transport.c 22.3 KB
Newer Older
H
refact  
Hongze Cheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Copyright (c) 2019 TAOS Data, Inc. <jhtao@taosdata.com>
 *
 * This program is free software: you can use, redistribute, and/or modify
 * it under the terms of the GNU Affero General Public License, version 3
 * or later ("AGPL"), as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
dengyihao's avatar
dengyihao 已提交
14
 */
dengyihao's avatar
dengyihao 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711

#ifdef USE_UV

#include <uv.h>
#include "lz4.h"
#include "os.h"
#include "rpcCache.h"
#include "rpcHead.h"
#include "rpcLog.h"
#include "rpcTcp.h"
#include "rpcUdp.h"
#include "taoserror.h"
#include "tglobal.h"
#include "thash.h"
#include "tidpool.h"
#include "tmd5.h"
#include "tmempool.h"
#include "tmsg.h"
#include "transportInt.h"
#include "tref.h"
#include "trpc.h"
#include "ttimer.h"
#include "tutil.h"

#define container_of(ptr, type, member) ((type*)((char*)(ptr)-offsetof(type, member)))
#define RPC_RESERVE_SIZE (sizeof(SRpcReqContext))
static const char* notify = "a";

typedef struct {
  int      sessions;      // number of sessions allowed
  int      numOfThreads;  // number of threads to process incoming messages
  int      idleTime;      // milliseconds;
  uint16_t localPort;
  int8_t   connType;
  int      index;  // for UDP server only, round robin for multiple threads
  char     label[TSDB_LABEL_LEN];

  char user[TSDB_UNI_LEN];         // meter ID
  char spi;                        // security parameter index
  char encrypt;                    // encrypt algorithm
  char secret[TSDB_PASSWORD_LEN];  // secret for the link
  char ckey[TSDB_PASSWORD_LEN];    // ciphering key

  void (*cfp)(void* parent, SRpcMsg*, SEpSet*);
  int (*afp)(void* parent, char* user, char* spi, char* encrypt, char* secret, char* ckey);

  int32_t          refCount;
  void*            parent;
  void*            idPool;     // handle to ID pool
  void*            tmrCtrl;    // handle to timer
  SHashObj*        hash;       // handle returned by hash utility
  void*            tcphandle;  // returned handle from TCP initialization
  void*            udphandle;  // returned handle from UDP initialization
  void*            pCache;     // connection cache
  pthread_mutex_t  mutex;
  struct SRpcConn* connList;  // connection list
} SRpcInfo;

typedef struct {
  SRpcInfo*        pRpc;      // associated SRpcInfo
  SEpSet           epSet;     // ip list provided by app
  void*            ahandle;   // handle provided by app
  struct SRpcConn* pConn;     // pConn allocated
  tmsg_t           msgType;   // message type
  uint8_t*         pCont;     // content provided by app
  int32_t          contLen;   // content length
  int32_t          code;      // error code
  int16_t          numOfTry;  // number of try for different servers
  int8_t           oldInUse;  // server EP inUse passed by app
  int8_t           redirect;  // flag to indicate redirect
  int8_t           connType;  // connection type
  int64_t          rid;       // refId returned by taosAddRef
  SRpcMsg*         pRsp;      // for synchronous API
  tsem_t*          pSem;      // for synchronous API
  SEpSet*          pSet;      // for synchronous API
  char             msg[0];    // RpcHead starts from here
} SRpcReqContext;

typedef struct SThreadObj {
  pthread_t       thread;
  uv_pipe_t*      pipe;
  int             fd;
  uv_loop_t*      loop;
  uv_async_t*     workerAsync;  //
  queue           conn;
  pthread_mutex_t connMtx;
  void*           shandle;
} SThreadObj;

#define RPC_MSG_OVERHEAD (sizeof(SRpcReqContext) + sizeof(SRpcHead) + sizeof(SRpcDigest))
#define rpcHeadFromCont(cont) ((SRpcHead*)((char*)cont - sizeof(SRpcHead)))
#define rpcContFromHead(msg) (msg + sizeof(SRpcHead))
#define rpcMsgLenFromCont(contLen) (contLen + sizeof(SRpcHead))
#define rpcContLenFromMsg(msgLen) (msgLen - sizeof(SRpcHead))
#define rpcIsReq(type) (type & 1U)

typedef struct SServerObj {
  pthread_t    thread;
  uv_tcp_t     server;
  uv_loop_t*   loop;
  int          workerIdx;
  int          numOfThread;
  SThreadObj** pThreadObj;
  uv_pipe_t**  pipe;
  uint32_t     ip;
  uint32_t     port;
} SServerObj;

typedef struct SConnBuffer {
  char* buf;
  int   len;
  int   cap;
  int   left;
} SConnBuffer;

typedef struct SRpcConn {
  uv_tcp_t*   pTcp;
  uv_write_t* pWriter;
  uv_timer_t* pTimer;

  uv_async_t* pWorkerAsync;
  queue       queue;
  int         ref;
  int         persist;  // persist connection or not
  SConnBuffer connBuf;
  int         count;
  void*       shandle;  // rpc init
  void*       ahandle;

  // del later
  char secured;
  int  spi;
  char info[64];
  char user[TSDB_UNI_LEN];  // user ID for the link
  char secret[TSDB_PASSWORD_LEN];
  char ckey[TSDB_PASSWORD_LEN];  // ciphering key
} SRpcConn;

// auth function
static int  rpcAuthenticateMsg(void* pMsg, int msgLen, void* pAuth, void* pKey);
static void rpcBuildAuthHead(void* pMsg, int msgLen, void* pAuth, void* pKey);
static int  rpcAddAuthPart(SRpcConn* pConn, char* msg, int msgLen);
// compress data
static int32_t   rpcCompressRpcMsg(char* pCont, int32_t contLen);
static SRpcHead* rpcDecompressRpcMsg(SRpcHead* pHead);

static void uvAllocConnBufferCb(uv_handle_t* handle, size_t suggested_size, uv_buf_t* buf);
static void uvAllocReadBufferCb(uv_handle_t* handle, size_t suggested_size, uv_buf_t* buf);
static void uvOnReadCb(uv_stream_t* cli, ssize_t nread, const uv_buf_t* buf);
static void uvOnTimeoutCb(uv_timer_t* handle);
static void uvOnWriteCb(uv_write_t* req, int status);
static void uvOnAcceptCb(uv_stream_t* stream, int status);
static void uvOnConnectionCb(uv_stream_t* q, ssize_t nread, const uv_buf_t* buf);
static void uvWorkerAsyncCb(uv_async_t* handle);

static SRpcConn* connCreate();
static void      connDestroy(SRpcConn* conn);
static void      uvConnDestroy(uv_handle_t* handle);

static void* workerThread(void* arg);
static void* acceptThread(void* arg);

void* taosInitClient(uint32_t ip, uint32_t port, char* label, int numOfThreads, void* fp, void* shandle);
void* taosInitServer(uint32_t ip, uint32_t port, char* label, int numOfThreads, void* fp, void* shandle);

void* taosInitServer(uint32_t ip, uint32_t port, char* label, int numOfThreads, void* fp, void* shandle) {
  SServerObj* srv = calloc(1, sizeof(SServerObj));
  srv->loop = (uv_loop_t*)malloc(sizeof(uv_loop_t));
  srv->numOfThread = numOfThreads;
  srv->workerIdx = 0;
  srv->pThreadObj = (SThreadObj**)calloc(srv->numOfThread, sizeof(SThreadObj*));
  srv->pipe = (uv_pipe_t**)calloc(srv->numOfThread, sizeof(uv_pipe_t*));
  srv->ip = ip;
  srv->port = port;
  uv_loop_init(srv->loop);

  for (int i = 0; i < srv->numOfThread; i++) {
    SThreadObj* thrd = (SThreadObj*)calloc(1, sizeof(SThreadObj));
    srv->pipe[i] = (uv_pipe_t*)calloc(2, sizeof(uv_pipe_t));
    int fds[2];
    if (uv_socketpair(AF_UNIX, SOCK_STREAM, fds, UV_NONBLOCK_PIPE, UV_NONBLOCK_PIPE) != 0) {
      return NULL;
    }
    uv_pipe_init(srv->loop, &(srv->pipe[i][0]), 1);
    uv_pipe_open(&(srv->pipe[i][0]), fds[1]);  // init write

    thrd->shandle = shandle;
    thrd->fd = fds[0];
    thrd->pipe = &(srv->pipe[i][1]);  // init read
    int err = pthread_create(&(thrd->thread), NULL, workerThread, (void*)(thrd));
    if (err == 0) {
      tDebug("sucess to create worker-thread %d", i);
      // printf("thread %d create\n", i);
    } else {
      // TODO: clear all other resource later
      tError("failed to create worker-thread %d", i);
    }
    srv->pThreadObj[i] = thrd;
  }

  int err = pthread_create(&srv->thread, NULL, acceptThread, (void*)srv);
  if (err == 0) {
    tDebug("success to create accept-thread");
  } else {
    // clear all resource later
  }

  return srv;
}
void uvAllocReadBufferCb(uv_handle_t* handle, size_t suggested_size, uv_buf_t* buf) {
  /*
   * formate of data buffer:
   * |<-------SRpcReqContext------->|<------------data read from socket----------->|
   */
  static const int CAPACITY = 1024;

  SRpcConn*    ctx = handle->data;
  SConnBuffer* pBuf = &ctx->connBuf;
  if (pBuf->cap == 0) {
    pBuf->buf = (char*)calloc(CAPACITY + RPC_RESERVE_SIZE, sizeof(char));
    pBuf->len = 0;
    pBuf->cap = CAPACITY;
    pBuf->left = -1;

    buf->base = pBuf->buf + RPC_RESERVE_SIZE;
    buf->len = CAPACITY;
  } else {
    if (pBuf->len >= pBuf->cap) {
      if (pBuf->left == -1) {
        pBuf->cap *= 2;
        pBuf->buf = realloc(pBuf->buf, pBuf->cap + RPC_RESERVE_SIZE);
      } else if (pBuf->len + pBuf->left > pBuf->cap) {
        pBuf->cap = pBuf->len + pBuf->left;
        pBuf->buf = realloc(pBuf->buf, pBuf->len + pBuf->left + RPC_RESERVE_SIZE);
      }
    }
    buf->base = pBuf->buf + pBuf->len + RPC_RESERVE_SIZE;
    buf->len = pBuf->cap - pBuf->len;
  }
}
// check data read from socket completely or not
//
static bool isReadAll(SConnBuffer* data) {
  // TODO(yihao): handle pipeline later
  SRpcHead rpcHead;
  int32_t  headLen = sizeof(rpcHead);
  if (data->len >= headLen) {
    memcpy((char*)&rpcHead, data->buf, headLen);
    int32_t msgLen = (int32_t)htonl((uint32_t)rpcHead.msgLen);
    if (msgLen > data->len) {
      data->left = msgLen - data->len;
      return false;
    } else {
      return true;
    }
  } else {
    return false;
  }
}
static void uvDoProcess(SRecvInfo* pRecv) {
  SRpcHead* pHead = (SRpcHead*)pRecv->msg;
  SRpcInfo* pRpc = (SRpcInfo*)pRecv->shandle;
  SRpcConn* pConn = pRecv->thandle;

  tDump(pRecv->msg, pRecv->msgLen);

  terrno = 0;
  SRpcReqContext* pContest;

  // do auth and check
}
static int uvAuthData(SRpcConn* pConn, char* msg, int len) {
  SRpcHead* pHead = (SRpcHead*)msg;
  int       code = 0;

  if ((pConn->secured && pHead->spi == 0) || (pHead->spi == 0 && pConn->spi == 0)) {
    // secured link, or no authentication
    pHead->msgLen = (int32_t)htonl((uint32_t)pHead->msgLen);
    // tTrace("%s, secured link, no auth is required", pConn->info);
    return 0;
  }

  if (!rpcIsReq(pHead->msgType)) {
    // for response, if code is auth failure, it shall bypass the auth process
    code = htonl(pHead->code);
    if (code == TSDB_CODE_RPC_INVALID_TIME_STAMP || code == TSDB_CODE_RPC_AUTH_FAILURE ||
        code == TSDB_CODE_RPC_INVALID_VERSION || code == TSDB_CODE_RPC_AUTH_REQUIRED ||
        code == TSDB_CODE_MND_USER_NOT_EXIST || code == TSDB_CODE_RPC_NOT_READY) {
      pHead->msgLen = (int32_t)htonl((uint32_t)pHead->msgLen);
      // tTrace("%s, dont check authentication since code is:0x%x", pConn->info, code);
      return 0;
    }
  }

  code = 0;
  if (pHead->spi == pConn->spi) {
    // authentication
    SRpcDigest* pDigest = (SRpcDigest*)((char*)pHead + len - sizeof(SRpcDigest));

    int32_t delta;
    delta = (int32_t)htonl(pDigest->timeStamp);
    delta -= (int32_t)taosGetTimestampSec();
    if (abs(delta) > 900) {
      tWarn("%s, time diff:%d is too big, msg discarded", pConn->info, delta);
      code = TSDB_CODE_RPC_INVALID_TIME_STAMP;
    } else {
      if (rpcAuthenticateMsg(pHead, len - TSDB_AUTH_LEN, pDigest->auth, pConn->secret) < 0) {
        // tDebug("%s, authentication failed, msg discarded", pConn->info);
        code = TSDB_CODE_RPC_AUTH_FAILURE;
      } else {
        pHead->msgLen = (int32_t)htonl((uint32_t)pHead->msgLen) - sizeof(SRpcDigest);
        if (!rpcIsReq(pHead->msgType)) pConn->secured = 1;  // link is secured for client
        // tTrace("%s, message is authenticated", pConn->info);
      }
    }
  } else {
    tDebug("%s, auth spi:%d not matched with received:%d", pConn->info, pConn->spi, pHead->spi);
    code = pHead->spi ? TSDB_CODE_RPC_AUTH_FAILURE : TSDB_CODE_RPC_AUTH_REQUIRED;
  }

  return code;
}
static void uvProcessData(SRpcConn* ctx) {
  SRecvInfo    info;
  SRecvInfo*   p = &info;
  SConnBuffer* pBuf = &ctx->connBuf;
  p->msg = pBuf->buf + RPC_RESERVE_SIZE;
  p->msgLen = pBuf->len;
  p->ip = 0;
  p->port = 0;
  p->shandle = ctx->shandle;  //
  p->thandle = ctx;
  p->chandle = NULL;

  //
  SRpcHead* pHead = (SRpcHead*)p->msg;
  assert(rpcIsReq(pHead->msgType));

  SRpcInfo* pRpc = (SRpcInfo*)p->shandle;
  SRpcConn* pConn = (SRpcConn*)p->thandle;

  pConn->ahandle = (void*)pHead->ahandle;
  pHead->code = htonl(pHead->code);

  SRpcMsg rpcMsg;

  pHead = rpcDecompressRpcMsg(pHead);
  rpcMsg.contLen = rpcContLenFromMsg(pHead->msgLen);
  rpcMsg.pCont = pHead->content;
  rpcMsg.msgType = pHead->msgType;
  rpcMsg.code = pHead->code;
  rpcMsg.ahandle = pConn->ahandle;
  rpcMsg.handle = pConn;
  (*(pRpc->cfp))(pRpc->parent, &rpcMsg, NULL);
  // auth
  // validate msg type
}
void uvOnReadCb(uv_stream_t* cli, ssize_t nread, const uv_buf_t* buf) {
  // opt
  SRpcConn*    ctx = cli->data;
  SConnBuffer* pBuf = &ctx->connBuf;
  if (nread > 0) {
    pBuf->len += nread;
    if (isReadAll(pBuf)) {
      tDebug("alread read complete packet");
      uvProcessData(ctx);
    } else {
      tDebug("read half packet, continue to read");
    }
    return;
  }

  if (nread != UV_EOF) {
    tDebug("Read error %s\n", uv_err_name(nread));
  }
  uv_close((uv_handle_t*)cli, uvConnDestroy);
}
void uvAllocConnBufferCb(uv_handle_t* handle, size_t suggested_size, uv_buf_t* buf) {
  buf->base = malloc(sizeof(char));
  buf->len = 2;
}

void uvOnTimeoutCb(uv_timer_t* handle) {
  // opt
  tDebug("time out");
}

void uvOnWriteCb(uv_write_t* req, int status) {
  SRpcConn* conn = req->data;
  if (status == 0) {
    tDebug("data already was written on stream");
  } else {
    connDestroy(conn);
  }
  // opt
}

void uvWorkerAsyncCb(uv_async_t* handle) {
  SThreadObj* pObj = container_of(handle, SThreadObj, workerAsync);
  SRpcConn*   conn = NULL;

  // opt later
  pthread_mutex_lock(&pObj->connMtx);
  if (!QUEUE_IS_EMPTY(&pObj->conn)) {
    queue* head = QUEUE_HEAD(&pObj->conn);
    conn = QUEUE_DATA(head, SRpcConn, queue);
    QUEUE_REMOVE(&conn->queue);
  }
  pthread_mutex_unlock(&pObj->connMtx);
  if (conn == NULL) {
    tError("except occurred, do nothing");
    return;
  }
}

void uvOnAcceptCb(uv_stream_t* stream, int status) {
  if (status == -1) {
    return;
  }
  SServerObj* pObj = container_of(stream, SServerObj, server);

  uv_tcp_t* cli = (uv_tcp_t*)malloc(sizeof(uv_tcp_t));
  uv_tcp_init(pObj->loop, cli);

  if (uv_accept(stream, (uv_stream_t*)cli) == 0) {
    uv_write_t* wr = (uv_write_t*)malloc(sizeof(uv_write_t));

    uv_buf_t buf = uv_buf_init((char*)notify, strlen(notify));

    pObj->workerIdx = (pObj->workerIdx + 1) % pObj->numOfThread;
    tDebug("new conntion accepted by main server, dispatch to %dth worker-thread", pObj->workerIdx);
    uv_write2(wr, (uv_stream_t*)&(pObj->pipe[pObj->workerIdx][0]), &buf, 1, (uv_stream_t*)cli, uvOnWriteCb);
  } else {
    uv_close((uv_handle_t*)cli, NULL);
  }
}
void uvOnConnectionCb(uv_stream_t* q, ssize_t nread, const uv_buf_t* buf) {
  tDebug("connection coming");
  if (nread < 0) {
    if (nread != UV_EOF) {
      tError("read error %s", uv_err_name(nread));
    }
    // TODO(log other failure reason)
    uv_close((uv_handle_t*)q, NULL);
    return;
  }
  // free memory allocated by
  assert(nread == strlen(notify));
  assert(buf->base[0] == notify[0]);
  free(buf->base);

  SThreadObj* pObj = q->data;

  uv_pipe_t* pipe = (uv_pipe_t*)q;
  if (!uv_pipe_pending_count(pipe)) {
    tError("No pending count");
    return;
  }

  uv_handle_type pending = uv_pipe_pending_type(pipe);
  assert(pending == UV_TCP);

  SRpcConn* pConn = connCreate();
  pConn->shandle = pObj->shandle;
  /* init conn timer*/
  pConn->pTimer = malloc(sizeof(uv_timer_t));
  uv_timer_init(pObj->loop, pConn->pTimer);

  pConn->pWorkerAsync = pObj->workerAsync;  // thread safty

  // init client handle
  pConn->pTcp = (uv_tcp_t*)malloc(sizeof(uv_tcp_t));
  uv_tcp_init(pObj->loop, pConn->pTcp);
  pConn->pTcp->data = pConn;

  // init write request, just
  pConn->pWriter = calloc(1, sizeof(uv_write_t));
  pConn->pWriter->data = pConn;

  if (uv_accept(q, (uv_stream_t*)(pConn->pTcp)) == 0) {
    uv_os_fd_t fd;
    uv_fileno((const uv_handle_t*)pConn->pTcp, &fd);
    tDebug("new connection created: %d", fd);
    uv_read_start((uv_stream_t*)(pConn->pTcp), uvAllocReadBufferCb, uvOnReadCb);
  } else {
    connDestroy(pConn);
  }
}

void* acceptThread(void* arg) {
  // opt
  SServerObj* srv = (SServerObj*)arg;
  uv_tcp_init(srv->loop, &srv->server);

  struct sockaddr_in bind_addr;

  uv_ip4_addr("0.0.0.0", srv->port, &bind_addr);
  uv_tcp_bind(&srv->server, (const struct sockaddr*)&bind_addr, 0);
  int err = 0;
  if ((err = uv_listen((uv_stream_t*)&srv->server, 128, uvOnAcceptCb)) != 0) {
    tError("Listen error %s\n", uv_err_name(err));
    return NULL;
  }
  uv_run(srv->loop, UV_RUN_DEFAULT);
}
void* workerThread(void* arg) {
  SThreadObj* pObj = (SThreadObj*)arg;

  pObj->loop = (uv_loop_t*)malloc(sizeof(uv_loop_t));
  uv_loop_init(pObj->loop);

  uv_pipe_init(pObj->loop, pObj->pipe, 1);
  uv_pipe_open(pObj->pipe, pObj->fd);

  pObj->pipe->data = pObj;

  QUEUE_INIT(&pObj->conn);

  pObj->workerAsync = malloc(sizeof(uv_async_t));
  uv_async_init(pObj->loop, pObj->workerAsync, uvWorkerAsyncCb);

  uv_read_start((uv_stream_t*)pObj->pipe, uvAllocConnBufferCb, uvOnConnectionCb);
  uv_run(pObj->loop, UV_RUN_DEFAULT);
}
static SRpcConn* connCreate() {
  SRpcConn* pConn = (SRpcConn*)calloc(1, sizeof(SRpcConn));
  return pConn;
}
static void connDestroy(SRpcConn* conn) {
  if (conn == NULL) {
    return;
  }
  uv_timer_stop(conn->pTimer);
  free(conn->pTimer);
  uv_close((uv_handle_t*)conn->pTcp, NULL);
  free(conn->pTcp);
  free(conn->pWriter);
  free(conn);
  // handle
}
static void uvConnDestroy(uv_handle_t* handle) {
  SRpcConn* conn = handle->data;
  connDestroy(conn);
}
void* rpcOpen(const SRpcInit* pInit) {
  SRpcInfo* pRpc = calloc(1, sizeof(SRpcInfo));
  if (pRpc == NULL) {
    return NULL;
  }
  if (pInit->label) {
    tstrncpy(pRpc->label, pInit->label, strlen(pInit->label));
  }
  pRpc->numOfThreads = pInit->numOfThreads > TSDB_MAX_RPC_THREADS ? TSDB_MAX_RPC_THREADS : pInit->numOfThreads;
  pRpc->tcphandle = taosInitServer(0, pInit->localPort, pRpc->label, pRpc->numOfThreads, NULL, pRpc);
  return pRpc;
}
void  rpcClose(void* arg) { return; }
void* rpcMallocCont(int contLen) { return NULL; }
void  rpcFreeCont(void* cont) { return; }
void* rpcReallocCont(void* ptr, int contLen) { return NULL; }

void rpcSendRequest(void* thandle, const SEpSet* pEpSet, SRpcMsg* pMsg, int64_t* rid) { return; }

void rpcSendResponse(const SRpcMsg* pMsg) {}

void rpcSendRedirectRsp(void* pConn, const SEpSet* pEpSet) {}
int  rpcGetConnInfo(void* thandle, SRpcConnInfo* pInfo) { return -1; }
void rpcSendRecv(void* shandle, SEpSet* pEpSet, SRpcMsg* pReq, SRpcMsg* pRsp) { return; }
int  rpcReportProgress(void* pConn, char* pCont, int contLen) { return -1; }
void rpcCancelRequest(int64_t rid) { return; }

static int rpcAuthenticateMsg(void* pMsg, int msgLen, void* pAuth, void* pKey) {
  T_MD5_CTX context;
  int       ret = -1;

  tMD5Init(&context);
  tMD5Update(&context, (uint8_t*)pKey, TSDB_PASSWORD_LEN);
  tMD5Update(&context, (uint8_t*)pMsg, msgLen);
  tMD5Update(&context, (uint8_t*)pKey, TSDB_PASSWORD_LEN);
  tMD5Final(&context);

  if (memcmp(context.digest, pAuth, sizeof(context.digest)) == 0) ret = 0;

  return ret;
}
static void rpcBuildAuthHead(void* pMsg, int msgLen, void* pAuth, void* pKey) {
  T_MD5_CTX context;

  tMD5Init(&context);
  tMD5Update(&context, (uint8_t*)pKey, TSDB_PASSWORD_LEN);
  tMD5Update(&context, (uint8_t*)pMsg, msgLen);
  tMD5Update(&context, (uint8_t*)pKey, TSDB_PASSWORD_LEN);
  tMD5Final(&context);

  memcpy(pAuth, context.digest, sizeof(context.digest));
}

static int rpcAddAuthPart(SRpcConn* pConn, char* msg, int msgLen) {
  SRpcHead* pHead = (SRpcHead*)msg;

  if (pConn->spi && pConn->secured == 0) {
    // add auth part
    pHead->spi = pConn->spi;
    SRpcDigest* pDigest = (SRpcDigest*)(msg + msgLen);
    pDigest->timeStamp = htonl(taosGetTimestampSec());
    msgLen += sizeof(SRpcDigest);
    pHead->msgLen = (int32_t)htonl((uint32_t)msgLen);
    rpcBuildAuthHead(pHead, msgLen - TSDB_AUTH_LEN, pDigest->auth, pConn->secret);
  } else {
    pHead->spi = 0;
    pHead->msgLen = (int32_t)htonl((uint32_t)msgLen);
  }

  return msgLen;
}

static int32_t rpcCompressRpcMsg(char* pCont, int32_t contLen) {
  SRpcHead* pHead = rpcHeadFromCont(pCont);
  int32_t   finalLen = 0;
  int       overhead = sizeof(SRpcComp);

  if (!NEEDTO_COMPRESSS_MSG(contLen)) {
    return contLen;
  }

  char* buf = malloc(contLen + overhead + 8);  // 8 extra bytes
  if (buf == NULL) {
    tError("failed to allocate memory for rpc msg compression, contLen:%d", contLen);
    return contLen;
  }

  int32_t compLen = LZ4_compress_default(pCont, buf, contLen, contLen + overhead);
  tDebug("compress rpc msg, before:%d, after:%d, overhead:%d", contLen, compLen, overhead);

  /*
   * only the compressed size is less than the value of contLen - overhead, the compression is applied
   * The first four bytes is set to 0, the second four bytes are utilized to keep the original length of message
   */
  if (compLen > 0 && compLen < contLen - overhead) {
    SRpcComp* pComp = (SRpcComp*)pCont;
    pComp->reserved = 0;
    pComp->contLen = htonl(contLen);
    memcpy(pCont + overhead, buf, compLen);

    pHead->comp = 1;
    tDebug("compress rpc msg, before:%d, after:%d", contLen, compLen);
    finalLen = compLen + overhead;
  } else {
    finalLen = contLen;
  }

  free(buf);
  return finalLen;
}

static SRpcHead* rpcDecompressRpcMsg(SRpcHead* pHead) {
  int       overhead = sizeof(SRpcComp);
  SRpcHead* pNewHead = NULL;
  uint8_t*  pCont = pHead->content;
  SRpcComp* pComp = (SRpcComp*)pHead->content;

  if (pHead->comp) {
    // decompress the content
    assert(pComp->reserved == 0);
    int contLen = htonl(pComp->contLen);

    // prepare the temporary buffer to decompress message
    char* temp = (char*)malloc(contLen + RPC_MSG_OVERHEAD);
    pNewHead = (SRpcHead*)(temp + sizeof(SRpcReqContext));  // reserve SRpcReqContext

    if (pNewHead) {
      int compLen = rpcContLenFromMsg(pHead->msgLen) - overhead;
      int origLen = LZ4_decompress_safe((char*)(pCont + overhead), (char*)pNewHead->content, compLen, contLen);
      assert(origLen == contLen);

      memcpy(pNewHead, pHead, sizeof(SRpcHead));
      pNewHead->msgLen = rpcMsgLenFromCont(origLen);
      /// rpcFreeMsg(pHead);  // free the compressed message buffer
      pHead = pNewHead;
      tTrace("decomp malloc mem:%p", temp);
    } else {
      tError("failed to allocate memory to decompress msg, contLen:%d", contLen);
    }
  }

  return pHead;
}
int32_t rpcInit(void) {
  // impl later
  return -1;
}

void rpcCleanup(void) {
  // impl later
  return;
}
#endif