ErrorCorrection.java 6.3 KB
Newer Older
T
Takeya Yuki 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/*
 * Copyright 2012 ZXing authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.zxing.pdf417.decoder.ec;

import com.google.zxing.ChecksumException;

/**
 * <p>PDF417 error correction implementation.</p>
 *
 * <p>This <a href="http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#Example">example</a>
 * is quite useful in understanding the algorithm.</p>
 *
 * @author Sean Owen
 * @see com.google.zxing.common.reedsolomon.ReedSolomonDecoder
 */
public final class ErrorCorrection {

  private final ModulusGF field;

  public ErrorCorrection() {
    this.field = ModulusGF.PDF417_GF;
  }

  /**
   * @param received received codewords
   * @param numECCodewords number of those codewords used for EC
   * @param erasures location of erasures
   * @return number of errors
   * @throws ChecksumException if errors cannot be corrected, maybe because of too many errors
   */
  public int decode(int[] received,
                    int numECCodewords,
                    int[] erasures) throws ChecksumException {

    ModulusPoly poly = new ModulusPoly(field, received);
    int[] S = new int[numECCodewords];
    boolean error = false;
    for (int i = numECCodewords; i > 0; i--) {
      int eval = poly.evaluateAt(field.exp(i));
      S[numECCodewords - i] = eval;
      if (eval != 0) {
        error = true;
      }
    }

    if (!error) {
      return 0;
    }

    ModulusPoly knownErrors = field.getOne();
    if (erasures != null) {
      for (int erasure : erasures) {
        int b = field.exp(received.length - 1 - erasure);
        // Add (1 - bx) term:
        ModulusPoly term = new ModulusPoly(field, new int[]{field.subtract(0, b), 1});
        knownErrors = knownErrors.multiply(term);
      }
    }

    ModulusPoly syndrome = new ModulusPoly(field, S);
    //syndrome = syndrome.multiply(knownErrors);

    ModulusPoly[] sigmaOmega =
        runEuclideanAlgorithm(field.buildMonomial(numECCodewords, 1), syndrome, numECCodewords);
    ModulusPoly sigma = sigmaOmega[0];
    ModulusPoly omega = sigmaOmega[1];

    //sigma = sigma.multiply(knownErrors);

    int[] errorLocations = findErrorLocations(sigma);
    int[] errorMagnitudes = findErrorMagnitudes(omega, sigma, errorLocations);

    for (int i = 0; i < errorLocations.length; i++) {
      int position = received.length - 1 - field.log(errorLocations[i]);
      if (position < 0) {
        throw ChecksumException.getChecksumInstance();
      }
      received[position] = field.subtract(received[position], errorMagnitudes[i]);
    }
    return errorLocations.length;
  }

  private ModulusPoly[] runEuclideanAlgorithm(ModulusPoly a, ModulusPoly b, int R)
      throws ChecksumException {
    // Assume a's degree is >= b's
    if (a.getDegree() < b.getDegree()) {
      ModulusPoly temp = a;
      a = b;
      b = temp;
    }

    ModulusPoly rLast = a;
    ModulusPoly r = b;
    ModulusPoly tLast = field.getZero();
    ModulusPoly t = field.getOne();

    // Run Euclidean algorithm until r's degree is less than R/2
    while (r.getDegree() >= R / 2) {
      ModulusPoly rLastLast = rLast;
      ModulusPoly tLastLast = tLast;
      rLast = r;
      tLast = t;

      // Divide rLastLast by rLast, with quotient in q and remainder in r
      if (rLast.isZero()) {
        // Oops, Euclidean algorithm already terminated?
        throw ChecksumException.getChecksumInstance();
      }
      r = rLastLast;
      ModulusPoly q = field.getZero();
      int denominatorLeadingTerm = rLast.getCoefficient(rLast.getDegree());
      int dltInverse = field.inverse(denominatorLeadingTerm);
      while (r.getDegree() >= rLast.getDegree() && !r.isZero()) {
        int degreeDiff = r.getDegree() - rLast.getDegree();
        int scale = field.multiply(r.getCoefficient(r.getDegree()), dltInverse);
        q = q.add(field.buildMonomial(degreeDiff, scale));
        r = r.subtract(rLast.multiplyByMonomial(degreeDiff, scale));
      }

      t = q.multiply(tLast).subtract(tLastLast).negative();
    }

    int sigmaTildeAtZero = t.getCoefficient(0);
    if (sigmaTildeAtZero == 0) {
      throw ChecksumException.getChecksumInstance();
    }

    int inverse = field.inverse(sigmaTildeAtZero);
    ModulusPoly sigma = t.multiply(inverse);
    ModulusPoly omega = r.multiply(inverse);
    return new ModulusPoly[]{sigma, omega};
  }

  private int[] findErrorLocations(ModulusPoly errorLocator) throws ChecksumException {
    // This is a direct application of Chien's search
    int numErrors = errorLocator.getDegree();
    int[] result = new int[numErrors];
    int e = 0;
    for (int i = 1; i < field.getSize() && e < numErrors; i++) {
      if (errorLocator.evaluateAt(i) == 0) {
        result[e] = field.inverse(i);
        e++;
      }
    }
    if (e != numErrors) {
      throw ChecksumException.getChecksumInstance();
    }
    return result;
  }

  private int[] findErrorMagnitudes(ModulusPoly errorEvaluator,
                                    ModulusPoly errorLocator,
                                    int[] errorLocations) {
    int errorLocatorDegree = errorLocator.getDegree();
    int[] formalDerivativeCoefficients = new int[errorLocatorDegree];
    for (int i = 1; i <= errorLocatorDegree; i++) {
      formalDerivativeCoefficients[errorLocatorDegree - i] =
          field.multiply(i, errorLocator.getCoefficient(i));
    }
    ModulusPoly formalDerivative = new ModulusPoly(field, formalDerivativeCoefficients);

    // This is directly applying Forney's Formula
    int s = errorLocations.length;
    int[] result = new int[s];
    for (int i = 0; i < s; i++) {
      int xiInverse = field.inverse(errorLocations[i]);
      int numerator = field.subtract(0, errorEvaluator.evaluateAt(xiInverse));
      int denominator = field.inverse(formalDerivative.evaluateAt(xiInverse));
      result[i] = field.multiply(numerator, denominator);
    }
    return result;
  }
}