code></a> must end with an sentinel entry
in which both <code>name</code> and <code>func</code> are <code>NULL</code>.

<p><a name="luaL_register"></a>
<hr></hr><h3><code>luaL_register</code></h3>
<pre>
          void luaL_register (lua_State *L, const char *libname,
                              const luaL_Reg *l);
</pre>


<p>Opens a library.

<p>When called with <code>libname</code> equal to <code>NULL</code>,
simply registers all functions in the list <code>l</code>
(see <a href="#luaL_Reg"><code>luaL_Reg</code></a>) into the table on the top of the stack.

<p>When called with a non-null <code>libname</code>,
creates a new table <code>t</code>,
sets it as the value of the global variable <code>libname</code>,
sets it as the value of <code>package.loaded[libname]</code>,
and registers on it all functions in the list <code>l</code>.
If there is a table in <code>package.loaded[libname]</code> or in
variable <code>libname</code>,
reuses this table instead of creating a new one.

<p>In any case the function leaves the table
on the top of the stack.

<p><a name="luaL_typename"></a>
<hr></hr><h3><code>luaL_typename</code></h3>
<pre>
          const char *luaL_typename (lua_State *L, int idx);
</pre>


<p>Returns the name of the type of the value at index <code>idx</code>.

<p><a name="luaL_typerror"></a>
<hr></hr><h3><code>luaL_typerror</code></h3>
<pre>
          int luaL_typerror (lua_State *L, int narg, const char *tname);
</pre>


<p>Generates an error with a message like
<pre>
&#060;location>: bad argument &#060;narg> to &#060;function> (&#060;tname> expected, got &#060;realt>)
</pre>
where <code>&#060;location></code> is produced by <a href="#luaL_where"><code>luaL_where</code></a>,
<code>&#060;function></code> is the name of the current function,
and <code>&#060;realt></code> is the type name of the actual argument.

<p><a name="luaL_unref"></a>
<hr></hr><h3><code>luaL_unref</code></h3>
<pre>
          void luaL_unref (lua_State *L, int t, int ref);
</pre>


<p>Releases reference <code>ref</code> from the table at index <code>t</code>
(see <a href="#luaL_ref"><code>luaL_ref</code></a>).
The entry is removed from the table,
so that the referred object can be collected.
The reference <code>ref</code> is also freed to be used again.

<p>If <code>ref</code> is <code>LUA_NOREF</code> or <code>LUA_REFNIL</code>,
<a href="#luaL_unref"><code>luaL_unref</code></a> does nothing.

<p><a name="luaL_where"></a>
<hr></hr><h3><code>luaL_where</code></h3>
<pre>
          void luaL_where (lua_State *L, int lvl);
</pre>


<p>Pushes on the stack a string identifying the current position
of the control at level <code>lvl</code> in the call stack.
Typically this string has the format <code>&#060;chunkname>:&#060;currentline>:</code>.
Level 0 is the running function,
level 1 is the function that called the running function,
etc.

<p>This function is used to build a prefix for error messages.

<p>
<a name="libraries"></a><a name="5"></a><h1>5 - Standard Libraries</h1>

<p>The standard Lua libraries provide useful functions
that are implemented directly through the C API.
Some of these functions provide essential services to the language
(e.g., <a href="#pdf-type"><code>type</code></a> and <a href="#pdf-getmetatable"><code>getmetatable</code></a>);
others provide access to "outside" services (e.g., I/O);
and others could be implemented in Lua itself,
but are quite useful or have critical performance requirements that
deserve an implementation in C (e.g., <code>sort</code>).

<p>All libraries are implemented through the official C API
and are provided as separate C modules.
Currently, Lua has the following standard libraries:
<ul>
<li> basic library;
<li> package library;
<li> string manipulation;
<li> table manipulation;
<li> mathematical functions (sin, log, etc.);
<li> input and output;
<li> operating system facilities;
<li> debug facilities.
</ul>
Except for the basic and package libraries,
each library provides all its functions as fields of a global table
or as methods of its objects.

<p>To have access to these libraries,
the C host program must call
<code>luaL_openlibs</code>,
which open all standard libraries.
Alternatively,
it can open them individually by calling
<code>luaopen_base</code> (for the basic library),
<code>luaopen_package</code> (for the package library),
<code>luaopen_string</code> (for the string library),
<code>luaopen_table</code> (for the table library),
<code>luaopen_math</code> (for the mathematical library),
<code>luaopen_io</code> (for the I/O and the Operating System libraries),
and <code>luaopen_debug</code> (for the debug library).
These functions are declared in <code>lualib.h</code>
and should not be called directly:
you must call them like any other Lua C function,
e.g., by using <code>lua_call</code>.

<p><a name="predefined"></a><a name="5.1"></a><h2>5.1 - Basic Functions</h2>

<p>The basic library provides some core functions to Lua.
If you do not include this library in your application,
you should check carefully whether you need to provide 
implementations for some of its facilities.

<p><a name="pdf-assert"></a><hr></hr><h3><code>assert (v [, message])</code></h3>
Issues an  error when
the value of its argument <code>v</code> is false (i.e., <b>nil</b> or <b>false</b>);
otherwise, returns all its arguments.
<code>message</code> is an error message;
when absent, it defaults to "assertion failed!"

<p><a name="pdf-collectgarbage"></a><hr></hr><h3><code>collectgarbage (opt [, arg])</code></h3>

<p>This function is a generic interface to the garbage collector.
It performs different functions according to its first argument, <code>opt</code>:
<ul>
<li><b>"stop"</b> --- stops the garbage collector.
<li><b>"restart"</b> --- restarts the garbage collector.
<li><b>"collect"</b> --- performs a full garbage-collection cycle.
<li><b>"count"</b> --- returns the total memory in use by Lua (in Kbytes).
<li><b>"step"</b> --- performs a garbage-collection step.
The step "size" is controlled by <code>arg</code>
(larger values mean more steps) in a non-specified way.
If you want to control the step size
you must tune experimentally the value of <code>arg</code>.
Returns <b>true</b> if the step finished a collection cycle.
<li><b>"steppause"</b> ---
sets <code>arg</code>/100 as the new value for the <em>pause</em> of
the collector (see <a href="#GC">2.10</a>).
<li><b>"setstepmul"</b> ---
sets <code>arg</code>/100 as the new value for the <em>step multiplier</em> of
the collector (see <a href="#GC">2.10</a>).
</ul>

<p><a name="pdf-dofile"></a><hr></hr><h3><code>dofile (filename)</code></h3>
Opens the named file and executes its contents as a Lua chunk.
When called without arguments,
<code>dofile</code> executes the contents of the standard input (<code>stdin</code>).
Returns all values returned by the chunk.
In case of errors, <code>dofile</code> propagates the error
to its caller (that is, <code>dofile</code> does not run in protected mode).

<p><a name="pdf-error"></a><hr></hr><h3><code>error (message [, level])</code></h3>
Terminates the last protected function called
and returns <code>message</code> as the error message.
Function <code>error</code> never returns.

<p>Usually, <code>error</code> adds some information about the error position
at the beginning of the message.
The <code>level</code> argument specifies how to get the error position.
With level 1 (the default), the error position is where the
<code>error</code> function was called.
Level 2 points the error to where the function
that called <code>error</code> was called; and so on.
Passing a level 0 avoids the addition of error position information
to the message.

<p><a name="pdf-_G"></a><hr></hr><h3><code>_G</code></h3>
A global variable (not a function) that
holds the global environment (that is, <code>_G._G = _G</code>).
Lua itself does not use this variable;
changing its value does not affect any environment,
nor vice-versa.
(Use <a href="#pdf-setfenv"><code>setfenv</code></a> to change environments.)

<p><a name="pdf-getfenv"></a><hr></hr><h3><code>getfenv (f)</code></h3>
Returns the current environment in use by the function.
<code>f</code> can be a Lua function or a number
that specifies the function at that stack level:
Level 1 is the function calling <code>getfenv</code>.
If the given function is not a Lua function,
or if <code>f</code> is 0,
<code>getfenv</code> returns the global environment.
The default for <code>f</code> is 1.

<p><a name="pdf-getmetatable"></a><hr></hr><h3><code>getmetatable (object)</code></h3>

<p>If <code>object</code> does not have a metatable, returns <b>nil</b>.
Otherwise,
if the object's metatable has a <code>"__metatable"</code> field,
returns the associated value.
Otherwise, returns the metatable of the given object.

<p><a name="pdf-ipairs"></a><hr></hr><h3><code>ipairs (t)</code></h3>

<p>Returns three values: an iterator function, the table <code>t</code>, and 0,
so that the construction
<pre>
       for i,v in ipairs(t) do ... end
</pre>
will iterate over the pairs (<code>1,t[1]</code>), (<code>2,t[2]</code>), ...,
up to the first integer key with a nil value in the table.

<p>See <a href="#pdf-next"><code>next</code></a> for the caveats of modifying the table during its traversal.

<p><a name="pdf-load"></a><hr></hr><h3><code>load (func [, chunkname])</code></h3>

<p>Loads a chunk using function <code>func</code> to get its pieces.
Each call to <code>func</code> must return a string that concatenates
with previous results.
A return of <b>nil</b> (or no value) signals the end of the chunk.

<p>If there are no errors, 
returns the compiled chunk as a function;
otherwise, returns <b>nil</b> plus the error message.
The environment of the returned function is the global environment.

<p><code>chunkname</code> is used as the chunk name for error messages
and debug information.

<p><a name="pdf-loadfile"></a><hr></hr><h3><code>loadfile ([filename])</code></h3>

<p>Similar to <a href="#pdf-load"><code>load</code></a>,
but gets the chunk from file <code>filename</code>
or from the standard input,
if no file name is given.

<p><a name="pdf-loadstring"></a><hr></hr><h3><code>loadstring (string [, chunkname])</code></h3>

<p>Similar to <a href="#pdf-load"><code>load</code></a>,
but gets the chunk from the given string.

<p>To load and run a given string, use the idiom
<pre>
      assert(loadstring(s))()
</pre>

<p><a name="pdf-next"></a><hr></hr><h3><code>next (table [, index])</code></h3>

<p>Allows a program to traverse all fields of a table.
Its first argument is a table and its second argument
is an index in this table.
<code>next</code> returns the next index of the table
and its associated value.
When called with <b>nil</b> as its second argument,
<code>next</code> returns an initial index
and its associated value.
When called with the last index,
or with <b>nil</b> in an empty table,
<code>next</code> returns <b>nil</b>.
If the second argument is absent, then it is interpreted as <b>nil</b>.
In particular,
you can use <code>next(t)</code> to check whether a table is empty.

<p>Lua has no declaration of fields.
There is no difference between a
field not present in a table or a field with value <b>nil</b>.
Therefore, <code>next</code> only considers fields with non-<b>nil</b> values.
The order in which the indices are enumerated is not specified,
<em>even for numeric indices</em>.
(To traverse a table in numeric order,
use a numerical <b>for</b> or the <a href="#pdf-ipairs"><code>ipairs</code></a> function.)

<p>The behavior of <code>next</code> is <em>undefined</em> if,
during the traversal,
you assign any value to a non-existent field in the table.
You may however modify existing fields.
In particular, you may clear existing fields.

<p><a name="pdf-pairs"></a><hr></hr><h3><code>pairs (t)</code></h3>

<p>Returns three values: the <a href="#pdf-next"><code>next</code></a> function, the table <code>t</code>, and <b>nil</b>,
so that the construction
<pre>
       for k,v in pairs(t) do ... end
</pre>
will iterate over all key--value pairs of table <code>t</code>.

<p>See <a href="#pdf-next"><code>next</code></a> for the caveats of modifying the table during its traversal.

<p><a name="pdf-pcall"></a><hr></hr><h3><code>pcall (f, arg1, arg2, ...)</code></h3>

<p>Calls function <code>f</code> with
the given arguments in protected mode.
This means that any error inside <code>f</code> is not propagated;
instead, <code>pcall</code> catches the error
and returns a status code.
Its first result is the status code (a boolean),
which is true if the call succeeds without errors.
In such case, <code>pcall</code> also returns all results from the call,
after this first result.
In case of any error, <code>pcall</code> returns <b>false</b> plus the error message.

<p><a name="pdf-print"></a><hr></hr><h3><code>print (e1, e2, ...)</code></h3>
Receives any number of arguments,
and prints their values to <code>stdout</code>,
using the <a href="#pdf-tostring"><code>tostring</code></a> function to convert them to strings.
<code>print</code> is not intended for formatted output,
but only as a quick way to show a value,
typically for debugging.
For formatted output, use <a href="#pdf-string.format"><code>string.format</code></a>.

<p><a name="pdf-rawequal"></a><hr></hr><h3><code>rawequal (v1, v2)</code></h3>
Checks whether <code>v1</code> is equal to <code>v2</code>,
without invoking any metamethod.
Returns a boolean.

<p><a name="pdf-rawget"></a><hr></hr><h3><code>rawget (table, index)</code></h3>
Gets the real value of <code>table[index]</code>,
without invoking any metamethod.
<code>table</code> must be a table and
<code>index</code> any value different from <b>nil</b>.

<p><a name="pdf-rawset"></a><hr></hr><h3><code>rawset (table, index, value)</code></h3>
Sets the real value of <code>table[index]</code> to <code>value</code>,
without invoking any metamethod.
<code>table</code> must be a table,
<code>index</code> any value different from <b>nil</b>,
and <code>value</code> any Lua value.

<p><a name="pdf-select"></a><hr></hr><h3><code>select (index, ...)</code></h3>

<p>If <code>index</code> is a number,
returns all arguments after argument number <code>index</code>.
Otherwise, <code>index</code> must be the string <code>"#"</code>,
and <code>select</code> returns the total number of extra arguments it received.

<p><a name="setfenv"></a><a name="pdf-setfenv"></a><hr></hr><h3><code>setfenv (f, table)</code></h3>

<p>Sets the environment to be used by the given function.
<code>f</code> can be a Lua function or a number
that specifies the function at that stack level:
Level 1 is the function calling <code>setfenv</code>.
<code>setfenv</code> returns the given function.

<p>As a special case, when <code>f</code> is 0 <code>setfenv</code> changes
the environment of the running thread.
In this case, <code>setfenv</code> returns no values.

<p><a name="pdf-setmetatable"></a><hr></hr><h3><code>setmetatable (table, metatable)</code></h3>

<p>Sets the metatable for the given table.
(You cannot change the metatable of other types from Lua, only from C.)
If <code>metatable</code> is <b>nil</b>,
removes the metatable of the given table.
If the original metatable has a <code>"__metatable"</code> field,
raises an error.

<p>This function returns <code>table</code>.

<p><a name="pdf-tonumber"></a><hr></hr><h3><code>tonumber (e [, base])</code></h3>
Tries to convert its argument to a number.
If the argument is already a number or a string convertible
to a number, then <code>tonumber</code> returns this number;
otherwise, it returns <b>nil</b>.

<p>An optional argument specifies the base to interpret the numeral.
The base may be any integer between 2 and 36, inclusive.
In bases above 10, the letter `<code>A</code>&acute; (in either upper or lower case)
represents 10, `<code>B</code>&acute; represents 11, and so forth,
with `<code>Z</code>&acute; representing 35.
In base 10 (the default), the number may have a decimal part,
as well as an optional exponent part (see <a href="#lexical">2.1</a>).
In other bases, only unsigned integers are accepted.

<p><a name="pdf-tostring"></a><hr></hr><h3><code>tostring (e)</code></h3>
Receives an argument of any type and
converts it to a string in a reasonable format.
For complete control of how numbers are converted,
use <a href="#pdf-string.format"><code>string.format</code></a>.

<p>If the metatable of <code>e</code> has a <code>"__tostring"</code> field,
then <code>tostring</code> calls the corresponding value
with <code>e</code> as argument,
and uses the result of the call as its result.

<p><a name="pdf-type"></a><hr></hr><h3><code>type (v)</code></h3>
Returns the type of its only argument, coded as a string.
The possible results of this function are
<code>"nil"</code> (a string, not the value <b>nil</b>),
<code>"number"</code>,
<code>"string"</code>,
<code>"boolean</code>,
<code>"table"</code>,
<code>"function"</code>,
<code>"thread"</code>,
and <code>"userdata"</code>.

<p><a name="pdf-unpack"></a><hr></hr><h3><code>unpack (list [, i [, j]])</code></h3>
Returns the elements from the given table.
This function is equivalent to
<pre>
  return list[i], list[i+1], ..., list[j]
</pre>
except that the above code can be written only for a fixed number
of elements.
By default, <code>i</code> is 1 and <code>j</code> is the length of the list,
as defined by the length operator (see <a href="#len-op">2.5.5</a>).

<p><a name="pdf-_VERSION"></a><hr></hr><h3><code>_VERSION</code></h3>
A global variable (not a function) that
holds a string containing the current interpreter version.
The current contents of this variable is <code>"Lua 5.1"</code>.

<p><a name="pdf-xpcall"></a><hr></hr><h3><code>xpcall (f, err)</code></h3>

<p>This function is similar to <code>pcall</code>,
except that you can set a new error handler.

<p><code>xpcall</code> calls function <code>f</code> in protected mode,
using <code>err</code> as the error handler.
Any error inside <code>f</code> is not propagated;
instead, <code>xpcall</code> catches the error,
calls the <code>err</code> function with the original error object,
and returns a status code.
Its first result is the status code (a boolean),
which is true if the call succeeds without errors.
In this case, <code>xpcall</code> also returns all results from the call,
after this first result.
In case of any error,
<code>xpcall</code> returns <b>false</b> plus the result from <code>err</code>.

<p><a name="5.2"></a><h2>5.2 - Coroutine Manipulation</h2>

<p>The operations related to coroutines comprise a sub-library of
the basic library and come inside the table <code>coroutine</code>.
See <a href="#coroutine">2.11</a> for a general description of coroutines.

<p><a name="pdf-coroutine.create"></a><hr></hr><h3><code>coroutine.create (f)</code></h3>

<p>Creates a new coroutine, with body <code>f</code>.
<code>f</code> must be a Lua function.
Returns this new coroutine,
an object with type <code>"thread"</code>.

<p><a name="pdf-coroutine.resume"></a><hr></hr><h3><code>coroutine.resume (co [, val1, ..., valn])</code></h3>

<p>Starts or continues the execution of coroutine <code>co</code>.
The first time you resume a coroutine,
it starts running its body.
The values <code>val1</code>, ..., <code>valn</code> are passed
as the arguments to the body function.
If the coroutine has yielded,
<code>resume</code> restarts it;
the values <code>val1</code>, ..., <code>valn</code> are passed
as the results from the yield.

<p>If the coroutine runs without any errors,
<code>resume</code> returns <b>true</b> plus any values passed to <code>yield</code>
(if the coroutine yields) or any values returned by the body function
(if the coroutine terminates).
If there is any error,
<code>resume</code> returns <b>false</b> plus the error message.

<p><a name="pdf-coroutine.running"></a><hr></hr><h3><code>coroutine.running ()</code></h3>

<p>Returns the running coroutine,
or <b>nil</b> when called by the main thread.

<p><a name="pdf-coroutine.status"></a><hr></hr><h3><code>coroutine.status (co)</code></h3>

<p>Returns the status of coroutine <code>co</code>, as a string:
<code>"running"</code>,
if the coroutine is running (that is, it called <code>status</code>);
<code>"suspended"</code>, if the coroutine is suspended in a call to <code>yield</code>,
or if it has not started running yet;
<code>"normal"</code> if the coroutine is active but not running
(that is, it has resumed another coroutine);
and <code>"dead"</code> if the coroutine has finished its body function,
or if it has stopped with an error.

<p><a name="pdf-coroutine.wrap"></a><hr></hr><h3><code>coroutine.wrap (f)</code></h3>

<p>Creates a new coroutine, with body <code>f</code>.
<code>f</code> must be a Lua function.
Returns a function that resumes the coroutine each time it is called.
Any arguments passed to the function behave as the
extra arguments to <code>resume</code>.
Returns the same values returned by <code>resume</code>,
except the first boolean.
In case of error, propagates the error.

<p><a name="pdf-coroutine.yield"></a><hr></hr><h3><code>coroutine.yield ([val1, ..., valn])</code></h3>

<p>Suspends the execution of the calling coroutine.
The coroutine cannot be running a C function,
a metamethod, or an iterator.
Any arguments to <code>yield</code> are passed as extra results to <code>resume</code>.

<p><a name="5.3"></a><h2>5.3 - Modules</h2>

<p>The package library provides basic
facilities for loading and building modules in Lua.
It exports two of its functions directly in the global environment:
<a href="#pdf-require"><code>require</code></a> and <a href="#pdf-module"><code>module</code></a>.
Everything else is exported in a table <code>package</code>.

<p><a name="pdf-module"></a><hr></hr><h3><code>module (name [, ...])</code></h3>

<p>Creates a module.
If there is a table in <code>package.loaded[name]</code>,
this table is the module.
Otherwise, if there is a global table <code>t</code> with the given name,
this table is the module.
Otherwise creates a new table <code>t</code> and
sets it as the value of the global <code>name</code> and
the value of <code>package.loaded[name]</code>.
This function also initializes <code>t._NAME</code> with the given name,
<code>t._M</code> with the module (<code>t</code> itself),
and <code>t._PACKAGE</code> with the package name
(the full module name minus last component; see below).
Finally, <code>module</code> sets <code>t</code> as the new environment
of the current function and the new value of <code>package.loaded[name]</code>,
so that <a href="#pdf-require"><code>require</code></a> returns <code>t</code>.

<p>If <code>name</code> is a compound name
(that is, one with components separated by dots),
<code>module</code> creates (or reuses, if they already exist)
tables for each component.
For instance, if <code>name</code> is <code>a.b.c</code>,
then <code>module</code> stores the module table in field <code>c</code> of
field <code>b</code> of global <code>a</code>.

<p>This function may receive optional <em>options</em> after
the module name,
where each option is a function to be applied over the module.

<p><a name="pdf-require"></a><hr></hr><h3><code>require (modname)</code></h3>

<p>Loads the given module.
The function starts by looking into the table <code>package.loaded</code>
to determine whether <code>modname</code> is already loaded.
If it is, then <code>require</code> returns the value stored
at <code>package.loaded[modname]</code>.
Otherwise, it tries to find a <em>loader</em> for the module.

<p>To find a loader,
first <code>require</code> queries <code>package.preload[modname]</code>.
If it has a value,
this value (which should be a function) is the loader.
Otherwise <code>require</code> searches for a Lua loader using the
path stored in <code>package.path</code>.
If that also fails, it searches for a C loader using the
path stored in <code>package.cpath</code>.
If that also fails,
it tries an <em>all-in-one</em> loader (see below).

<p>When loading a C library,
<code>require</code> first uses a dynamic link facility to link the
application with the library.
Then it tries to find a C function inside this library to
be used as the loader.
The name of this C function is the string <code>"luaopen_"</code>
concatenated with a copy of the module name where each dot
is replaced by an underscore.
Moreover, if the module name has a hyphen,
its prefix up to (and including) the first hyphen is removed.
For instance, if the module name is <code>a.v1-b.c</code>,
the function name will be <code>luaopen_b_c</code>.

<p>If <code>require</code> finds neither a Lua library nor a
C library for a module,
it calls the <em>all-in-one loader</em>.
This loader searches the C path for a library for
the root name of the given module.
For instance, when requiring <code>a.b.c</code>,
it will search for a C library for <code>a</code>.
If found, it looks into it for an open function for
the submodule;
in our example, that would be <code>luaopen_a_b_c</code>.
With this facility, a package can pack several C submodules
into one single library,
with each submodule keeping its original open function.

<p>Once a loader is found,
<code>require</code> calls the loader with a single argument, <code>modname</code>.
If the loader returns any value,
<code>require</code> assigns it to <code>package.loaded[modname]</code>.
If the loader returns no value and
has not assigned any value to <code>package.loaded[modname]</code>,
then <code>require</code> assigns <b>true</b> to this entry.
In any case, <code>require</code> returns the
final value of <code>package.loaded[modname]</code>.

<p>If there is any error loading or running the module,
or if it cannot find any loader for the module,
then <code>require</code> signals an error. 

<p><a name="pdf-package.cpath"></a><hr></hr><h3><code>package.cpath</code></h3>

<p>The path used by <a href="#pdf-require"><code>require</code></a> to search for a C loader.

<p>Lua initializes the C path <code>package.cpath</code> in the same way
it initializes the Lua path <a href="#pdf-package.path"><code>package.path</code></a>,
using the environment variable <code>LUA_CPATH</code>
(plus another default path defined in <code>luaconf.h</code>).

<p><a name="pdf-package.loaded"></a><hr></hr><h3><code>package.loaded</code></h3>

<p>A table used by <a href="#pdf-require"><code>require</code></a> to control which
modules are already loaded.
When you require a module <code>modname</code> and
<code>package.loaded[modname]</code> is not false,
<a href="#pdf-require"><code>require</code></a> simply returns the value stored there.

<p><a name="pdf-package.loadlib"></a><hr></hr><h3><code>package.loadlib (libname, funcname)</code></h3>

<p>Dynamically links the host program with the C library <code>libname</code>.
Inside this library, looks for a function <code>funcname</code>
and returns this function as a C function.
(So, <code>funcname</code> must follow the protocol (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>)).

<p>This is a low-level function.
It completely bypasses the package and module system.
Unlike <a href="#pdf-require"><code>require</code></a>,
it does not perform any path searching and
does not automatically adds extensions.
<code>libname</code> must be the complete file name of the C library,
including if necessary a path and extension.
<code>funcname</code> must be the exact name exported by the C library
(which may depend on the C compiler and linker used).

<p>This function is not supported by ANSI C.
As such, it is only available on some platforms
(Windows, Linux, Mac OS X, Solaris, BSD,
plus other Unix systems that support the <code>dlfcn</code> standard).

<p><a name="pdf-package.path"></a><hr></hr><h3><code>package.path</code></h3>

<p>The path used by <a href="#pdf-require"><code>require</code></a> to search for a Lua loader.

<p>At start-up, Lua initializes this variable with
the value of the environment variable <code>LUA_PATH</code> or
with a default path defined in <code>luaconf.h</code>,
if the environment variable is not defined.
Any <code>";;"</code> in the value of the environment variable
is replaced by the default path.

<p>A path is a sequence of <em>templates</em> separated by semicolons.
For each template, <a href="#pdf-require"><code>require</code></a> will change each interrogation
mark in the template by <code>filename</code>,
which is <code>modname</code> with each dot replaced by a
"directory separator" (such as <code>"/"</code> in Unix);
then it will try to load the resulting file name.
So, for instance, if the Lua path is
<pre>
  "./?.lua;./?.lc;/usr/local/?/init.lua"
</pre>
the search for a Lua loader for module <code>foo</code>
will try to load the files
<code>./foo.lua</code>, <code>./foo.lc</code>, and
<code>/usr/local/foo/init.lua</code>, in that order.

<p><a name="pdf-package.preload"></a><hr></hr><h3><code>package.preload</code></h3>

<p>A table to store loaders for specific modules
(see <a href="#pdf-require"><code>require</code></a>).

<p><a name="pdf-package.seeall"></a><hr></hr><h3><code>package.seeall (module)</code></h3>

<p>Sets a metatable for <code>module</code> with
its <code>__index</code> field referring to the global environment,
so that this module inherits values
from the global environment.
To be used as an option to function <a href="#pdf-module"><code>module</code></a>.

<p><a name="5.4"></a><h2>5.4 - String Manipulation</h2>

<p>This library provides generic functions for string manipulation,
such as finding and extracting substrings, and pattern matching.
When indexing a string in Lua, the first character is at position 1
(not at 0, as in C).
Indices are allowed to be negative and are interpreted as indexing backwards,
from the end of the string.
Thus, the last character is at position <em>-1</em>, and so on.

<p>The string library provides all its functions inside the table
<code>string</code>.
It also sets a metatable for strings
where the <code>__index</code> field points to the metatable itself.
Therefore, you can use the string functions in object-oriented style.
For instance, <code>string.byte(s, i)</code>
can be written as <code>s:byte(i)</code>.

<p><a name="pdf-string.byte"></a><hr></hr><h3><code>string.byte (s [, i [, j]])</code></h3>
Returns the internal numerical codes of the characters <code>s[i]</code>,
<code>s[i+1]</code>, ..., <code>s[j]</code>.
The default value for <code>i</code> is 1;
the default value for <code>j</code> is <code>i</code>.

<p>Note that numerical codes are not necessarily portable across platforms.

<p><a name="pdf-string.char"></a><hr></hr><h3><code>string.char (i1, i2, ...)</code></h3>
Receives 0 or more integers.
Returns a string with length equal to the number of arguments,
in which each character has the internal numerical code equal
to its corresponding argument.

<p>Note that numerical codes are not necessarily portable across platforms.

<p><a name="pdf-string.dump"></a><hr></hr><h3><code>string.dump (function)</code></h3>

<p>Returns a string containing a binary representation of the given function,
so that a later <a href="#pdf-loadstring"><code>loadstring</code></a> on this string returns
a copy of the function.
<code>function</code> must be a Lua function without upvalues.

<p><a name="pdf-string.find"></a><hr></hr><h3><code>string.find (s, pattern [, init [, plain]])</code></h3>
Looks for the first match of
<code>pattern</code> in the string <code>s</code>.
If it finds a match, then <code>find</code> returns the indices of <code>s</code>
where this occurrence starts and ends;
otherwise, it returns <b>nil</b>.
A third, optional numerical argument <code>init</code> specifies
where to start the search;
its default value is 1 and may be negative.
A value of <b>true</b> as a fourth, optional argument <code>plain</code>
turns off the pattern matching facilities,
so the function does a plain "find substring" operation,
with no characters in <code>pattern</code> being considered "magic".
Note that if <code>plain</code> is given, then <code>init</code> must be given as well.

<p>If the pattern has captures,
then in a successful match
the captured values are also returned,
after the two indices.

<p><a name="format"></a><a name="pdf-string.format"></a><hr></hr><h3><code>string.format (formatstring, e1, e2, ...)</code></h3>
Returns a formatted version of its variable number of arguments
following the description given in its first argument (which must be a string).
The format string follows the same rules as the <code>printf</code> family of
standard C functions.
The only differences are that the options/modifiers
<code>*</code>, <code>l</code>, <code>L</code>, <code>n</code>, <code>p</code>,
and <code>h</code> are not supported
and that there is an extra option, <code>q</code>.
The <code>q</code> option formats a string in a form suitable to be safely read
back by the Lua interpreter:
The string is written between double quotes,
and all double quotes, newlines, embedded zeros,
and backslashes in the string
are correctly escaped when written.
For instance, the call
<pre>
       string.format('%q', 'a string with "quotes" and \n new line')
</pre>
will produce the string:
<pre>
"a string with \"quotes\" and \
 new line"
</pre>

<p>The options <code>c</code>, <code>d</code>, <code>E</code>, <code>e</code>, <code>f</code>,
<code>g</code>, <code>G</code>, <code>i</code>, <code>o</code>, <code>u</code>, <code>X</code>, and <code>x</code> all
expect a number as argument,
whereas <code>q</code> and <code>s</code> expect a string.

<p>This function does not accept string values
containing embedded zeros.

<p><a name="pdf-string.gmatch"></a><hr></hr><h3><code>string.gmatch (s, pattern)</code></h3>
Returns an iterator function that,
each time it is called,
returns the next captures from <code>pattern</code> over string <code>s</code>.

<p>If <code>pattern</code> specifies no captures,
then the whole match is produced in each call.

<p>As an example, the following loop
<pre>
  s = "hello world from Lua"
  for w in string.gmatch(s, "%a+") do
    print(w)
  end
</pre>
will iterate over all the words from string <code>s</code>,
printing one per line.
The next example collects all pairs <code>key=value</code> from the
given string into a table:
<pre>
  t = {}
  s = "from=world, to=Lua"
  for k, v in string.gmatch(s, "(%w+)=(%w+)") do
    t[k] = v
  end
</pre>

<p><a name="pdf-string.gsub"></a><hr></hr><h3><code>string.gsub (s, pattern, repl [, n])</code></h3>
Returns a copy of <code>s</code>
in which all occurrences of the <code>pattern</code> have been
replaced by a replacement string specified by <code>repl</code>,
which may be a string, a table, or a function.
<code>gsub</code> also returns, as its second value,
the total number of substitutions made.

<p>If <code>repl</code> is a string, then its value is used for replacement.
The character <code>%</code> works as an escape character:
Any sequence in <code>repl</code> of the form <code>%</code><em>n</em>,
with <em>n</em> between 1 and 9,
stands for the value of the <em>n</em>-th captured substring (see below).
The sequence <code>%0</code> stands for the whole match.
The sequence <code>%%</code> stands for a single <code>%</code>.

<p>If <code>repl</code> is a table, then the table is queried for every match,
using the first capture as the key;
if the pattern specifies no captures,
then the whole match is used as the key.

<p>If <code>repl</code> is a function, then this function is called every time a
match occurs, with all captured substrings passed as arguments,
in order;
if the pattern specifies no captures,
then the whole match is passed as a sole argument.

<p>If the value returned by the table query or by the function call
is a string or a number,
then it is used as the replacement string;
otherwise, if it is <b>false</b> or <b>nil</b>,
then there is no replacement
(that is, the original match is kept in the string).

<p>The optional last parameter <code>n</code> limits
the maximum number of substitutions to occur.
For instance, when <code>n</code> is 1 only the first occurrence of
<code>pattern</code> is replaced.

<p>Here are some examples:
<pre>
   x = string.gsub("hello world", "(%w+)", "%1 %1")
   --> x="hello hello world world"

   x = string.gsub("hello world", "%w+", "%0 %0", 1)
   --> x="hello hello world"

   x = string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1")
   --> x="world hello Lua from"

   x = string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv)
   --> x="home = /home/roberto, user = roberto"

   x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s)
         return loadstring(s)()
       end)
   --> x="4+5 = 9"

   local t = {name="lua", version="5.1"}
   x = string.gsub("$name%-$version.tar.gz", "%$(%w+)", t)
   --> x="lua-5.1.tar.gz"
</pre>

<p><a name="pdf-string.len"></a><hr></hr><h3><code>string.len (s)</code></h3>
Receives a string and returns its length.
The empty string <code>""</code> has length 0.
Embedded zeros are counted,
so <code>"a\000bc\000"</code> has length 5.

<p><a name="pdf-string.lower"></a><hr></hr><h3><code>string.lower (s)</code></h3>
Receives a string and returns a copy of this string with all
uppercase letters changed to lowercase.
All other characters are left unchanged.
The definition of what an uppercase letter is depends on the current locale.

<p><a name="pdf-string.match"></a><hr></hr><h3><code>string.match (s, pattern [, init])</code></h3>
Looks for the first <em>match</em> of
<code>pattern</code> in the string <code>s</code>.
If it finds one, then <code>match</code> returns
the captures from the pattern;
otherwise it returns <b>nil</b>.
If <code>pattern</code> specifies no captures,
then the whole match is returned.
A third, optional numerical argument <code>init</code> specifies
where to start the search;
its default value is 1 and may be negative.

<p><a name="pdf-string.rep"></a><hr></hr><h3><code>string.rep (s, n)</code></h3>
Returns a string that is the concatenation of <code>n</code> copies of
the string <code>s</code>.

<p><a name="pdf-string.reverse"></a><hr></hr><h3><code>string.reverse (s)</code></h3>
Returns a string that is the string <code>s</code> reversed.

<p><a name="pdf-string.sub"></a><hr></hr><h3><code>string.sub (s, i [, j])</code></h3>
Returns the substring of <code>s</code> that
starts at <code>i</code>  and continues until <code>j</code>;
<code>i</code> and <code>j</code> may be negative.
If <code>j</code> is absent, then it is assumed to be equal to <em>-1</em>
(which is the same as the string length).
In particular,
the call <code>string.sub(s,1,j)</code> returns a prefix of <code>s</code>
with length <code>j</code>,
and <code>string.sub(s, -i)</code> returns a suffix of <code>s</code>
with length <code>i</code>.

<p><a name="pdf-string.upper"></a><hr></hr><h3><code>string.upper (s)</code></h3>
Receives a string and returns a copy of this string with all
lowercase letters changed to uppercase.
All other characters are left unchanged.
The definition of what a lowercase letter is depends on the current locale.

<p><a name="pm"></a><h3>Patterns</h3>

<p><p>
A <em>character class</em> is used to represent a set of characters.
The following combinations are allowed in describing a character class:
<ul>
<li><b><em>x</em></b> (where <em>x</em> is not one of the <em>magic characters</em>
<code>^$()%.[]*+-?</code>)
--- represents the character <em>x</em> itself.
<li><b><code>.</code></b> --- (a dot) represents all characters.
<li><b><code>%a</code></b> --- represents all letters.
<li><b><code>%c</code></b> --- represents all control characters.
<li><b><code>%d</code></b> --- represents all digits.
<li><b><code>%l</code></b> --- represents all lowercase letters.
<li><b><code>%p</code></b> --- represents all punctuation characters.
<li><b><code>%s</code></b> --- represents all space characters.
<li><b><code>%u</code></b> --- represents all uppercase letters.
<li><b><code>%w</code></b> --- represents all alphanumeric characters.
<li><b><code>%x</code></b> --- represents all hexadecimal digits.
<li><b><code>%z</code></b> --- represents the character with representation 0.
<li><b><code>%<em>x</em></code></b> (where <em>x</em> is any non-alphanumeric character)  ---
represents the character <em>x</em>.
This is the standard way to escape the magic characters.
Any punctuation character (even the non magic)
can be preceded by a `<code>%</code>&acute;
when used to represent itself in a pattern.

<p><li><b><code>[<em>set</em>]</code></b> ---
represents the class which is the union of all
characters in <em>set</em>.
A range of characters may be specified by
separating the end characters of the range with a `<code>-</code>&acute;.
All classes <code>%</code><em>x</em> described above may also be used as
components in <em>set</em>.
All other characters in <em>set</em> represent themselves.
For example, <code>[%w_]</code> (or <code>[_%w]</code>)
represents all alphanumeric characters plus the underscore,
<code>[0-7]</code> represents the octal digits,
and <code>[0-7%l%-]</code> represents the octal digits plus
the lowercase letters plus the `<code>-</code>&acute; character.

<p>The interaction between ranges and classes is not defined.
Therefore, patterns like <code>[%a-z]</code> or <code>[a-%%]</code>
have no meaning.

<p><li><b><code>[^<em>set</em>]</code></b> ---
represents the complement of <em>set</em>,
where <em>set</em> is interpreted as above.
</ul>
For all classes represented by single letters (<code>%a</code>, <code>%c</code>, etc.),
the corresponding uppercase letter represents the complement of the class.
For instance, <code>%S</code> represents all non-space characters.

<p>The definitions of letter, space, and other character groups
depend on the current locale.
In particular, the class <code>[a-z]</code> may not be equivalent to <code>%l</code>.

<p><p>
A <em>pattern item</em> may be
<ul>
<li> 
a single character class,
which matches any single character in the class;
<li> 
a single character class followed by `<code>*</code>&acute;,
which matches 0 or more repetitions of characters in the class.
These repetition items will always match the longest possible sequence;
<li> 
a single character class followed by `<code>+</code>&acute;,
which matches 1 or more repetitions of characters in the class.
These repetition items will always match the longest possible sequence;
<li> 
a single character class followed by `<code>-</code>&acute;,
which also matches 0 or more repetitions of characters in the class.
Unlike `<code>*</code>&acute;,
these repetition items will always match the <em>shortest</em> possible sequence;
<li> 
a single character class followed by `<code>?</code>&acute;,
which matches 0 or 1 occurrence of a character in the class;
<li> 
<code>%</code><em>n</em>, for <em>n</em> between 1 and 9;
such item matches a substring equal to the <em>n</em>-th captured string
(see below);
<li> 
<code>%b</code><em>xy</em>, where <em>x</em> and <em>y</em> are two distinct characters;
such item matches strings that start with <em>x</em>, end with <em>y</em>,
and where the <em>x</em> and <em>y</em> are <em>balanced</em>.
This means that, if one reads the string from left to right,
counting <em>+1</em> for an <em>x</em> and <em>-1</em> for a <em>y</em>,
the ending <em>y</em> is the first <em>y</em> where the count reaches 0.
For instance, the item <code>%b()</code> matches expressions with
balanced parentheses.
</ul>

<p><p>
A <em>pattern</em> is a sequence of pattern items.
A `<code>^</code>&acute; at the beginning of a pattern anchors the match at the
beginning of the subject string.
A `<code>$</code>&acute; at the end of a pattern anchors the match at the
end of the subject string.
At other positions,
`<code>^</code>&acute; and `<code>$</code>&acute; have no special meaning and represent themselves.

<p><p>
A pattern may contain sub-patterns enclosed in parentheses;
they describe <em>captures</em>.
When a match succeeds, the substrings of the subject string
that match captures are stored (<em>captured</em>) for future use.
Captures are numbered according to their left parentheses.
For instance, in the pattern <code>"(a*(.)%w(%s*))"</code>,
the part of the string matching <code>"a*(.)%w(%s*)"</code> is
stored as the first capture (and therefore has number 1);
the character matching <code>"."</code> is captured with number 2,
and the part matching <code>"%s*"</code> has number 3.

<p>As a special case, the empty capture <code>()</code> captures
the current string position (a number).
For instance, if we apply the pattern <code>"()aa()"</code> on the
string <code>"flaaap"</code>, there will be two captures: 3 and 5.

<p>A pattern cannot contain embedded zeros.  Use <code>%z</code> instead.

<p><a name="5.5"></a><h2>5.5 - Table Manipulation</h2>
This library provides generic functions for table manipulation.
It provides all its functions inside the table <code>table</code>.

<p>Most functions in the table library assume that the table
represents an array or a list.
For these functions, when we talk about the "length" of a table
we mean the result of the length operator.

<p><a name="pdf-table.concat"></a><hr></hr><h3><code>table.concat (table [, sep [, i [, j]]])</code></h3>
Returns <code>table[i]..sep..table[i+1] ... sep..table[j]</code>.
The default value for <code>sep</code> is the empty string,
the default for <code>i</code> is 1,
and the default for <code>j</code> is the length of the table.
If <code>i</code> is greater than <code>j</code>, returns the empty string.

<p><a name="pdf-table.insert"></a><hr></hr><h3><code>table.insert (table, [pos,] value)</code></h3>

<p>Inserts element <code>value</code> at position <code>pos</code> in <code>table</code>,
shifting up other elements to open space, if necessary.
The default value for <code>pos</code> is <code>n+1</code>,
where <code>n</code> is the length of the table (see <a href="#len-op">2.5.5</a>),
so that a call <code>table.insert(t,x)</code> inserts <code>x</code> at the end
of table <code>t</code>.

<p><a name="pdf-table.maxn"></a><hr></hr><h3><code>table.maxn (table)</code></h3>

<p>Returns the largest positive numerical index of the given table,
or zero if the table has no positive numerical indices.
(To do its job this function does a linear traversal of
the whole table.) 

<p><a name="pdf-table.remove"></a><hr></hr><h3><code>table.remove (table [, pos])</code></h3>

<p>Removes from <code>table</code> the element at position <code>pos</code>,
shifting down other elements to close the space, if necessary.
Returns the value of the removed element.
The default value for <code>pos</code> is <code>n</code>,
where <code>n</code> is the length of the table,
so that a call <code>table.remove(t)</code> removes the last element
of table <code>t</code>.

<p><a name="pdf-table.sort"></a><hr></hr><h3><code>table.sort (table [, comp])</code></h3>
Sorts table elements in a given order, <em>in-place</em>,
from <code>table[1]</code> to <code>table[n]</code>,
where <code>n</code> is the length of the table.
If <code>comp</code> is given,
then it must be a function that receives two table elements,
and returns true
when the first is less than the second
(so that <code>not comp(a[i+1],a[i])</code> will be true after the sort).
If <code>comp</code> is not given,
then the standard Lua operator <code>&#060;</code> is used instead.

<p>The sort algorithm is not stable;
that is, elements considered equal by the given order
may have their relative positions changed by the sort.

<p><a name="mathlib"></a><a name="5.6"></a><h2>5.6 - Mathematical Functions</h2>

<p>This library is an interface to the standard C math library.
It provides all its functions inside the table <code>math</code>.
The library provides the following functions:
<a name="pdf-math.abs"></a> <a name="pdf-math.acos"></a> <a name="pdf-math.asin"></a> <a name="pdf-math.atan"></a>
<a name="pdf-math.atan2"></a> <a name="pdf-math.ceil"></a> <a name="pdf-math.cos"></a> <a name="pdf-math.cosh"></a>
<a name="pdf-math.deg"></a> <a name="pdf-math.exp"></a> <a name="pdf-math.floor"></a> <a name="pdf-math.fmod"></a>
<a name="pdf-math.frexp"></a> <a name="pdf-math.ldexp"></a> <a name="pdf-math.log"></a> <a name="pdf-math.log10"></a>
<a name="pdf-math.max"></a> <a name="pdf-math.min"></a> <a name="pdf-math.modf"></a> <a name="pdf-math.pow"></a>
<a name="pdf-math.rad"></a> <a name="pdf-math.random"></a> <a name="pdf-math.randomseed"></a>
<a name="pdf-math.sin"></a> <a name="pdf-math.sinh"></a> <a name="pdf-math.sqrt"></a> <a name="pdf-math.tan"></a>
<a name="pdf-math.tanh"></a>
<pre>
       math.abs     math.acos    math.asin    math.atan    math.atan2
       math.ceil    math.cos     math.cosh    math.deg     math.exp
       math.floor   math.fmod    math.frexp   math.ldexp   math.log
       math.log10   math.max     math.min     math.modf    math.pow
       math.rad     math.random  math.randomseed           math.sin
       math.sinh    math.sqrt    math.tan     math.tanh
</pre>
plus a variable <code>math.pi</code> and
a variable <code>math.huge</code>,
with the value <code>HUGE_VAL</code>.
Most of these functions
are only interfaces to the corresponding functions in the C library.
All trigonometric functions work in radians.
The functions <code>math.deg</code> and <code>math.rad</code> convert
between radians and degrees.

<p>The function <code>math.max</code> returns the maximum
value of its numeric arguments.
Similarly, <code>math.min</code> computes the minimum.
Both can be used with 1, 2, or more arguments.

<p>The function <code>math.modf</code> corresponds to the <code>modf</code> C function.
It returns two values:
The integral part and the fractional part of its argument.
The function <code>math.frexp</code> also returns 2 values:
The normalized fraction and the exponent of its argument.

<p>The functions <code>math.random</code> and <code>math.randomseed</code>
are interfaces to the simple random generator functions
<code>rand</code> and <code>srand</code> that are provided by ANSI C.
(No guarantees can be given for their statistical properties.)
When called without arguments,
<code>math.random</code> returns a pseudo-random real number
in the range <em>[0,1)</em>.  
When called with a number <em>n</em>,
<code>math.random</code> returns
a pseudo-random integer in the range <em>[1,n]</em>.
When called with two arguments,
<em>l</em> and <em>u</em>,
<code>math.random</code> returns a pseudo-random
integer in the range <em>[l,u]</em>.
The <code>math.randomseed</code> function sets a "seed"
for the pseudo-random generator:
Equal seeds produce equal sequences of numbers.

<p><a name="libio"></a><a name="5.7"></a><h2>5.7 - Input and Output Facilities</h2>

<p>The I/O library provides two different styles for file manipulation.
The first one uses implicit file descriptors;
that is, there are operations to set a default input file and a
default output file,
and all input/output operations are over these default files.
The second style uses explicit file descriptors.

<p>When using implicit file descriptors,
all operations are supplied by table <code>io</code>.
When using explicit file descriptors,
the operation <a href="#pdf-io.open"><code>io.open</code></a> returns a file descriptor
and then all operations are supplied as methods of the file descriptor.

<p>The table <code>io</code> also provides
three predefined file descriptors with their usual meanings from C:
<code>io.stdin</code>, <code>io.stdout</code>, and <code>io.stderr</code>.

<p>Unless otherwise stated,
all I/O functions return <b>nil</b> on failure
(plus an error message as a second result)
and some value different from <b>nil</b> on success.

<p><a name="pdf-io.close"></a><hr></hr><h3><code>io.close ([file])</code></h3>

<p>Equivalent to <code>file:close()</code>.
Without a <code>file</code>, closes the default output file.

<p><a name="pdf-io.flush"></a><hr></hr><h3><code>io.flush ()</code></h3>

<p>Equivalent to <code>file:flush</code> over the default output file.

<p><a name="pdf-io.input"></a><hr></hr><h3><code>io.input ([file])</code></h3>

<p>When called with a file name, it opens the named file (in text mode),
and sets its handle as the default input file.
When called with a file handle,
it simply sets this file handle as the default input file.
When called without parameters,
it returns the current default input file.

<p>In case of errors this function raises the error,
instead of returning an error code.

<p><a name="pdf-io.lines"></a><hr></hr><h3><code>io.lines ([filename])</code></h3>

<p>Opens the given file name in read mode
and returns an iterator function that,
each time it is called,
returns a new line from the file.
Therefore, the construction
<pre>
       for line in io.lines(filename) do ... end
</pre>
will iterate over all lines of the file.
When the iterator function detects the end of file,
it returns <b>nil</b> (to finish the loop) and automatically closes the file.

<p>The call <code>io.lines()</code> (without a file name) is equivalent
to <code>io.input():lines()</code>;
that is, it iterates over the lines of the default input file.
In this case it does not close the file when the loop ends.

<p><a name="pdf-io.open"></a><hr></hr><h3><code>io.open (filename [, mode])</code></h3>

<p>This function opens a file,
in the mode specified in the string <code>mode</code>.
It returns a new file handle,
or, in case of errors, <b>nil</b> plus an error message.

<p>The <code>mode</code> string can be any of the following:
<ul>
<li><b>"r"</b> --- read mode (the default);
<li><b>"w"</b> --- write mode;
<li><b>"a"</b> --- append mode;
<li><b>"r+"</b> --- update mode, all previous data is preserved;
<li><b>"w+"</b> --- update mode, all previous data is erased;
<li><b>"a+"</b> --- append update mode, previous data is preserved,
  writing is only allowed at the end of file.
</ul>
The <code>mode</code> string may also have a `<code>b</code>&acute; at the end,
which is needed in some systems to open the file in binary mode.
This string is exactly what is used in the
standard C function <code>fopen</code>.

<p><a name="pdf-io.output"></a><hr></hr><h3><code>io.output ([file])</code></h3>

<p>Similar to <a href="#pdf-io.input"><code>io.input</code></a>, but operates over the default output file.

<p><a name="pdf-io.popen"></a><hr></hr><h3><code>io.popen ([prog [, mode]])</code></h3>

<p>Starts program <code>prog</code> in a separated process and returns
a file handle that you can use to read data from this program
(if <code>mode</code> is <code>"r"</code>, the default)
or to write data to this program
(if <code>mode</code> is <code>"w"</code>).

<p>This function is system dependent and is not available
on all platforms.

<p><a name="pdf-io.read"></a><hr></hr><h3><code>io.read (format1, ...)</code></h3>

<p>Equivalent to <code>io.input():read</code>.

<p><a name="pdf-io.tmpfile"></a><hr></hr><h3><code>io.tmpfile ()</code></h3>

<p>Returns a handle for a temporary file.
This file is opened in update mode
and it is automatically removed when the program ends.

<p><a name="pdf-io.type"></a><hr></hr><h3><code>io.type (obj)</code></h3>

<p>Checks whether <code>obj</code> is a valid file handle.
Returns the string <code>"file"</code> if <code>obj</code> is an open file handle,
<code>"closed file"</code> if <code>obj</code> is a closed file handle,
or <b>nil</b> if <code>obj</code> is not a file handle.

<p><a name="pdf-io.write"></a><hr></hr><h3><code>io.write (value1, ...)</code></h3>

<p>Equivalent to <code>io.output():write</code>.

<p><a name="pdf-file:close"></a><hr></hr><h3><code>file:close ()</code></h3>

<p>Closes <code>file</code>.
Note that files are automatically closed when
their handles are garbage collected,
but that takes an unpredictable amount of time to happen.

<p><a name="flush"></a><a name="pdf-file:flush"></a><hr></hr><h3><code>file:flush ()</code></h3>

<p>Saves any written data to <code>file</code>.

<p><a name="pdf-file:lines"></a><hr></hr><h3><code>file:lines ()</code></h3>

<p>Returns an iterator function that,
each time it is called,
returns a new line from the file.
Therefore, the construction
<pre>
       for line in file:lines() do ... end
</pre>
will iterate over all lines of the file.
(Unlike <a href="#pdf-io.lines"><code>io.lines</code></a>, this function does not close the file
when the loop ends.)

<p><a name="pdf-file:read"></a><hr></hr><h3><code>file:read (format1, ...)</code></h3>

<p>Reads the file <code>file</code>,
according to the given formats, which specify what to read.
For each format,
the function returns a string (or a number) with the characters read,
or <b>nil</b> if it cannot read data with the specified format.
When called without formats,
it uses a default format that reads the entire next line
(see below).

<p>The available formats are
<ul>
<li><b>"*n"</b> reads a number;
this is the only format that returns a number instead of a string.
<li><b>"*a"</b> reads the whole file, starting at the current position.
On end of file, it returns the empty string.
<li><b>"*l"</b> reads the next line (skipping the end of line),
returning <b>nil</b> on end of file.
This is the default format.
<li><b><em>number</em></b> reads a string with up to this number of characters,
returning <b>nil</b> on end of file.
If number is zero,
it reads nothing and returns an empty string,
or <b>nil</b> on end of file.
</ul>

<p><a name="pdf-file:seek"></a><hr></hr><h3><code>file:seek ([whence] [, offset])</code></h3>

<p>Sets and gets the file position,
measured from the beginning of the file,
to the position given by <code>offset</code> plus a base
specified by the string <code>whence</code>, as follows:
<ul>
<li><b>"set"</b> --- base is position 0 (beginning of the file);
<li><b>"cur"</b> --- base is current position;
<li><b>"end"</b> --- base is end of file;
</ul>
In case of success, function <code>seek</code> returns the final file position,
measured in bytes from the beginning of the file.
If this function fails, it returns <b>nil</b>,
plus a string describing the error.

<p>The default value for <code>whence</code> is <code>"cur"</code>,
and for <code>offset</code> is 0.
Therefore, the call <code>file:seek()</code> returns the current
file position, without changing it;
the call <code>file:seek("set")</code> sets the position to the
beginning of the file (and returns 0);
and the call <code>file:seek("end")</code> sets the position to the
end of the file, and returns its size.

<p><a name="pdf-file:setvbuf"></a><hr></hr><h3><code>file:setvbuf (mode [, size])</code></h3>

<p>Sets the buffering mode for an output file.
There are three available modes:
<ul>
<li><b>"no"</b> ---
no buffering; the result of any output operation appears immediately.
<li><b>"full"</b> ---
full buffering; output operation is performed only
when the buffer is full (or when you explicitly <code>flush</code> the file (see <a href="#flush">5.7</a>)).
<li><b>"line"</b> ---
line buffering; output is buffered until a newline is output
or there is any input from some special files
(such as a terminal device).
</ul>
For the last two cases, <code>sizes</code>
specifies the size of the buffer, in bytes.
The default is an appropriate size.

<p><a name="pdf-file:write"></a><hr></hr><h3><code>file:write (value1, ...)</code></h3>

<p>Writes the value of each of its arguments to
the <code>file</code>.
The arguments must be strings or numbers.
To write other values,
use <a href="#pdf-tostring"><code>tostring</code></a> or <a href="#pdf-string.format"><code>string.format</code></a> before <code>write</code>.

<p><a name="libiosys"></a><a name="5.8"></a><h2>5.8 - Operating System Facilities</h2>

<p>This library is implemented through table <code>os</code>.

<p><a name="pdf-os.clock"></a><hr></hr><h3><code>os.clock ()</code></h3>

<p>Returns an approximation of the amount in seconds of CPU time
used by the program.

<p><a name="pdf-os.date"></a><hr></hr><h3><code>os.date ([format [, time]])</code></h3>

<p>Returns a string or a table containing date and time,
formatted according to the given string <code>format</code>.

<p>If the <code>time</code> argument is present,
this is the time to be formatted
(see the <a href="#pdf-os.time"><code>os.time</code></a> function for a description of this value).
Otherwise, <code>date</code> formats the current time.

<p>If <code>format</code> starts with `<code>!</code>&acute;,
then the date is formatted in Coordinated Universal Time.
After this optional character,
if <code>format</code> is <code>*t</code>,
then <code>date</code> returns a table with the following fields:
<code>year</code> (four digits), <code>month</code> (1--12), <code>day</code> (1--31),
<code>hour</code> (0--23), <code>min</code> (0--59), <code>sec</code> (0--61),
<code>wday</code> (weekday, Sunday is 1),
<code>yday</code> (day of the year),
and <code>isdst</code> (daylight saving flag, a boolean).

<p>If <code>format</code> is not <code>*t</code>,
then <code>date</code> returns the date as a string,
formatted according to the same rules as the C function <code>strftime</code>.

<p>When called without arguments,
<code>date</code> returns a reasonable date and time representation that depends on
the host system and on the current locale
(that is, <code>os.date()</code> is equivalent to <code>os.date("%c")</code>).

<p><a name="pdf-os.difftime"></a><hr></hr><h3><code>os.difftime (t2, t1)</code></h3>

<p>Returns the number of seconds from time <code>t1</code> to time <code>t2</code>.
In POSIX, Windows, and some other systems,
this value is exactly <code>t2</code><em>-</em><code>t1</code>.

<p><a name="pdf-os.execute"></a><hr></hr><h3><code>os.execute ([command])</code></h3>

<p>This function is equivalent to the C function <code>system</code>.
It passes <code>command</code> to be executed by an operating system shell.
It returns a status code, which is system-dependent.
If <code>command</code> is absent, then it returns nonzero if a shell is available
and zero otherwise.

<p><a name="pdf-os.exit"></a><hr></hr><h3><code>os.exit ([code])</code></h3>

<p>Calls the C function <code>exit</code>,
with an optional <code>code</code>,
to terminate the host program.
The default value for <code>code</code> is the success code.

<p><a name="pdf-os.getenv"></a><hr></hr><h3><code>os.getenv (varname)</code></h3>

<p>Returns the value of the process environment variable <code>varname</code>,
or <b>nil</b> if the variable is not defined.

<p><a name="pdf-os.remove"></a><hr></hr><h3><code>os.remove (filename)</code></h3>

<p>Deletes the file or directory with the given name.
Directories must be empty to be removed.
If this function fails, it returns <b>nil</b>,
plus a string describing the error.

<p><a name="pdf-os.rename"></a><hr></hr><h3><code>os.rename (oldname, newname)</code></h3>

<p>Renames file or directory named <code>oldname</code> to <code>newname</code>.
If this function fails, it returns <b>nil</b>,
plus a string describing the error.

<p><a name="pdf-os.setlocale"></a><hr></hr><h3><code>os.setlocale (locale [, category])</code></h3>

<p>Sets the current locale of the program.
<code>locale</code> is a string specifying a locale;
<code>category</code> is an optional string describing which category to change:
<code>"all"</code>, <code>"collate"</code>, <code>"ctype"</code>,
<code>"monetary"</code>, <code>"numeric"</code>, or <code>"time"</code>;
the default category is <code>"all"</code>.
The function returns the name of the new locale,
or <b>nil</b> if the request cannot be honored.

<p><a name="pdf-os.time"></a><hr></hr><h3><code>os.time ([table])</code></h3>

<p>Returns the current time when called without arguments,
or a time representing the date and time specified by the given table.
This table must have fields <code>year</code>, <code>month</code>, and <code>day</code>,
and may have fields <code>hour</code>, <code>min</code>, <code>sec</code>, and <code>isdst</code>
(for a description of these fields, see the <a href="#pdf-os.date"><code>os.date</code></a> function).

<p>The returned value is a number, whose meaning depends on your system.
In POSIX, Windows, and some other systems, this number counts the number
of seconds since some given start time (the "epoch").
In other systems, the meaning is not specified,
and the number returned by <code>time</code> can be used only as an argument to
<code>date</code> and <code>difftime</code>.

<p><a name="pdf-os.tmpname"></a><hr></hr><h3><code>os.tmpname ()</code></h3>

<p>Returns a string with a file name that can
be used for a temporary file.
The file must be explicitly opened before its use
and explicitly removed when no longer needed.

<p><a name="libdebug"></a><a name="5.9"></a><h2>5.9 - The Debug Library</h2>

<p>This library provides
the functionality of the debug interface to Lua programs.
You should exert care when using this library.
The functions provided here should be used exclusively for debugging
and similar tasks, such as profiling.
Please resist the temptation to use them as a
usual programming tool:
They can be very slow.
Moreover, several of its functions
violate some assumptions about Lua code
(e.g., that variables local to a function
cannot be accessed from outside or
that userdata metatables cannot be changed by Lua code)
and therefore can compromise otherwise secure code.

<p>All functions in this library are provided
inside the <code>debug</code> table.

<p><a name="pdf-debug.debug"></a><hr></hr><h3><code>debug.debug ()</code></h3>

<p>Enters an interactive mode with the user,
running each string that the user enters.
Using simple commands and other debug facilities,
the user can inspect global and local variables,
change their values, evaluate expressions, and so on.
A line containing only the word <code>cont</code> finishes this function,
so that the caller continues its execution.

<p>Note that commands for <code>debug.debug</code> are not lexically nested
within any function, and so have no direct access to local variables.

<p><a name="pdf-debug.getfenv"></a><hr></hr><h3><code>debug.getfenv (o)</code></h3>
Returns the environment of object <code>o</code>.

<p><a name="pdf-debug.gethook"></a><hr></hr><h3><code>debug.gethook ()</code></h3>

<p>Returns the current hook settings, as three values:
the current hook function, the current hook mask,
and the current hook count
(as set by the <a href="#pdf-debug.sethook"><code>debug.sethook</code></a> function).

<p><a name="pdf-debug.getinfo"></a><hr></hr><h3><code>debug.getinfo (function [, what])</code></h3>

<p>Returns a table with information about a function.
You can give the function directly,
or you can give a number as the value of <code>function</code>,
which means the function running at level <code>function</code> of the call stack:
Level 0 is the current function (<code>getinfo</code> itself);
level 1 is the function that called <code>getinfo</code>;
and so on.
If <code>function</code> is a number larger than the number of active functions,
then <code>getinfo</code> returns <b>nil</b>.

<p>The returned table contains all the fields returned by <a href="#lua_getinfo"><code>lua_getinfo</code></a>,
with the string <code>what</code> describing which fields to fill in.
The default for <code>what</code> is to get all information available.
If present,
the option `<code>f</code>&acute;
adds a field named <code>func</code> with the function itself.

<p>For instance, the expression <code>debug.getinfo(1,"n").name</code> returns
a name of the current function, if a reasonable name can be found,
and <code>debug.getinfo(print)</code> returns a table with all available information
about the <a href="#pdf-print"><code>print</code></a> function.

<p><a name="pdf-debug.getlocal"></a><hr></hr><h3><code>debug.getlocal (level, local)</code></h3>

<p>This function returns the name and the value of the local variable
with index <code>local</code> of the function at level <code>level</code> of the stack.
(The first parameter or local variable has index 1, and so on,
until the last active local variable.)
The function returns <b>nil</b> if there is no local
variable with the given index,
and raises an error when called with a <code>level</code> out of range.
(You can call <a href="#pdf-debug.getinfo"><code>debug.getinfo</code></a> to check whether the level is valid.)

<p>Variable names starting with `<code>(</code>&acute; (open parentheses)
represent internal variables
(loop control variables, temporaries, and C function locals).

<p><a name="pdf-debug.getmetatable"></a><hr></hr><h3><code>debug.getmetatable (object)</code></h3>

<p>Returns the metatable of the given <code>object</code>
or <b>nil</b> if it does not have a metatable.

<p><a name="pdf-debug.getregistry"></a><hr></hr><h3><code>debug.getregistry ()</code></h3>

<p>Returns the registry table (see <a href="#registry">3.5</a>).

<p><a name="pdf-debug.getupvalue"></a><hr></hr><h3><code>debug.getupvalue (func, up)</code></h3>

<p>This function returns the name and the value of the upvalue
with index <code>up</code> of the function <code>func</code>.
The function returns <b>nil</b> if there is no upvalue with the given index.

<p><a name="pdf-debug.setfenv"></a><hr></hr><h3><code>debug.setfenv (object, table)</code></h3>

<p>Sets the environment of the given <code>object</code> to the given <code>table</code>.

<p><a name="pdf-debug.sethook"></a><hr></hr><h3><code>debug.sethook (hook, mask [, count])</code></h3>

<p>Sets the given function as a hook.
The string <code>mask</code> and the number <code>count</code> describe
when the hook will be called.
The string mask may have the following characters,
with the given meaning:
<ul>
<li><b><code>"c"</code></b> --- The hook is called every time Lua calls a function;
<li><b><code>"r"</code></b> --- The hook is called every time Lua returns from a function;
<li><b><code>"l"</code></b> --- The hook is called every time Lua enters a new line of code.
</ul>
With a <code>count</code> different from zero,
the hook is called after every <code>count</code> instructions.

<p>When called without arguments,
<a href="#pdf-debug.sethook"><code>debug.sethook</code></a> turns off the hook.

<p>When the hook is called, its first parameter is a string
describing the event that has triggered its call:
<code>"call"</code>, <code>"return"</code> (or <code>"tail return"</code>),
<code>"line"</code>, and <code>"count"</code>.
For line events,
the hook also gets the new line number as its second parameter.
Inside a hook,
you can call <code>getinfo</code> with level 2 to get more information about
the running function
(level 0 is the <code>getinfo</code> function,
and level 1 is the hook function),
unless the event is <code>"tail return"</code>.
In this case, Lua is only simulating the return,
and a call to <code>getinfo</code> will return invalid data.

<p><a name="pdf-debug.setlocal"></a><hr></hr><h3><code>debug.setlocal (level, local, value)</code></h3>

<p>This function assigns the value <code>value</code> to the local variable
with index <code>local</code> of the function at level <code>level</code> of the stack.
The function returns <b>nil</b> if there is no local
variable with the given index,
and raises an error when called with a <code>level</code> out of range.
(You can call <code>getinfo</code> to check whether the level is valid.)
Otherwise, it returns the name of the local variable.

<p><a name="pdf-debug.setmetatable"></a><hr></hr><h3><code>debug.setmetatable (object, table)</code></h3>

<p>Sets the metatable for the given <code>object</code> to the given <code>table</code>
(which can be <b>nil</b>).

<p><a name="pdf-debug.setupvalue"></a><hr></hr><h3><code>debug.setupvalue (func, up, value)</code></h3>

<p>This function assigns the value <code>value</code> to the upvalue
with index <code>up</code> of the function <code>func</code>.
The function returns <b>nil</b> if there is no upvalue
with the given index.
Otherwise, it returns the name of the upvalue.

<p><a name="pdf-debug.traceback"></a><hr></hr><h3><code>debug.traceback ([message])</code></h3>

<p>Returns a string with a traceback of the call stack.
An optional <code>message</code> string is appended
at the beginning of the traceback. 
This function is typically used with <a href="#pdf-xpcall"><code>xpcall</code></a> to produce
better error messages.

<p>
<a name="lua-sa"></a><a name="6"></a><h1>6 - Lua Stand-alone</h1>

<p>Although Lua has been designed as an extension language,
to be embedded in a host C program,
it is also frequently used as a stand-alone language.
An interpreter for Lua as a stand-alone language,
called simply <code>lua</code>,
is provided with the standard distribution.
The stand-alone interpreter includes
all standard libraries, including the debug library.
Its usage is:
<pre>
      lua [options] [script [args]]
</pre>
The options are:
<ul>
<li><b><code>-e</code> <em>stat</em></b> executes string <em>stat</em>;
<li><b><code>-l</code> <em>mod</em></b> "requires" <em>mod</em>;
<li><b><code>-i</code></b> enters interactive mode after running <em>script</em>;
<li><b><code>-v</code></b> prints version information;
<li><b><code>--</code></b> stops handling options;
<li><b><code>-</code> </b> executes <code>stdin</code> as a file and stops handling options.
</ul>
After handling its options, <code>lua</code> runs the given <em>script</em>,
passing to it the given <em>args</em> as string arguments.
When called without arguments,
<code>lua</code> behaves as <code>lua -v -i</code>
when the standard input (<code>stdin</code>) is a terminal,
and as <code>lua -</code> otherwise.

<p>Before running any argument,
the interpreter checks for an environment variable <code>LUA_INIT</code>.
If its format is @<em>filename</em>,
then <code>lua</code> executes the file.
Otherwise, <code>lua</code> executes the string itself.

<p>All options are handled in order, except <code>-i</code>.
For instance, an invocation like
<pre>
       $ lua -e'a=1' -e 'print(a)' script.lua
</pre>
will first set <code>a</code> to 1, then print the value of <code>a</code> (which is `<code>1</code>&acute;),
and finally run the file <code>script.lua</code> with no arguments.
(Here <code>$</code> is the shell prompt. Your prompt may be different.)

<p>Before starting to run the script,
<code>lua</code> collects all arguments in the command line
in a global table called <code>arg</code>.
The script name is stored at index 0,
the first argument after the script name goes to index 1,
and so on.
Any arguments before the script name
(that is, the interpreter name plus the options)
go to negative indices.
For instance, in the call
<pre>
       $ lua -la b.lua t1 t2
</pre>
the interpreter first runs the file <code>a.lua</code>,
then creates a table
<pre>
       arg = { [-2] = "lua", [-1] = "-la",
               [0] = "b.lua",
               [1] = "t1", [2] = "t2" }
</pre>
and finally runs the file <code>b.lua</code>.
The script is called with <code>arg[1]</code>, <code>arg[2]</code>, ...
as arguments;
it can also access these arguments with the vararg expression `<code>...</code>&acute;.

<p>In interactive mode,
if you write an incomplete statement,
the interpreter waits for its completion
by issuing a different prompt.

<p>If the global variable <code>_PROMPT</code> contains a string,
then its value is used as the prompt.
Similarly, if the global variable <code>_PROMPT2</code> contains a string,
its value is used as the secondary prompt
(issued during incomplete statements).
Therefore, both prompts can be changed directly on the command line.
For instance,
<pre>
       $ lua -e"_PROMPT='myprompt> '" -i
</pre>
(the outer pair of quotes is for the shell,
the inner pair is for Lua),
or in any Lua programs by assigning to <code>_PROMPT</code>.
Note the use of <code>-i</code> to enter interactive mode; otherwise,
the program would just end silently right after the assignment to <code>_PROMPT</code>.

<p>To allow the use of Lua as a
script interpreter in Unix systems,
the stand-alone interpreter skips
the first line of a chunk if it starts with <code>#</code>.
Therefore, Lua scripts can be made into executable programs
by using <code>chmod +x</code> and the <code>#!</code> form,
as in
<pre>
#!/usr/local/bin/lua
</pre>
(Of course,
the location of the Lua interpreter may be different in your machine.
If <code>lua</code> is in your <code>PATH</code>,
then 
<pre>
#!/usr/bin/env lua
</pre>
is a more portable solution.) 

<p><hr></hr>

<p><a name="incompat"></a><h1>Incompatibilities with the Previous Version</h1>


<p>Here we list the incompatibilities that may be found when moving a program
from Lua 5.0 to Lua 5.1.
You can avoid most of the incompatibilities compiling Lua with
appropriate options (see file <code>luaconf.h</code>).
However,
all these compatibility options will be removed in the next version of Lua.

<p><h2>Incompatibilities with version 5.0</h2>

<p><h3>Changes in the Language</h3>
<ul>
<li>
The vararg system changed from the pseudo-argument <code>arg</code> with a
table with the extra arguments to the vararg expression.
(Option <code>LUA_COMPAT_VARARG</code> in <code>luaconf.h</code>.)

<p><li>
There was a subtle change in the scope of the implicit
variables of the <b>for</b> statement and for the <b>repeat</b> statement.

<p><li>
The long string/long comment syntax (<code>[[...]]</code>) does not allow nesting.
You can use the new syntax (<code>[=[...]=]</code>) in these cases.
(Option <code>LUA_COMPAT_LSTR</code> in <code>luaconf.h</code>.)

<p></ul>

<p><h3>Changes in the Libraries</h3>
<ul>

<p><li> 
Function <code>string.gfind</code> was renamed <a href="#pdf-string.gmatch"><code>string.gmatch</code></a>.
(Option <code>LUA_COMPAT_GFIND</code>)

<p><li>
When <a href="#pdf-string.gsub"><code>string.gsub</code></a> is called with a function as its
third argument,
whenever this function returns <b>nil</b> or <b>false</b> the
replacement string is the whole match,
instead of the empty string.

<p><li>
Function <code>table.setn</code> was deprecated.
Function <code>table.getn</code> corresponds
to the new length operator (<code>#</code>);
use the operator instead of the function.
(Option <code>LUA_COMPAT_GETN</code>)

<p><li> 
Function <code>loadlib</code> was renamed <a href="#pdf-package.loadlib"><code>package.loadlib</code></a>.
(Option <code>LUA_COMPAT_LOADLIB</code>)

<p><li> 
Function <code>math.mod</code> was renamed <a href="#pdf-math.fmod"><code>math.fmod</code></a>.
(Option <code>LUA_COMPAT_MOD</code>)

<p><li>
Functions <code>table.foreach</code> and <code>table.foreachi</code> are deprecated.
You can use a for loop with <code>pairs</code> or <code>ipairs</code> instead.

<p><li>
There were substantial changes in function <a href="#pdf-require"><code>require</code></a> due to
the new module system.
However, the new behavior is mostly compatible with the old,
but <code>require</code> gets the path from <a href="#pdf-package.path"><code>package.path</code></a> instead
of from <code>LUA_PATH</code>.

<p><li>
Function <a href="#pdf-collectgarbage"><code>collectgarbage</code></a> has different arguments.
Function <code>gcinfo</code> is deprecated;
use <code>collectgarbage("count")</code> instead.

<p></ul>

<p><h3>Changes in the API</h3>
<ul>

<p><li>
The <code>luaopen_*</code> functions (to open libraries)
cannot be called directly,
like a regular C function.
They must be called through Lua,
like a Lua function.

<p><li>
Function <code>lua_open</code> was replaced by <a href="#lua_newstate"><code>lua_newstate</code></a> to
allow the user to set a memory allocation function.
You can use <a href="#luaL_newstate"><code>luaL_newstate</code></a> from the standard library to
create a state with a standard allocation function
(based on <code>realloc</code>).

<p><li>
Functions <code>luaL_getn</code> and <code>luaL_setn</code>
(from the auxiliary library) are deprecated.
Use <a href="#lua_objlen"><code>lua_objlen</code></a> instead of <code>luaL_getn</code>
and nothing instead of <code>luaL_setn</code>.

<p><li>
Function <code>luaL_openlib</code> was replaced by <a href="#luaL_register"><code>luaL_register</code></a>.

<p></ul>

<p>

<a name="BNF"></a><h1>The Complete Syntax of Lua</h1>


<p>Here is the complete syntax of Lua in extended BNF.
It does not describe operator priorities or some syntactical restrictions,
such as <b>return</b> and <b>break</b> statements
can only appear as the <em>last</em> statement of a block.

<p>

<p><pre>

	chunk ::= {stat [`<b>;</b>&acute;]} [laststat[`<b>;</b>&acute;]]

	block ::= chunk

	stat ::=  varlist1 `<b>=</b>&acute; explist1  | 
		 functioncall  | 
		 <b>do</b> block <b>end</b>  | 
		 <b>while</b> exp <b>do</b> block <b>end</b>  | 
		 <b>repeat</b> block <b>until</b> exp  | 
		 <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b>  | 
		 <b>for</b> Name `<b>=</b>&acute; exp `<b>,</b>&acute; exp [`<b>,</b>&acute; exp] <b>do</b> block <b>end</b>  | 
		 <b>for</b> namelist <b>in</b> explist1 <b>do</b> block <b>end</b>  | 
		 <b>function</b> funcname funcbody  | 
		 <b>local</b> <b>function</b> Name funcbody  | 
		 <b>local</b> namelist [`<b>=</b>&acute; explist1] 

	laststat ::= <b>return</b> [explist1]  |  <b>break</b>

	funcname ::= Name {`<b>.</b>&acute; Name} [`<b>:</b>&acute; Name]

	varlist1 ::= var {`<b>,</b>&acute; var}

	var ::=  Name  |  prefixexp `<b>[</b>&acute; exp `<b>]</b>&acute;  |  prefixexp `<b>.</b>&acute; Name 

	namelist ::= Name {`<b>,</b>&acute; Name}

	explist1 ::= {exp `<b>,</b>&acute;} exp

	exp ::=  <b>nil</b>  |  <b>false</b>  |  <b>true</b>  |  Number  |  String  |  `<b>...</b>&acute;  | 
		 function  |  prefixexp  |  tableconstructor  |  exp binop exp  |  unop exp 

	prefixexp ::= var  |  functioncall  |  `<b>(</b>&acute; exp `<b>)</b>&acute;

	functioncall ::=  prefixexp args  |  prefixexp `<b>:</b>&acute; Name args 

	args ::=  `<b>(</b>&acute; [explist1] `<b>)</b>&acute;  |  tableconstructor  |  String 

	function ::= <b>function</b> funcbody

	funcbody ::= `<b>(</b>&acute; [parlist1] `<b>)</b>&acute; block <b>end</b>

	parlist1 ::= namelist [`<b>,</b>&acute; `<b>...</b>&acute;]  |  `<b>...</b>&acute;

	tableconstructor ::= `<b>{</b>&acute; [fieldlist] `<b>}</b>&acute;

	fieldlist ::= field {fieldsep field} [fieldsep]

	field ::= `<b>[</b>&acute; exp `<b>]</b>&acute; `<b>=</b>&acute; exp  |  Name `<b>=</b>&acute; exp  |  exp

	fieldsep ::= `<b>,</b>&acute;  |  `<b>;</b>&acute;

	binop ::= `<b>+</b>&acute;  |  `<b>-</b>&acute;  |  `<b>*</b>&acute;  |  `<b>/</b>&acute;  |  `<b>^</b>&acute;  |  `<b>%</b>&acute;  |  `<b>..</b>&acute;  | 
		 `<b>&#060;</b>&acute;  |  `<b>&#060;=</b>&acute;  |  `<b>></b>&acute;  |  `<b>>=</b>&acute;  |  `<b>==</b>&acute;  |  `<b>~=</b>&acute;  | 
		 <b>and</b>  |  <b>or</b>

	unop ::= `<b>-</b>&acute;  |  <b>not</b>  |  `<b>#</b>&acute;

</pre>

<p>

<p>

</body></html>