README.md 9.6 KB
Newer Older
1
# MindSpore Operator
L
leonwanghui 已提交
2

3
#### Experimental notice: This project is still experimental and only serves as a proof of concept for running MindSpore on Kubernetes. The current version of ms-operator is based on an early version of [PyTorch Operator](https://github.com/kubeflow/pytorch-operator) and [TF Operator](https://github.com/kubeflow/tf-operator). Right now MindSpore supports running LeNet with MNIST dataset on a single node, while distributed training examples are conducted using [Volcano](https://github.com/volcano-sh/volcano).
L
leonwanghui 已提交
4

5 6
- [MindSpore Operator](#mindspore-operator)
  - [Introduction of MindSpore and ms-operator](#introduction-of-mindspore-and-ms-operator)
L
leonwanghui 已提交
7
    - [MindSpore docker image](#mindspore-docker-image)
8
    - [Design](#Design)
L
leonwanghui 已提交
9
    - [Overview of MindSpore in Kubeflow ecosystem](#overview-of-mindspore-in-kubeflow-ecosystem)
10
  - [MindSpore CPU example](#mindspore-cpu-example)
11
    - [Prerequisites](#prerequisites)
12 13 14 15
    - [Steps](#steps)
  - [Distributed GPU example using Volcano](#distributed-gpu-example-using-volcano)
    - [Volcano prerequistites](#volcano-prerequisites)
    - [MindSpore GPU example](#mindspore-gpu-example)
16
  - [Future Work](#future-work)
L
leonwanghui 已提交
17 18 19
  - [Community](#community)
  - [Contributing](#contributing)
  - [License](#license)
20

L
leonwanghui 已提交
21 22 23 24 25 26 27 28 29 30
## Introduction of MindSpore and ms-operator

MindSpore is a new open source deep learning training/inference framework that
could be used for mobile, edge and cloud scenarios. MindSpore is designed to
provide development experience with friendly design and efficient execution for
the data scientists and algorithmic engineers, native support for Ascend AI
processor, and software hardware co-optimization.

This project contains the specification and implementation of MSJob custom
resource definition. We will demonstrate running a walkthrough of creating
31 32 33
ms-operator, as well as MNIST training job on Kubernetes with MindSpore-cpu image 
(x86 CPU build version) on a single node. More completed features will be 
developed in the coming days.
L
leonwanghui 已提交
34 35 36 37 38

This project defines the following:
- The ms-operator
- A way to deploy the operator
- MindSpore LeNet MNIST training example
39 40
- MindSpore distributed GPU example using Volcano
- etc.
L
leonwanghui 已提交
41

L
leonwanghui 已提交
42
### MindSpore docker image
L
leonwanghui 已提交
43

L
leonwanghui 已提交
44 45
Please refer to MindSpore [docker image introduction](https://gitee.com/mindspore/mindspore/blob/master/README.md#docker-image)
for details.
L
leonwanghui 已提交
46 47 48 49 50 51 52 53 54 55 56

### Design

The yaml file we used to create our MNIST training job is defined as follows:
```yaml
apiVersion: v1
kind: Pod
metadata:
  name: msjob-mnist
spec:
  containers:
57
  - image: mindspore/mindspore-cpu:0.1.0-alpha
L
leonwanghui 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    imagePullPolicy: IfNotPresent
    name: msjob-mnist
    command: ["/bin/bash", "-c", "python /tmp/test/MNIST/lenet.py"]
    volumeMounts:
      - name: training-result
        mountPath: /tmp/result
      - name: ms-mnist
        mountPath: /tmp/test
  restartPolicy: OnFailure
  volumes:
    - name: training-result
      emptyDir: {}
    - name: ms-mnist
      hostPath:
        path: /root/gopath/src/gitee.com/mindspore/ms-operator/examples/
```

L
leonwanghui 已提交
75
### Overview of MindSpore in Kubeflow ecosystem
L
leonwanghui 已提交
76

77
<img src="./docs/pics/ms-operator-in-kubeflow.png" alt="ms-operator in Kubeflow" width=600/>
L
leonwanghui 已提交
78 79 80 81

The high-level view of how MindSpore fits in the ecosystem of Kubeflow and its
components.

82
## MindSpore CPU example
L
leonwanghui 已提交
83

84
### Prerequisites
L
leonwanghui 已提交
85

86
- [Ubuntu](http://releases.ubuntu.com/16.04/): `16.04.6 LTS`
87 88 89 90
- [Helm and Tiller](https://github.com/helm/helm/releases/tag/v2.9.0): `v2.9.0`
- [go](https://github.com/golang/go/releases/tag/go1.12.1): `go1.12.1`
- [docker](https://github.com/docker/docker-ce/releases/tag/v18.06.1-ce): `v18.06.1-ce`
- [Kubernetes](https://github.com/kubernetes/kubernetes/releases/tag/v1.14.0): `v1.14.0`
L
leonwanghui 已提交
91

92
### Steps
L
leonwanghui 已提交
93

94
First, pull the ms-operator image from [Docker Hub](https://hub.docker.com/r/mindspore):
L
leonwanghui 已提交
95
```
96
docker pull mindspore/ms-operator:latest
L
leonwanghui 已提交
97 98
```

L
leonwanghui 已提交
99
Or you can build the ms-operator image on local machine:
100
```
101
go build -ldflags '-w -s' -o ms-operator cmd/ms-operator.v1/main.go
Y
YedongLiu 已提交
102
docker build -t mindspore/ms-operator .
103
```
L
leonwanghui 已提交
104

105
After the installation, check the image status using `docker images` command:
L
leonwanghui 已提交
106
```
107
REPOSITORY                        TAG                   IMAGE ID            CREATED             SIZE
108
mindspore/ms-operator             latest                4a17028de3d3        5 minutes ago       97.8MB
L
leonwanghui 已提交
109 110 111 112
```

The MindSpore image we download from docker hub is `0.1.0-alpha` version:
```
113
REPOSITORY                        TAG                   IMAGE ID            CREATED             SIZE
114
mindspore/mindspore-cpu           0.1.0-alpha           ef443be923bc        3 hours ago         1.05GB
L
leonwanghui 已提交
115 116 117 118 119 120 121 122
```

MindSpore supports heterogeneous computing including multiple hardware and
backends (`CPU`, `GPU`, `Ascend`), the device_target of MindSpore is
`Ascend` by default but we will use the CPU version here.

Install the msjob crd, ms-operator deployment and pod:
```
123
RBAC=true # set false if you do not have an RBAC cluster
L
leonwanghui 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
helm install ms-operator-chart/ -n ms-operator --set rbac.install=${RBAC} --wait --replace
```

Using `helm status ms-operator` command to check generated resources:
```
LAST DEPLOYED: Tue Mar 24 11:36:51 2020
NAMESPACE: default
STATUS: DEPLOYED

RESOURCES:
==> v1beta1/CustomResourceDefinition
NAME                 AGE
msjobs.kubeflow.org  1d

==> v1beta1/Deployment
NAME         DESIRED  CURRENT  UP-TO-DATE  AVAILABLE  AGE
ms-operator  1        1        1           1          1d

==> v1/Pod(related)
NAME                          READY  STATUS   RESTARTS  AGE
ms-operator-7b5b457d69-dpd2b  1/1    Running  0         1d
```

We will do a MNIST training to check the eligibility of MindSpore running on
Kubernetes:
```
cd examples/ && kubectl apply -f ms-mnist.yaml
```

L
leonwanghui 已提交
153
The job is simply importing MindSpore packages, the dataset is already included in the `MNIST_Data` folder, executing only one epoch and printing result which should only consume little time. After the job completed, you should be able to check the job status and see the result logs. You can check the source training code in `examples/` folder.
L
leonwanghui 已提交
154 155 156
```
kubectl get pod msjob-mnist && kubectl logs msjob-mnist
```
157 158
The expected output is:

L
leonwanghui 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
```
NAME          READY   STATUS      RESTARTS   AGE
msjob-mnist   0/1     Completed   0          3h53m
============== Starting Training ==============
epoch: 1 step: 1, loss is 2.3005836
epoch: 1 step: 2, loss is 2.2978227
epoch: 1 step: 3, loss is 2.3004227
epoch: 1 step: 4, loss is 2.3054247
epoch: 1 step: 5, loss is 2.3068798
epoch: 1 step: 6, loss is 2.298408
epoch: 1 step: 7, loss is 2.3055573
epoch: 1 step: 8, loss is 2.2998955
epoch: 1 step: 9, loss is 2.3028255
epoch: 1 step: 10, loss is 2.2972553
```

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

## Distributed GPU example using Volcano

The source code of the example can be found [here](https://github.com/volcano-sh/volcano/tree/master/example/MindSpore-example).

### Volcano Prerequisites

- Kubernetes: `v1.16.6`
- NVIDIA Docker: `2.3.0`
- NVIDIA/k8s-device-plugin: `1.0.0-beta6`
- NVIDIA drivers: `418.39`
- CUDA: `10.1`

Install Volcano: `kubectl apply -f https://raw.githubusercontent.com/volcano-sh/volcano/master/installer/volcano-development.yaml`

### MindSpore GPU example

Using a modified image which the openssh-server is installed from the official MindSpore GPU image. To check the eligibility of MindSpore GPU's ability to communicate with other processes, we leverage the mpimaster and mpiworker task spec of Volcano. In this example, we launch one mpimaster and two mpiworkers, the python script is taken from MindSpore Gitee README, which is also modified to be able to run parallelly.

cd to `example/MindSpore-example/mindspore_gpu` folder, then:  
pull image: `docker pull lyd911/mindspore-gpu-example:0.2.0`  
to run: `kubectl apply -f mindspore-gpu.yaml`  
to check result: `kubectl logs mindspore-gpu-mpimster-0`  

The expected output should be (2*3) of multi-dimensional array.
L
leonwanghui 已提交
200

201
## Future Work
L
leonwanghui 已提交
202 203 204 205 206 207 208 209 210 211 212

[Kubeflow](https://github.com/kubeflow/kubeflow) just announced its first major
1.0 release recently with the graduation of a core set of stable applications
including:
- [Kubeflow's UI](https://www.kubeflow.org/docs/components/central-dash/overview/)
- [Jupyter notebook controller](https://github.com/kubeflow/kubeflow/tree/master/components/notebook-controller) and [web app](https://www.kubeflow.org/docs/notebooks/why-use-jupyter-notebook/)
- [Tensorflow Operator](https://www.kubeflow.org/docs/components/training/tftraining/)(TFJob), and [PyTorch Operator](https://www.kubeflow.org/docs/components/training/pytorch/) for distributed training
- [kfctl](https://www.kubeflow.org/docs/other-guides/kustomize/) for deployment and upgrade
- etc.

The MindSpore community is driving to collaborate with the Kubeflow community
L
leonwanghui 已提交
213
as well as making the ms-operator more complex, well-organized and its
L
leonwanghui 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226
dependencies up-to-date. All these components make it easy for machine learning
engineers and data scientists to leverage cloud assets (public or on-premise)
for machine learning workloads.

MindSpore is also looking forward to enable users to use Jupyter to develop
models. Users in the future can use Kubeflow tools like fairing (Kubeflow’s
python SDK) to build containers and create Kubernetes resources to train their
MindSpore models.

Once training completed, users can use [KFServing](https://github.com/kubeflow/kfserving)
to create and deploy a server for inference thus completing the life cycle of
machine learning.

L
leonwanghui 已提交
227 228 229 230 231 232 233 234 235 236 237
## Community

- [MindSpore Slack](https://join.slack.com/t/mindspore/shared_invite/enQtOTcwMTIxMDI3NjM0LTNkMWM2MzI5NjIyZWU5ZWQ5M2EwMTQ5MWNiYzMxOGM4OWFhZjI4M2E5OGI2YTg3ODU1ODE2Njg1MThiNWI3YmQ) - Ask questions and find answers.

## Contributing

Welcome contributions. See our [Contributor Wiki](https://gitee.com/mindspore/mindspore/blob/master/CONTRIBUTING.md) for more details.

## License

[Apache License 2.0](LICENSE)