notest_dist_image_classification.py 5.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17

from __future__ import print_function

import paddle.v2 as paddle
18
import paddle.fluid as fluid
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
import os
import sys

TRAINERS = 5
BATCH_SIZE = 128
PASS_NUM = 100


def resnet_cifar10(input, depth=32):
    def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'):
        tmp = fluid.layers.conv2d(
            input=input,
            filter_size=filter_size,
            num_filters=ch_out,
            stride=stride,
            padding=padding,
            act=None,
            bias_attr=False)
        return fluid.layers.batch_norm(input=tmp, act=act)

    def shortcut(input, ch_in, ch_out, stride):
        if ch_in != ch_out:
            return conv_bn_layer(input, ch_out, 1, stride, 0, None)
        else:
            return input

    def basicblock(input, ch_in, ch_out, stride):
        tmp = conv_bn_layer(input, ch_out, 3, stride, 1)
        tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None)
        short = shortcut(input, ch_in, ch_out, stride)
        return fluid.layers.elementwise_add(x=tmp, y=short, act='relu')

    def layer_warp(block_func, input, ch_in, ch_out, count, stride):
        tmp = block_func(input, ch_in, ch_out, stride)
        for i in range(1, count):
            tmp = block_func(tmp, ch_out, ch_out, 1)
        return tmp

    assert (depth - 2) % 6 == 0
    n = (depth - 2) / 6
    conv1 = conv_bn_layer(
        input=input, ch_out=16, filter_size=3, stride=1, padding=1)
    res1 = layer_warp(basicblock, conv1, 16, 16, n, 1)
    res2 = layer_warp(basicblock, res1, 16, 32, n, 2)
    res3 = layer_warp(basicblock, res2, 32, 64, n, 2)
    pool = fluid.layers.pool2d(
        input=res3, pool_size=8, pool_type='avg', pool_stride=1)
    return pool


def vgg16_bn_drop(input):
    def conv_block(input, num_filter, groups, dropouts):
        return fluid.nets.img_conv_group(
            input=input,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * groups,
            conv_filter_size=3,
            conv_act='relu',
            conv_with_batchnorm=True,
            conv_batchnorm_drop_rate=dropouts,
            pool_type='max')

    conv1 = conv_block(input, 64, 2, [0.3, 0])
    conv2 = conv_block(conv1, 128, 2, [0.4, 0])
    conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
    conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
    conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])

    drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
    fc1 = fluid.layers.fc(input=drop, size=512, act=None)
    bn = fluid.layers.batch_norm(input=fc1, act='relu')
    drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
    fc2 = fluid.layers.fc(input=drop2, size=512, act=None)
    return fc2


classdim = 10
data_shape = [3, 32, 32]

images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')

net_type = "vgg"
if len(sys.argv) >= 2:
    net_type = sys.argv[1]

if net_type == "vgg":
107
    print("training vgg net")
108 109
    net = vgg16_bn_drop(images)
elif net_type == "resnet":
110
    print("training resnet")
111 112 113 114 115 116
    net = resnet_cifar10(images, 32)
else:
    raise ValueError("%s network is not supported" % net_type)

predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
117
avg_cost = fluid.layers.mean(cost)
118 119 120 121 122 123 124 125 126 127 128 129

optimizer = fluid.optimizer.Adam(learning_rate=0.001)
optimize_ops, params_grads = optimizer.minimize(avg_cost)

accuracy = fluid.evaluator.Accuracy(input=predict, label=label)

train_reader = paddle.batch(
    paddle.reader.shuffle(
        paddle.dataset.cifar.train10(), buf_size=128 * 10),
    batch_size=BATCH_SIZE)

place = fluid.CPUPlace()
130
feeder = fluid.DataFeeder(place=place, feed_list=[images, label])
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
exe = fluid.Executor(place)

t = fluid.DistributeTranspiler()
# all parameter server endpoints list for spliting parameters
pserver_endpoints = os.getenv("PSERVERS")
# server endpoint for current node
current_endpoint = os.getenv("SERVER_ENDPOINT")
# run as trainer or parameter server
training_role = os.getenv("TRAINING_ROLE",
                          "TRAINER")  # get the training role: trainer/pserver
t.transpile(
    optimize_ops, params_grads, pservers=pserver_endpoints, trainers=TRAINERS)

if training_role == "PSERVER":
    if not current_endpoint:
        print("need env SERVER_ENDPOINT")
        exit(1)
    pserver_prog = t.get_pserver_program(current_endpoint)
    pserver_startup = t.get_startup_program(current_endpoint, pserver_prog)
    exe.run(pserver_startup)
    exe.run(pserver_prog)
elif training_role == "TRAINER":
    trainer_prog = t.get_trainer_program()
    exe.run(fluid.default_startup_program())
155

156 157 158 159 160 161 162
    for pass_id in range(PASS_NUM):
        accuracy.reset(exe)
        for data in train_reader():
            loss, acc = exe.run(trainer_prog,
                                feed=feeder.feed(data),
                                fetch_list=[avg_cost] + accuracy.metrics)
            pass_acc = accuracy.eval(exe)
163 164 165 166
            print("pass_id:" + str(pass_id) + "loss:" + str(loss) + " pass_acc:"
                  + str(pass_acc))
            # this model is slow, so if we can train two mini batches,
            # we think it works properly.
167 168 169 170
    print("trainer run end")
else:
    print("environment var TRAINER_ROLE should be TRAINER os PSERVER")
exit(1)