提交 f83fcfbf 编写于 作者: L LDOUBLEV

fix doc

上级 0d634865
...@@ -9,42 +9,48 @@ ...@@ -9,42 +9,48 @@
```shell ```shell
# 运行格式:bash test_tipc/prepare.sh train_benchmark.txt mode # 运行格式:bash test_tipc/prepare.sh train_benchmark.txt mode
bash test_tipc/prepare.sh test_tipc/configs/det_mv3_db_v2.0/train_benchmark.txt benchmark_train bash test_tipc/prepare.sh test_tipc/configs/det_mv3_db_v2_0/train_benchmark.txt benchmark_train
``` ```
## 1.2 功能测试 ## 1.2 功能测试
执行`test_tipc/benchmark_train.sh`,完成模型训练和日志解析 执行`test_tipc/benchmark_train.sh`,完成模型训练和日志解析
```shell ```shell
# 运行格式:bash test_tipc/benchmark_train.sh train_benchmark.txt mode params # 运行格式:bash test_tipc/benchmark_train.sh train_benchmark.txt mode
bash test_tipc/benchmark_train.sh test_tipc/configs/det_mv3_db_v2.0/train_benchmark.txt benchmark_train dynamic_bs8_null_SingleP_DP_N1C1 bash test_tipc/benchmark_train.sh test_tipc/configs/det_mv3_db_v2_0/train_benchmark.txt benchmark_train
# 单机多卡训练,MultiP 表示多进程;单卡训练用SingleP # 单机多卡训练,MultiP 表示多进程;单卡训练用SingleP
# 运行格式:bash test_tipc/benchmark_train.sh train_benchmark.txt mode params # 运行格式:bash test_tipc/benchmark_train.sh train_benchmark.txt mode
bash test_tipc/benchmark_train.sh test_tipc/configs/det_mv3_db_v2.0/train_benchmark.txt benchmark_train dynamic_bs8_null_MultiP_DP_N1C4 bash test_tipc/benchmark_train.sh test_tipc/configs/det_mv3_db_v2_0/train_benchmark.txt benchmark_train
``` ```
params为test_tipc/benchmark_train.sh传入的参数,包含:模型类型、batchsize、fp精度、进程类型、运行模式以及分布式等信息。 `test_tipc/benchmark_train.sh`支持根据传入的第三个参数实现只运行某一个训练配置,如下:
```shell
# 运行格式:bash test_tipc/benchmark_train.sh train_benchmark.txt mode
bash test_tipc/benchmark_train.sh test_tipc/configs/det_mv3_db_v2_0/train_benchmark.txt benchmark_train dynamic_bs8_null_SingleP_DP_N1C1
```
dynamic_bs8_null_SingleP_DP_N1C1为test_tipc/benchmark_train.sh传入的参数,格式如下:
`${modeltype}_${batch_size}_${fp_item}_${run_process_type}_${run_mode}_${device_num}` `${modeltype}_${batch_size}_${fp_item}_${run_process_type}_${run_mode}_${device_num}`
包含的信息有:模型类型、batchsize大小、训练精度如fp32,fp16等、分布式训练进程类型、分布式运行模式以及分布式训练使用的机器信息如单机单卡(N1C1)。
## 2. 日志输出 ## 2. 日志输出
运行后将输出模型的训练日志和日志解析日志,使用 `test_tipc/configs/det_mv3_db_v2.0/train_benchmark.txt` 参数文件的训练日志解析结果是: 运行后将输出模型的训练日志和日志解析日志,使用 `test_tipc/configs/det_mv3_db_v2_0/train_benchmark.txt` 参数文件的训练日志解析结果是:
``` ```
{"model_branch": "dygaph", "model_commit": "7c39a1996b19087737c05d883fd346d2f39dbcc0", "model_name": "det_mv3_db_v2.0_bs8_fp32_SingleP_DP", "batch_size": 8, "fp_item": "fp32", "run_process_type": "SingleP", "run_mode": "DP", "convergence_value": "5.413110", "convergence_key": "loss:", "ips": 19.333, "speed_unit": "images/s", "device_num": "N1C1", "model_run_time": "0", "frame_commit": "8cc09552473b842c651ead3b9848d41827a3dbab", "frame_version": "0.0.0"} {"model_branch": "dygaph", "model_commit": "7c39a1996b19087737c05d883fd346d2f39dbcc0", "model_name": "det_mv3_db_v2_0_bs8_fp32_SingleP_DP", "batch_size": 8, "fp_item": "fp32", "run_process_type": "SingleP", "run_mode": "DP", "convergence_value": "5.413110", "convergence_key": "loss:", "ips": 19.333, "speed_unit": "images/s", "device_num": "N1C1", "model_run_time": "0", "frame_commit": "8cc09552473b842c651ead3b9848d41827a3dbab", "frame_version": "0.0.0"}
``` ```
训练日志和日志解析结果保存在benchmark_log目录下,文件组织格式如下: 训练日志和日志解析结果保存在benchmark_log目录下,文件组织格式如下:
``` ```
benchmark_log/ benchmark_log/
├── index ├── index
│   ├── PaddleOCR_det_mv3_db_v2.0_bs8_fp32_SingleP_DP_N1C1_speed │   ├── PaddleOCR_det_mv3_db_v2_0_bs8_fp32_SingleP_DP_N1C1_speed
│   └── PaddleOCR_det_mv3_db_v2.0_bs8_fp32_SingleP_DP_N1C4_speed │   └── PaddleOCR_det_mv3_db_v2_0_bs8_fp32_SingleP_DP_N1C4_speed
├── profiling_log ├── profiling_log
│   └── PaddleOCR_det_mv3_db_v2.0_bs8_fp32_SingleP_DP_N1C1_profiling │   └── PaddleOCR_det_mv3_db_v2_0_bs8_fp32_SingleP_DP_N1C1_profiling
└── train_log └── train_log
├── PaddleOCR_det_mv3_db_v2.0_bs8_fp32_SingleP_DP_N1C1_log ├── PaddleOCR_det_mv3_db_v2_0_bs8_fp32_SingleP_DP_N1C1_log
└── PaddleOCR_det_mv3_db_v2.0_bs8_fp32_SingleP_DP_N1C4_log └── PaddleOCR_det_mv3_db_v2_0_bs8_fp32_SingleP_DP_N1C4_log
``` ```
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册